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Abstract 

 
We propose an approach using elliptic curve-based 
zero-knowledge proofs in e-commerce applications. 
We demonstrate that using elliptic curved-based zero-
knowledge proofs provide privacy and more security 
than other existing techniques. The improvement of 
security is due to the complexity of solving the discrete 
logarithm problem over elliptic curves. 
 
Index terms  – E-commerce, security, privacy, zero-
knowledge proofs, elliptic curves. 
 
1. Introduction 
 
E-commerce is not dead, but it is thriving! According 
to the eSpending report, online shoppers spent $2.95 
billion during the second week of December 2003, 
which is a 48% increase from the same period of 2002. 
[1] However, the security and privacy challenges are 
ever increasing. Fraud in credit card payments has 
increased to around 3% of total transaction volume. [2]  
 
Researchers have proposed different solutions for 
different challenges of e-commerce. Most of the 
verification solutions are based on obtaining more 
information from the user, such as zip code, secret pin, 
etc. This private information if not handled properly 
can be a source of future fraud as indicated in [2]. 
Even without the risk of possible future fraud, 
revealing such personal information undermines 
customers’ privacy (Why does a customer service 
operator need to know the customer’s mother’s maiden 
name?)  Therefore, using a verification system that 
protects privacy and security at the same time is 
essential.  
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In this paper, we are proposing an approach using 
elliptic curve-based zero-knowledge proofs in e-
commerce applications. Our approach provides higher 
efficiency and better security and privacy. In 
particular, zero-knowledge proofs (ZKP) can be used 
whenever there is a need to prove the possession of 
critical data without a real need to exchange the data 
itself. Examples of such applications include: credit 
card verification, digital cash system, digital 
watermarking, and authentication. 
 
2. Related work 
 
Many e-commerce applications have been 
implemented not using zero-knowledge proofs tech-
niques for verification purposes.  Most of these 
solutions reveal more information in order to achieve 
verification. However, researchers have shown that 
zero-knowledge proofs can be utilized in e-commerce 
applications, such as Anonymity revocable off-line 
electronic cash scheme and digital watermark detection 
[4]. 
 
Nguyen et al. presented a batching technique for zero-
knowledge proofs to speed up the process of 
verification in digital cash and fair exchange [5]. 
However, their ZKP is implemented using modulo n 
over the multiplicative group Zn. We are proposing 
implementing ZKP using elliptic curves in e-
commerce. This will increase the security level, due to 
the fact that solving the discrete log problem over 
elliptic curves takes exponential time, as opposed to 
sub-exponential time for discrete logarithm over Zn. [6] 
[7] 
 
3. Zero-knowledge proofs overview 
 
Zero-knowledge proofs are used when someone (the 
prover) has to prove to someone else (the verifier) 
his/her knowledge of secret information without 
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revealing any information about the secret that the 
verifier cannot get without executing the protocol. 
 
3.1. Definition of zero-knowledge proofs 
 
From its name, a zero-knowledge proof has two parts: 
 
(1) Proof: It should prove convincingly that Peggy 

knows the secret. At the end of the protocol, 
Victor should be convinced that Peggy knows the 
secret. The protocol should not allow Peggy to 
cheat (within a certain probability in iterative 
proofs). She must not be able to produce her part 
of the dialogue without knowing the secret. 

 
(2) Zero-knowledge: It should not give Victor any 

information about the secret. This means that it 
should be computationally infeasible for Victor to 
retrieve the secret from the information in the 
dialogue. [5] 

 
3.2. Classical problems 
 
There are various classical problems that involve zero-
knowledge proofs. In this paper, we present two of 
these problems, namely the discrete logarithm problem 
[8] and the square root problem [4] these are to be 
compared to the same problems using elliptic curves, 
which will be introduced in Section 4. 
 
3.3. Discrete logarithm (DL) problem 
 
Peggy, the prover, wants to prove in zero-knowledge 
that she knows the discrete logarithm of a given 
number modulo n. That is, given n, generator g for 
some field Fn, and b ∈ Fn, to prove in zero-knowledge 
that Peggy knows x such that  
 

gx = b (mod n). 
 
Solving discrete logarithm problem is known to be 
computationally infeasible. Therefore, people are 
interested in proving the knowledge of such a secret 
without revealing it. 
 
Solution: Peggy generates a random r and computes h 
= gr mod n. She sends h to Victor. Now Victor flips a 
coin and conveys the outcome to Peggy. If it is heads, 
Peggy sends r to Victor and he verifies gr = h. If it is 
tails, she sends m = x + r and Victor verifies gm = b.h. 
These steps are repeated until Victor is convinced that 
Peggy must know x with probability of (1-2-k), where k 

is the number of times these steps are repeated.   
Figure 1 summarizes this protocol. 
 
 

  Peggy (P) Victor (V) 
0  g, b, n, x g, b, n 
1 Peggy generates 

random r 
r  

2 P sends h = gr mod n 
to V 

h h 

3 V flips a coin 
c = H or T 

c c 

4 If c = H,  
P sends r to V 

 Check 
gr = h 

5 If c = T,  
P sends m = x + r 

 Check 
gm = b.h 

6 Steps 1-5 are repeated until Victor is convinced that 
Peggy must know x (with probability 1-2-k, for k 
iterations). 

Figure 1: ZKP Discrete log problem 
 
3.4. Square-root problem 
 
Peggy wants to prove in zero-knowledge that she 
knows the square root of a given number modulo a 
large composite number n. i.e. to prove in zero-
knowledge that she knows x such that  

 
x2 = b (mod n), for known b, n. 

 
Solution: Peggy generates a random r and computes s 
= r2 mod n. She sends s to Victor. Victor flips a coin 
and accordingly asks Peggy for either r or m = r.x. 
Victor verifies the value he receives. By repeating 
these steps enough number of times, Victor can be 
convinced. Figure 2 summarizes the steps of this 
protocol. 
 

  Peggy (P) Victor (V) 
0  b, n, x b, n 
1 Peggy generates 

random r 
r  

2 P sends s = r2 mod n 
to V 

s s 

3 V flips a coin 
c =  H or T 

c c 

4 If c = H,  
P sends r to V 

 check r2 = s 

5 If c = T, 
P sends m = r.x 

 check m2 = s.b 

6 Steps 1-5 are repeated until Victor is convinced that 
Peggy must know x (with prob 1-2-k, for k iterations). 

Figure 2: ZKP Square-root problem 



4. Zero-knowledge proofs using elliptic 
curves 
 
In this section, we show two examples of using elliptic 
curve in zero-knowledge proof. One example is on 
discrete logarithm over elliptic curve (DLEC) problem, 
and the other is on square root problem over elliptic 
curve (SREC). We choose these two examples to show 
why elliptic curve is good for one but not the other, as 
we explain in the next section. 
 
An elliptic curve over some field K (of characteristic ≠ 
2, 3) is the set of all points (x, y) ∈ K × K that satisfy 
the equation:  y2 = x3  + ax + b, where a, b ∈ K. If 
characteristic of K is 2 or 3, then the elliptic curve 
equation will have some other types [8]. 
 
4.1. Discrete logarithm over elliptic curve 
problem 
 
Given an elliptic curve E over a field Fn, G ∈ E/ Fn 
(where G is a generator, or its order contains a large 
prime), and B = m.G ∈ E/Fn, Peggy wants to prove in 
zero-knowledge that she knows m such that m.G = B. 
 
Solution: Since Peggy claims that she knows m such 
that m.G = B, where B is public, she generates a 
random r ∈ Fn and computes A = r.G. She sends A to 
Victor. Now Victor flips a coin and conveys the 
outcome to Peggy. If it is heads, Peggy sends r to 
Victor and he verifies that r.G = A. If it is tails, she 
sends x = r + m and Victor verifies x.G = A+B. 
Repeating these steps increases exponentially the 
confidence of Victor that Peggy knows the secret m. 
See Figure 3. 
 
  Peggy 

(P) 
Victor (V) 

0  G, B, m G, B 
1 Peggy generates random r r  
2 P sends A = r.G to V A A 
3 V flips a coin c =  H or T c c 
4 If c = H, P sends r to V 

 
 Check 

r.G = A 
5 If c = T,  P sends x = r + m  Check  

x.G= A+B 
6 Steps 1-5 are repeated until Victor is convinced that 

Peggy must know m (with probability 1-2-k, for k 
iterations). 

Figure 3: ZKP DLEC 
 
 

4.2. Square-root over elliptic curve problem 
 
The elliptic curve version of the zero-knowledge proof 
for the square-root problems can be described as 
follows: Given E/Fn (for composite n) and B ∈ E/ Fn, 
Peggy wants to prove in zero-knowledge that she 
knows A ∈ E/Fn such that 2A = B, i.e. A + A = B. 
Since n is composite, solving this problem is known to 
be infeasible.  
 
Solution: Peggy wants to prove that she knows A such 
that 2A = A+A = B. First, Peggy generates a random R 
∈ E/Fn and computes S = 2R. She sends S to Victor. 
Victor flips a coin and accordingly asks Peggy for 
either R or M = R+A. See Figure 4.  
 

  Peggy (P) Victor (V) 
0  A, B B 
1 Peggy generates 

random R ∈ E/Fn 
R  

2 P sends S = 2R to V S S 
3 V flips a coin  c =  H 

or T 
c c 

4 If c = H,  
P sends r to V 

 Check 
2R = S 

5 If c = T,  
P sends M = R+A 

 Check 
2M = S+B 

6 Steps 1-5 are repeated until Victor is convinced that 
Peggy must know x (with probability 1-2-k, for k 
iterations). 

Figure 4: ZKP SREC 
 
5. Application to e-commerce 
 
In this section, we will perform a high-level 
assessment of the proposed approach of using elliptic 
curve-based zero-knowledge proofs in e-commerce. 
This will be in light of the following aspects: 
technological, economic, social, and regulatory aspects 
[9]. The proposed approach covers the following key 
requirements: (1) Authentication: It provides user 
authentication via proving the possession of an 
authentication secret. (2) Privacy: The private 
information is not revealed; only the possession of 
such information is checked. (3) Security: Zero-
knowledge proofs on DLEC provide higher level of 
security than on discrete logarithm over Zn, or current 
RSA. Refer to Section 6. (4) Ease of Use: The 
authentication process is performed transparent to the 
users. 
 



6. Advantages of elliptic curve-based ZKP 
 
Having DLEC as building blocks makes the zero-
knowledge proof scheme more secure than the 
classical scheme using multiplicative groups (e.g. Zn) 
[6]. It has been proven in [10] that the classical DL 
problem in Fq

* can be solved in sub-exponential time, 
L(1/3). The time complexity to solve the classical DL 
problem reduced to  
 

Exp(O( (log q)1/3 (log log q)2/3)). 
 
However, the best-known algorithm to solve the DLEC 
problem in E/Fq is by using giant-step baby-step 
approach, but it takes exponential time [7]. The time 
complexity of the algorithm is O(N1/2), where N is the 
group order. For an elliptic curve over the field Fq, the 
time complexity is Exp(O(log q)).  
  
The observation we make here is that if the Elliptic 
curve scheme is not based entirely on DLEC, weaker 
parts in the scheme can be attacked in sub-exponential 
time, and hence using elliptic curve gives no more 
security than the classical ones. For example, the 
protocol of the zero-knowledge proof of the square-
root problem (SREC) presented in Section 4 has no 
advantage over the protocol presented in Section 3.4 
even though it is elliptic curve-based. The reason is 
that Victor can solve for R at step 2 of the protocol (of 
Section 4) by factoring n in sub-exponential time. 
Then he can cheat at step 3 by setting the coin to tail to 
force Peggy to send him M = R+A. Once Victor gets 
M, he can learn the secret A (in sub-exponential time) 
as A = M-R. 
 
7. Conclusion 
 
In this paper, we proposed an approach using elliptic 
curve-based zero-knowledge proofs in e-commerce 
applications. Zero-knowledge proofs techniques are 
powerful tools in such critical applications for 
providing both security and privacy at the same time. 
We demonstrated that using elliptic curved-based zero-
knowledge proof give more security in the case of 
discrete logarithm problem, but not in the case of 
square-root problem. The improvement of security is 
due to the higher complexity of solving the discrete 
logarithm problem over elliptic curves than over the 
multiplicative group Zn. This advantage is applicable to 
all applications, in which the zero-knowledge proof is 
based on the discrete logarithm over elliptic curve, 
including: anonymity revocable off-line digital cash, 
and its batching scheme.  
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