1. Internet Basics for Web Engineering

- a. Introduction to the Internet and the Web
- b. HTTP and HTTPS
- c. Internet Search

1.1 Introduction to the Internet and the Web

The Internet versus the World Wide Web

- Definition
- Brief history
- □ Structure/architecture

Standards

Web Browsers and Compatibility Issues

What is the Internet?

- A collection of interconnected *computer networks*, linked by copper wires, fiber-optic cables, wireless connections, etc.
 - The transport vehicle for the information stored in files or documents on another computer.
- These networks rely on NAPs, backbones and routers to talk to each other.

What is the Internet?

- Network access points (NAPs): data communications facilities that provide access to higher-speed links (typically intercontinental in extent)
- Backbones: the high-speed, main trunk connections that carry Internet traffic
 - The ISP backbone interconnects the ISP's POPs, AND interconnects the ISP to Other ISP's and online content.
 - The backbones meet at NAPs
- Routers: computer networking devices that forward data packets across a network toward their destinations
- WWW: a collection of interconnected *documents*, linked by hyperlinks and URLs.
 - □ Accessible via the Internet
 - Enables computer users to locate and view multimedia-based documents
- The WWW is accessible via the Internet, like many other Internet services including e-mail, file sharing

Brief Internet History

- Late 1950s The <u>USSR</u> launched the <u>Sputnik</u>, a series of unmanned satellites
 - Spurred the US to create the Advanced Research Projects Agency (ARPA) in February 1958 to regain a technological lead.
- 1969 the US Department of Defense commissioned ARPANET for research into networking.
 - The first node was at UCLA, closely followed by nodes at Stanford Research Institute, the University of California at Santa Barbara, and the University of Utah.
- 1973 ARPANET linked 40 machines and had international connections to England and Norway.
- January 1, 1983 The first <u>TCP/IP</u> wide area network was operational when the US <u>National Science Foundation</u> (NSF) constructed a <u>university</u> network backbone that would later become the <u>NSFNet</u>.
 - This date is held by some to be technically that of the birth of the Internet.
 - □ By 1990 there were over 300,000 host computers.

... Brief Internet History

- 1995 -NSFNET was "defunded" and restrictions were lifted on commercial use, setting the stage for exponential growth in Internet usage.
 - NSFNET funding was redistributed to regional networks to help purchase Internet connectivity from the now numerous, commercial network service providers.
- 1995 1997 the number of sites increased by over 6 million per year to nearly 20 million host sites.
- As of January 22, 2007, 1.0935 billion people use the Internet according to Internet World Stats.
 - http://www.internetworldstats.com/stats.htm

Common Uses of the Internet

The WWW

- Provides instant access to a vast and diverse amount of online information using search engines
- Remote Access
 - Allows computer users to connect to other computers and information stores easily, wherever they may be across the world.
 - Provides new opportunities for working from home, collaboration and information sharing in many industries.
 - An employee on a business trip can open a remote desktop session into his normal office PC using a secure Virtual Private Network (VPN) connection via the Internet.
- Collaboration
 - The low-cost of collaborative software (.eg., email, calendaring, text chat, <u>wiki</u>) makes collaboration easier
 - Internet 'chat' systems allow colleagues to stay in touch in a very convenient way
- File Sharing
 - Using e-mail, a Web server, FTP server, etc
- Streaming Media
 - Many existing radio and television broadcasters provide Internet 'feeds' of their live audio and video streams (for example, the BBC).
- Voice Telephony (VoIP)
 - Provides cheap (sometimes free) Internet-based telephone calls, especially over long distances and especially for those with always-on ADSL or DSL Internet connections.

Brief History of the WWW

- 1989 First proposal for the WWW was made
 - By Tim Berners-Lee, a scientist at CERN (European centre for High Energy Physics Geneva)
- 1990 first browser/editor program
- 1991 an early WWW system released to the high energy physics community via the CERN program library
 - Including a browser, Web server and a library
 - First Web server in the US came online in December 1991 at Stanford Linear Accelerator Center (SLAC) in California
- 1993 First version of the Mosaic browser (running on X Window System environment) released
 - At the National Center for Supercomputing Applications (NCSA), university of Illinois
 - Late 1993: over 500 known Web servers, WWW accounted for 1% of Internet traffic (the rest was remote access, e-mail and file transfer)
- 1994 "Year of the Web"
 - World's First International WWW conference at CERN in May (about 400 users and developers in attendance)
 - Web stories got into the media
 - Second conference in USA with 1300 people in attendance (organized by CERN in October)
 - End of 1994: 10,000 Web servers (2,000 of which were commercial), 10 million users

... Brief History of the WWW

- Jan 1995 the International WWW Consortium (W3C) was founded
 - Develops interoperable technologies (specifications, guidelines, software, and tools) to lead the Web to its full potential.
- Other developments
 - □ 1995 JAVA source code was released
 - □ 1998 Google was founded

Statistics

Number of Hosts advertised in the DNS (source: <u>http://www.isc.org/</u>)

- □ Jan 2007: 433,193,199
- □ Jul 2007: 489,774,269
- In the September 2007 survey we received responses from 135,166,473 sites (source: <u>http://news.netcraft.com/</u>)

Language

Top Ten Languages Used in the Web (source: <u>http://www.internetworldstats.com</u>)

Top Ten Languages Used in the Web (Number of Internet Users by Language)					
TOP TEN LANGUAGES IN THE INTERNET	% of all Internet Users	Internet Users by Language	Internet Penetration by Language	Language Growth in Internet (2000 - 2007)	2007 Estimated World Population for the Language
English	31.2 %	365,893,996	17.9 %	157.7 %	2,042,963,129
<u>Chinese</u>	15.7 %	184,001,513	13.6 %	469.6 %	1,351,737,925
<u>Spanish</u>	8.7 %	101,539,204	22.9 %	311.4 %	442,525,601
<u>Japanese</u>	7.4 %	86,300,000	67.1 %	83.3 %	128,646,345
French	5.0 %	59,207,849	15.3 %	385.4 %	387,820,873
<u>German</u>	5.0 %	58,981,592	61.1 %	112.9 %	96,488,326
Portuguese	4.0 %	47,326,760	20.2 %	524.7 %	234,099,347
<u>Korean</u>	2.9 %	34,120,000	45.6 %	79.2 %	74,811,368
<u>ltalian</u>	2.7 %	31,481,928	52.9 %	138.5 %	59,546,696
<u>Arabic</u>	2.5 %	28,782,300	8.5 %	940.5 %	340,548,157
TOP TEN LANGUAGES	85.0 %	997,635,142	19.3 %	203.7 %	5,159,187,766
Rest of World Languages	15.0 %	175,474,783	12.4 %	440.3 %	1,415,478,651
WORLD TOTAL	100.0 %	1,173,109,925	17.8 %	225.0 %	6,574,666,417

Hypertext

- HyperText Markup Language (HTML) is the predominant markup language for the creation of web pages
- User interface paradigm
- Documents with hyperlinks
- Typed links
 - a link to another document or part of a document that includes information about the *character* of the link.
 - □ Useful, if only were they used
- Transclusion
 - Client-side vs. server-side includes
- Hypermedia hypertext + multimedia
- Usually client/server architecture

Browser Implementations

- Mosaic (1993)
- Netscape Navigator (1994)
- MS Internet Explorer (1995)
- Mozilla (1998, 2002)
- Lynx, Opera, Amaya, Safari, Konqueror...
- Firefox (2004)

Browser wars:

the competition for dominance in the <u>web browser</u> marketplace.
 For details see, <u>http://en.wikipedia.org/wiki/Browser_wars</u>

Server Implementations

NCSA HTTPd

- Development was suspended in 1998
- Apache = "a patchy" server
- MS Internet Information Server
- Many others in various packages
 - Many more embedded
- Server wars
 - Is Microsoft winning the Web server war?
 - see <u>http://www.raiden.net/?cat=2&aid=287</u>

Servers Market Share

 Market Share for Top Servers Across All Domains August 1995 - September 2007 (source: <u>http://news.netcraft.com</u>/)

Invisible Web

A.k.a. deep web

Pages generated from databases

- Parameters from forms
- May not even have a direct URI
- Old example: product catalogues
- Increasingly becoming visible through "internal ad links" and indexes
- Estimated 500x bigger than visible web
- New example: Google search results

WWW Architecture

WWW Architecture

Client/Server, Request/Response architecture

- □ You request a Web page
 - > e.g. http://www.msn.com/default.asp
 - HTTP request
- □ The Web server responds with data in the form of a Web page
 - > HTTP response
 - > Web page is expressed as HTML
- Pages are identified as a Uniform Resource Locator (URL)
 - > Protocol: http
 - > Web server: www.msn.com
 - > Web page: defaul t. asp
 - Can also provide parameters: ?name=Leon

Proxy Servers & Firewalls

Proxy Server

- A server that sits between a client (running a browser) and the Internet
- Improves performance by caching commonly used Web pages
- Can filter requests to prevent users from accessing certain Web sites

Firewall

 A server that sits between a network and the Internet to prevent unauthorized access to the network from the Internet

Standardization

- Interoperability between implementations
 - How was the web before standards?
 - No more "best viewed with ..."
- Stability of specification
- Industry has to agree on a standard
- Usually a compromise solution

Best started with one candidate

Standardization Bodies

- Organizations with support from industry
- Standards not necessarily free
- ISO
- ANSI, Ecma Int'l
 - Domain-specific bodies
 - Internet Engineering Task Force (IETF)
 - World Wide Web Consortium (W3C)
 - □ OASIS, WS-I for Web Services

SWE 444: Internet & Web Application Development

Web Standards

- Governing body for Internet since 1992
 - □ http://www.isoc.org

Internet Engineering Task Force (IETF)

- □ http://www.ietf.org/
- □ Founded 1986
- A large open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet
- It is open to any interested individual

World Wide Web Consortium (W3C)

- □ http://www.w3.org
- □ Founded 1994 by Tim Berners-Lee
- an open forum of companies and organizations with the mission to lead the Web to its full potential
- □ W3C has around 450 Member organizations from all over the world
- Publishes technical reports and recommendations
- □ The rule-making body of the Web is the W3C
- W3C puts together specifications for Web standards
- The most essential Web standards are HTML, CSS and XML

Standardization of HTML

- IETF RFC 1866 2.0 Nov 1995
- Then W3C Recommendations
- Also ISO/IEC standard
- 3.0 a failure
- 3.2 included changes from browsers
- 4.01 latest, made into XHTML 1.0
 Going from SGML to XML
- XHTML 1.1 modularized

Web Browsers

- Client-side applications
- Request HTML from Web server and render it

Popular browsers:

- □ Internet Explorer
- Netscape
- Opera
- others
- Also known as User Agents

Web Browsers: Compatibility Problems

- There are literally hundreds of web browsers in use around the world.
 - All of them implement the W3C document standards a little differently.
- The most commonly used browsers are Internet Explorer, Netscape Navigator, Firefox and Opera.
 - Each implements HTML, JavaScript and Cascading Style Sheets (CSS) a little differently.
 - Differences range from cosmetic to those that make Web pages look totally different
 - Each browser is free to implement "enhancements" to the W3C standard version of each of these formats.
- There are typically different flavors of the same browser type which may not be compatible
- The underlying operating systems also create difference in how the computer displays graphical elements and text differently.
- HTML editors are, on their part, notorious for creating non-compliant and garbage code.
- A cross-browser compatible Web page will look more or less the same in all of the existing Web browsers

Designing for Cross-Browser Compatibility

- Obviously, 100% compatibility with all potential browsers is impossible.
- Write clean code that conforms to the W3C standards to get consistent results across all browser platforms.
- Write your code by hand, e.g., using notepad
 - If you must use a HTML editor, the best choice for compatibility is Dreamweaver and worst is FrontPage.
- Use code cleaners and validators (freely available)
 - □ <u>http://tidy.sourceforge.net/</u>
 - □ <u>http://validator.w3.org</u>

1.2 HTTP and HTTPS

- Introduction
- Request/Response types
- MIME Data Formats

HTTPS

Hypertext Transport Protocol (HTTP)

- HTTP is an application protocol based on client-server architecture, designed for delivering hypermedia information on the web.
 - The design goals of HTTP are:
 - light protocol: not consuming too much resources
 - fast protocol: need to retrieve many widely distributed documents as fast as possible
- HTTP evolved into multiple, mostly backward-compatible protocols versions
 - □ HTTP 1.0: simple
 - □ HTTP 1.1: more complex
- For full details about the HTTP protocols, refer to the links: <u>http://www.ietf.org/rfc/rfc1945.txt</u> (1.0) and <u>http://www.ietf.org/rfc/rfc2616.txt</u> (1.1).

...HTTP

HTTP is a stateless protocol

- Doest not retain information about users between requests
- Each HTTP request is independent of previous and subsequent requests
- State information can be maintained using cookies

Persistent (or keep-alive) connections

- Connections that allow more than one request/response per TCP/IP connection
- Only work well when not using proxy servers
- Used for efficiency purpose

...HTTP

HTTP 1.0

 Persistent connections not allowed by default; allowed only when explicitly negotiated

HTTP 1.1:

- Persistent connections allowed by default
- Works well with proxies
- A client tells in the beginning of a request the HTTP version it uses, and the server uses the same or earlier version in the response

HTTP Message Format

The format of request and response messages are similar

Both consist of

- An initial line (different in both)
- Zero or more header lines
- A blank line
- An optional message body

The request/response line and each header line must end with CRLF ("\r\n"). The Request body is sent in binary format.

HTTP Request Format

HTTP Request

- The request line has three parts, terminated by CRLF: Method Request-URI HTTP-Version CRLF
- Methods (case sensitive) include:
 - GET: request document named by request-URI. Any parameters for the request are appended to the request-URI
 - □ **HEAD**: request only header information about request-URI
 - POST: similar to GET but request parameters are provided through the Message Body.
- Request-URI specifies the full path of the resource being requested and must begin with "/":
 - e.g: /swe344/lectures/lecture1.html
 - Note: URI stands for Universal Resource Identifier superset of URL and URN
- HTTP-version specifies the version of HTTP of the client making the request. Values are: HTTP/1.0 or HTTP/1.1

HTTP Headers

- Headers are used by both the Client making a request or by the Server responding to the request.
 - Headers provide information about the request, response, object being requested/sent, server or client.
- The headers have the form "Header-Name: value", ending with CRLF.
 - □ The header name is not case-sensitive (but the value may be).
 - □ Any number of spaces or tabs may be between the ":" and the value.
- Some common header names:
 - □ Accept: what format is acceptable (client)
 - □ Content-Length: length of the message (client/server)
 - □ Content-Type: type of the content (server)
 - □ Date: date sent (sever)
 - □ Expires: expiry date of the content (server)
 - □ Last-Modified: Last modification date (server)

HTTP Request

HTTP Response

• A response also consists of four parts but the first line is called the status line and has three parts:

HTTP-Version Status-Code Status-Text CRLF

SWE 444: Internet & Web Application Development

HTTP Response

- HTTP-Version specifies the HTTP of the server responding to the request: HTTP/1.0 or HTTP/1.1
- Status-code is a three-digit integer indicating the status of the request.
- Status-Text explains the status.
- First digit identifies the category of the response
 - □ **1xx** indicates an informational message only
 - 2xx indicates success of some kind
 - 3xx redirects the client to another URL
 - **4xx** indicates an error on the client's part
 - **5xx** indicates an error on the server's part
- The most common status codes are:
 - **200 OK** : The request is successful
 - **404 Not Found** : The requested resource doesn't exist.
 - **500 Server Error** : An unexpected server error.

HTTP Server Status Codes

Code	Description
200	ОК
201	Created
301	Moved Permanently
302	Moved Temporarily
400	Bad Request – not understood
401	Unauthorized
403	Forbidden – not authorized
404	Not Found
500	Internal Server Error

- 401: Header specifies the authorization scheme needed. So, request must be made with authorization.
- 403: Authorization will not help as the page is forbidden.

Communicating Across Network

- Process sends/receives messages to/from its socket
- Socket analogous to door
 - sending process shoves message out door
 - sending process assumes transport infrastructure on other side of door which brings message to socket at receiving process

HTTP Transaction Example

1. Telnet to your favorite Web server:

telnet www.ccse.kfupm.edu.sa 80

Opens TCP connection to port 80 (default HTTP server port) Anything typed in sent to port 80 at www.ccse.kfupm.edu.sa

2. Type in a GET HTTP request:

GET /~sahalu/index.html HTTP/1.0

By typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server

3. Look at response message sent by HTTP server!

Cookies

- A mechanism to store a small amount of information (up to 4KB) on the client
- A cookie is associated with a specific web site
 - □ Enables a Web server distinguish between clients
 - □ Used to customize pages
- Cookie is sent in HTTP header
- Cookie is sent with each HTTP request
- Can last for only one session (until browser is closed) or can persist across sessions
- Can expire some time in the future

Multipurpose Internet Mail Extensions (MIME) Types

- HTTP requires that data be transmitted in the context of e-mail-like messages, even though the data may not actually be e-mail.
- An Internet Standard that extends the format of <u>e-mail</u> to support text in <u>character sets</u> other than <u>US-ASCII</u>, non-text attachments, multi-part message bodies, and header information in non-ASCII character sets.
- A standard for specifying the format of content
- Helps browsers determine how to display the data
- application/*
- audio/*
- image/*
 - □ image/jpeg
 - □ image/tiff

video/*

- □ video/quicktime
- □ video/mpeg
- video/x-msvideo
- text/*
 - □ text/xml
 - □ text/rtf
 - □ text/html
 - text/plain

Pages with Multiple Types

- Each entity (ex. image) is standalone HTTP request
 - Page with many pictures creates many connections
- Each response therefore has appropriate MIME settings

HTTPS

- A secure version of HTTP with a different default port (443) and an additional encryption/authentication layer between HTTP and TCP.
 - □ Syntax: https://
- Invented by Netscape Communications Corporation to provide authentication and encrypted communication
 - Widely used on the Web for security-sensitive communication such as payment transactions and corporate logons.
- Strictly speaking, https is not a separate protocol
 - Refers to the combination of a normal HTTP interaction over an <u>encrypted</u> <u>Secure Sockets Layer</u> (SSL) or <u>Transport Layer Security</u> (TLS) transport mechanism.
 - Ensures reasonable protection from eavesdroppers and <u>man-in-the-middle</u> <u>attacks</u>.
- The level of protection depends on
 - the correctness of the implementation by the web browser and the server software and
 - the actual cryptographic algorithms supported.

1.3 Internet Search

- The following three methods of reaching information on the Web can be identified:
 - Search Engine
 - Directories
 - Portal

Introduction to Internet Search

- A search engine is an information retrieval system designed to help find information stored on a computer system, such as on the Web
- The very first tool used for searching on the Internet was <u>Archie</u>
 - Created in 1990 by <u>Alan Emtage</u>, a student at <u>McGill</u> <u>University</u> in Montreal.
 - Archie downloaded the directory listings of all the files located on public anonymous FTP sites, creating a searchable database of filenames
 - However, Archie could not search by file contents.

How Search Engines Work

- A search engine works in the following sequence:
 - 1. Web crawling
 - 2. Indexing
 - 3. Searching
- Web search engines work by storing information about a large number of web pages, which they retrieve from the WWW itself.
- These pages are retrieved by a <u>Web crawler</u> (sometimes also known as a spider)
 - Crawling starts with a popular Web site containing lots of links, such as Yahoo
 - Crawling continues until it finds a logical stop, such as a dead end with no external links or reaching the set number of levels inside the Web site's structure
- The contents of each page are then analyzed to determine how it should be indexed
 - For example, words are extracted from the titles, headings, or special fields called <u>meta tags</u>.
 - > See a sample analysis: <u>http://en.wikipedia.org/wiki/Inverted_index</u>
- Data about web pages are stored in an index database for use in later queries.
 - Early engines held an index of a few hundred thousand pages and documents, and received maybe one or two thousand queries a day
 - Today, a top search engines will index hundreds of millions of pages, and respond to tens of millions of queries a day

Standard Web Search Engine Architecture

... How Search Engines Work

- When a user makes a <u>query</u>, typically by giving <u>key words</u>, the engine looks up the <u>index</u> and provides a listing of best-matching Web pages according to its criteria
 - usually with a short summary containing the document's title and sometimes parts of the text
- The usefulness of a search engine depends on the <u>relevance</u> of the **result** set it gives back
- Most search engines employ methods to <u>rank</u> the results to provide the "best" results first.
- Most Web search engines are commercial ventures supported by <u>advertising</u> revenue
 - Some employ the controversial practice of allowing advertisers to pay money to have their listings ranked higher in search results
- Those who don't accept money for their search engine results make money
 - by running search related ads alongside the regular search engine results.
 - everytime someone clicks on one of these ads.

Challenges Faced by Search Engines

Size of the Web

 Contains more than 3 billion documents, growing very fast and not indexed in any standard vocabulary

Currency

Many Web pages are updated frequently, which forces the search engine to revisit them periodically.

Relevancy

- Because the queries one can make are currently limited to searching for key words, may result in many <u>false positives</u>
- Better results might be achieved by using a proximity-search option or using organic search engines.

... Challenges Faced by Search Engines

Problem with dynamically-generated Web sites

 Because these sites may be slow or difficult to index, or may result in excessive results, perhaps generating 500 times more Web pages than average.

Search engines can be tricked

- To return pages, in favor of the trick makers, which contain little or no information about the matching phrases.
- Making the more relevant Web pages pushed further down in the results list

Indexing secured pages

Content hosted on HTTPS URLs pose a challenge for crawlers which either can't browse the content for technical reasons or won't index it for privacy reasons.

The Invisible Web – 4 Types

- 1. Opaque: search engines (intentionally) choose not to index
 - Depth of crawl is limited sometimes for cost reasons
- 2. The Private Web: password protected
 - robots files disallows spiders access, "noindex" meta tag prevents access
- 3. The Proprietary Web: registration required (either fee or free)
 - Examples: The New York Times, The Well, The Wall Street Journal Interactive Edition.
- 4. The Truly Invisible Web: can't search certain file formats and databases
 - Non-HTML/text content textual content encoded in multimedia (image or video) files or specific <u>file formats</u> not handled by search engines.
 - > file formats like PDF, Flash, Shockwave, etc
 - Recently some of the commercial search engines have added image and PDF files to their indexes.

How Do I Use The Invisible Web?

Why search the invisible Web?

- The materials found on the Invisible Web are often more focused, current, and professionally relevant than what you can find on the public web using search engines.
- One way to explore the deep web is by using human crawlers instead of algorithmic crawlers:
- Through the <u>Direct Search</u> site
 - put together by Gary Price, a librarian and information research consultant.
 - nicely organized into searchable categories and is updated frequently.
- Through the <u>Invisible Web Directory</u>,
 - put together by the aforementioned Gary Price and search guru Chris Sherman.
 - a directory of searchable databases, organized by subject.
- The <u>Virtual Library</u> is simple and easy to use, with annotated subject links.

Examples of Invisible Web Sites

- Dictionaries <u>http://www.m-w.com</u>
- Telephone Numbers <u>http://www.infospace.com</u>
- Clinical Trials <u>http://www.clinicaltrials.gov</u>
- Library Catalogs <u>http://www.libdex.com/webcats</u>
- Philanthropy and Grant Information <u>http://lnp.fdncenter.org/finder</u>
- Translation Tools <u>http://world.altavista.com</u>

Major Search Engines

- Google (<u>http://www.google.com/</u>)
 - Try the Googlewhacking game: type two words for Google search in the hopes of receiving *exactly* one result!
- AltaVista (http://www.altavista.com/)
- Alltheweb (http://www.alltheweb.com/)
- Kartoo (http://www.kartoo.com)
- Teoma (http://www.teoma.com)
- Vivisimo (<u>http://www.vivisimo.com</u>)
- Why does the same search on different search engines produce different results?

Directories

• A web directory is a repository or database of information on the Web

- As opposed to a conventional database, a directory is heavily optimized for reading, with the assumption that data updates are very rare compared to data reads.
- Commonly, a directory supports search and browsing in addition to simple lookups.
- A web directory is not a search engine, and does not display lists of web pages based on keywords
 - □ A directory lists web sites by category and subcategory.
 - A whole web site, rather than one page or a set of keywords, often limited to inclusion in only one or two categories.
- Directories have various types of listings, often dependant upon the price paid for inclusion:
 - □ Free Submission there is no charge for review of the site
 - Reciprocal Link the site submitted must link back to the directory in order to be listed
 - Paid Submissions a fee is charged for reviewing the submitted link
 - No Follow there is a rel="nofollow" attribute associated with the link, meaning search engines will not follow the link.
 - **Featured Link the link is given a premium position in the category where it is submitted**
 - □ Featured Homepage Link the link may be listed on the homepage of the directory.

Who Creates Directories?

Libraries

- Nonprofit organizations
- Universities
- Dot-Com businesses
 - but they are probably portals too
- Many directories, including the Open Directory Project and the World Wide Web Virtual Library, are edited by volunteers, who are often experts in particular categories.

A Sampling of Directories

Ansearch

- Web search and Directories focusing on the US, UK, Australia and New Zealand.
- Best of the Web Directory
 - Lists content rich, well designed websites categorized both by topic and by region.

Open Directory Project (aka DMoz or ODP)

- The largest directory of the web. Its <u>open content</u> is <u>mirrored</u> at many sites, including the <u>Google Directory</u>.
- World Wide Web Virtual Library (VLIB)
 - □ The oldest directory of the Web.
- Yahoo! Directory
 - □ The first service Yahoo! offered.

Portals

- A Web portal is a site on the Web that typically provides personalized capabilities to its visitors, providing a pathway to other content
- Many of the portals started initially as either web directories (notably <u>Yahoo!</u>) and/or search engines (Excite, Lycos, <u>AltaVista</u>, <u>infoseek</u>, and <u>Hotbot</u> among the old ones).
- Portals offer a one-stop shopping look
- Portals include e-mail, chat, auctions, news, weather, horoscopes, stock info, and more.
- Portals want to be YOUR starting point

A Sampling of Popular Portals

- Yahoo! : <u>www.yahoo.com</u>
- Portals to the World from the Library of Congress: <u>www.loc.gov/rr/international/portals.html</u>
- AltaVista: <u>www.altavista.com</u>

Directories Vs Search Engines

- When should you use a directory?
 - When you have a broad topic
 - When you want experts to recommend sites
 - When you want to avoid irrelevant sites
 - Examples topics:
 - Disabilities
 - Civil War
 - > Welfare

Directories Vs Search Engines

- When should you use a search engine?
 - □ When you have a narrow topic
 - □ When you are looking for a specific website
 - □ When you want to search for a file type or language
 - Examples:
 - > Americans with Disabilities Act
 - Battle of Gettsyburg
 - Welfare to Work
 - Good For: Precision searches, using named people or organisations, searching quickly and widely, topics which are hard to classify
 - □ Not Good For: Browsing through a subject area