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Abstract

We propose an approach using elliptic curve-based zero-knowledge proofs in e-commerce applications. We briefly introduce the class of zero-knowledge proof as a subclass of interactive proof. We demonstrate that using elliptic curved-based zero-knowledge proof provide privacy and more security than other existing techniques. The improvement of security is due to the complexity of solving the discrete logarithm problem over elliptic curves.
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1. Introduction

E-commerce is not dead, but it is thriving! According to the eSpending report, online shoppers spent $2.95 billion during the second week of December 2003, which consists a 48% increase from the same period of 2002. [1] However, the security and privacy challenges are ever increasing. The fraud in credit card payments has increased to around 3% of the total transaction volume. [2] 

Researchers have proposed different solutions for different challenges of e-commerce. However, most of the verification solutions are based on obtaining more information from the user, such as zip code, secret pin, etc. This private information if not handled properly can be a source of future fraud as indicated in [2]. Even without the risk of possible future fraud, revealing such personal information undermines customers’ privacy (Why would a customer service operator know the customer’s mother median name?)  Therefore, using a verification system that protects privacy and security at the same time is essential. 

In this paper, we are proposing an approach using elliptic curve-based zero-knowledge proofs in e-commerce applications. Our approach provides higher efficiency and better security and privacy. 

Zero-knowledge proofs (ZKP) can be used whenever there is a critical data to exchange while only proving the possession of such data is need, without a real need of exchanging the critical data. Examples of such applications include: credit card verification, digital cash system, digital watermarking, access authorization, and authentication.

2. Related Work

For credit card verification, the most widely used approach is billing address verification system (AVS) [3][4]. Visa has introduced “Verified by Visa” solution where customers need to enter an extra pin number when purchasing. Similarly, MasterCard and Discover have their own fraud prevention methods [5]. 

Many e-commerce applications have been implemented using other than zero-knowledge proofs techniques for verification purposes.  Most of these solutions reveal more information in order to achieve verification. However, researchers have shown that zero-knowledge proofs can be utilized in e-commerce applications, such as Anonymity revocable off-line electronic cash scheme [6][7], and digital watermark detection [8].

Nguyen et al. presented a batching technique of zero-knowledge proofs to speed up the process of verification in digital cash and fair exchange [9]. However, their ZKP is implemented using modulo n over the multiplicative group Zn. We are proposing implementing ZKP using elliptic curve in e-commerce. This will increase the security level, due to the fact that solving the discrete log problem over elliptic curves takes exponential time, as oppose to sub-exponential time for discrete logarithm over Zn. [10, 11]

3. Zero-knowledge proofs overview

Zero-knowledge proof is used when someone (the prover) has to prove to someone else (the verifier) his/her knowledge of some secret information while the prover is not willing to reveal the secret. In cryptographic literature they are usually named Peggy (prover) and Victor (verifier). [12]

The usual method for Peggy to prove her knowledge of the secret is to tell Victor the secret. But then, he also gets to know about it and can tell it to anybody he wants. The secret is no longer secret.

Another method is using zero-knowledge proofs. Through these, Peggy can prove to Victor that she does have the secret but it does not give Victor any information about what the secret is. These proofs take the form of an interactive protocol. If Peggy knows the secret she can answer victor’s “questions” correctly, but if she doesn’t, then there is a certain probability that she cannot successfully cheat to answer correctly. By repeating the steps for many iterative rounds, the probability that she cheats successfully can be brought down to within a very small fraction. 

3.1.  Definition of zero-knowledge proof

Zero-knowledge proof is an interactive proof (protocol) in which the prover proves his/her knowledge of a secret without revealing any information about the secret that the verifier cannot get without executing the protocol.

In this section, we define the zero-knowledge proof formally as a class of problems. This class is a subclass of Interactive Proofs (IP). As a subclass of IP, the class of Zero-knowledge Proofs can be defined in the same way the IP class has been defined. First, we need to introduce the following definitions [13] [14].

Definition: (Negligible function)

The function f: N ( R is called negligible if for all c > 0 and sufficiently large n, f(n) < n-c. f is called nonnegligible if there exists a c > 0 such that for all sufficiently large n, f(n) > n-c.  

Examples:

f(n) = 2-n   is negligible.

f(n) = log(n) is nonnegligible.

Definition: (Interactive proof)

An interactive proof <P,V> for language L is a two-party protocol in which a computationally unrestricted prover, P, interacts with a probabilistic polynomial-time verifier, V, by exchanging messages. Both parties share a common input x. At the end, V either accepts or rejects and both completeness and soundness properties hold. [13]

Definition: (Completeness property)

For any c > 0 and sufficiently long x ( L, Probability (V accepts x) > 1 - |x|-c.

i.e. an interactive proof (protocol) is complete if, given an honest prover and an honest verifier, the protocol succeeds with overwhelming probability.

Definition: (Soundness property)

For any c > 0 and sufficiently long x ( L, Probability(V accepts x) < |x|-c, (i.e. negligible), even if the prover deviates from the prescribed protocol. 

In other words, an interactive proof is sound if there exists an expected polynomial-time algorithm M such that if a dishonest prover P’ can with nonnegligible probability successfully execute the protocol with V, then M can be used to extract from P’ knowledge (essentially equivalent for P’s secret) which with overwhelming probability allows successful subsequent protocol executions.

Now, we are ready to show the class of zero-knowledge proof as a subclass of interactive proof. The class of zero-knowledge proof can be defined formally as follows:

Definition: (Zero-knowledge Proof)

An interactive proof <P,V> is called zero-knowledge if for every probabilistic polynomial-time V*, there exists a probabilistic expected polynomial-time simulator Mv* that on inputs x ( L produces probability distributions Mv*(x) polynomially indistinguishable from the distributions <P,V*> (x). [13]

“Polynomially indistinguishable” means that there exists no probabilistic polynomial time algorithm which can decide with better than negligible error probability, when given a polynomial number of samples, from which of the distributions they are drawn.

From its name, a zero-knowledge proof has two parts [9]:

(1) Proof: It should prove convincingly that Peggy knows the secret. At the end of the protocol, Victor should be convinced that Peggy knows the secret. The protocol should not allow Peggy to cheat (within a certain probability in iterative proofs). She must not be able to produce her part of the dialogue without knowing the secret.

(2) Zero-knowledge: It should not give Victor any information about the secret. This means that it should be computationally infeasible for Victor to retrieve the secret from the information in the dialogue. This can be interpreted in two ways:

(i) Some extra information is revealed but Victor cannot use it in anyway.

(ii) No additional information is revealed – the transcript of the dialogue should be indistinguishable statistically and computationally to the transcript generated by a probabilistic polynomial time simulator that simulates the interaction between the prover and the verifier. [9]

Either way, at the end of the protocol, Victor should be unable to cheat. He should not receive any useful information about the secret without the proof.

3.2.  Classical problems

A typical example of zero-knowledge proof is known as Alibaba’s cave problem. [15] The cave shown in the Figure 1 has a secret word. Someone who knows the secret word can open the door between C and D. To everyone else, the door is locked.

Now Peggy wants to prove her knowledge of the secret word to Victor but without revealing the secret. Here’s how she does it:

(1)
Victor stands at point A

(2)
Peggy walks all the way into the cave, either to point C or point D

(3)
After Peggy has gone into the cave, Victor walks to point B

(4)
Victor asks Peggy to either:

(a)
Come out of the left passage (or)

(b)
Come out of the right passage

(5)
 Peggy does that using the secret word if needed to open the door

(6)
 Peggy and Victor repeat the steps above n times until Victor gets convinced that she knows the secret word.
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Figure 1: Alibaba’s cave
There are various other classical problems that involve zero-knowledge proofs. These include discrete logarithm problem [16], square root of an integer modulo n, graph isomorphism [8], and Integer factorization [16]. In general, these problems belong to a class of problems known as NP problems. There is no known efficient (polynomial time) algorithm to solve any of such problems. However the solution can be verified in polynomial time. In this paper, we present two of these problems, namely: discrete logarithm problem and square root problem, to be compared to the same problems using elliptic curves which will be introduced in Section 4.

3.3. Discrete logarithm (DL) problem

Peggy, the prover, wants to prove in zero-knowledge that she knows the discrete logarithm of a given number modulo n. That is, given n, generator g for Fn, and b ( Fn, to prove in zero-knowledge that Peggy knows x such that 

gx = b (mod n)

Solving discrete logarithm problem is known to be computationally infeasible. Therefore, people are interested in proving the knowledge of such secret without revealing it.

Solution: Initially, Peggy and Victor both know the generator g and b (fixed elements in the field). Peggy claims that she also knows x, the discrete log of b. To prove this, she generates a random r and computes h = gr mod n. She sends h to Victor. Now Victor flips a coin and conveys the outcome to Peggy. If it is heads, Peggy sends r to Victor and he verifies gr = h. If it is tails, she sends m = x + r and Victor verifies gm = b.h. These steps are repeated until Victor is convinced that Peggy must know x with probability of (1-2-k), where k is the number of times these steps are repeated. 
Figure 2 summarizes this iterative protocol of zero-knowledge proof of the discrete log problem.

	
	
	Peggy (P)
	Victor (V)

	0
	
	g, b, n, x
	g, b, n

	1
	Peggy generates random r
	r
	

	2
	P sends h = gr mod n to V
	h
	H

	3
	V flips a coin

c = H or T
	c
	C

	4
	If c = H, 

P sends r to V
	
	Check

gr = h

	5
	If c = T, 

P sends m = x + r
	
	Check

gm = b.h

	6
	Steps 1-5 are repeated until Victor is convinced that Peggy must know x (with probability 1-2-k, for k iterations).


Figure 2: ZKP Discrete log problem

To see why this works, consider the following. In each iteration, exactly one of the two steps (4 and 5) actually happens, and this depends on the outcome of the coin flip done by Victor. Peggy cannot influence this. Out of the two outcomes, Peggy can only prepare for one. For example, if she decides to prepare for tails, she can cheat by generating a random m, computing gm and then computing h = (gm)/ b (mod n) and she sends this h to Victor. But while this works for tails, it won’t work if heads comes up as she doesn’t know r the discrete log of h, and she has to get r from h. (Solving this would mean she knows how to solve the discrete log problem.) Similarly if she does generate a random r and compute h, she can successfully answer if the coin comes up heads but will fail for tails if she doesn’t know x, the discrete log of b. 

Thus if Peggy doesn’t know x, the discrete log of b, she can only cheat for any one of the 2 outcomes. By repeating this many times, Victor can be convinced that she is not cheating.

3.4. Square-root problem
Peggy wants to prove in zero-knowledge that she knows the square root of a given number modulo a large composite number n. i.e. to prove in zero-knowledge that she knows x such that 

x2 = b (mod n), for known b, n.

Solving this problem is known to be computationally infeasible, and hence people are interested in proving the knowledge of such secret without revealing it. 

Solution: Peggy generates a random r and computes s = r2 mod n. She sends s to Victor. Victor flips a coin. Based on the outcome, Peggy either sends r to victor, or computes m = r.x and 
sends m instead. Victor verifies the value he receives accordingly.  As explained in the DL proof, Peggy cannot be prepared to cheat for both the outcomes. Therefore, by repeating the protocol enough number of times, Victor can be convinced that Peggy is not cheating. Figure 3 summarizes the steps of this protocol.

	

	
	Peggy (P)
	Victor (V)

	0
	
	b, n, x
	b, n

	1
	Peggy generates random r
	R
	

	2
	P sends s = r2 mod n to V
	S
	s

	3
	V flips a coin

c =  H or T
	c
	c

	4
	If c = H, 

P sends r to V
	
	check r2 = s

	5
	If c = T,

P sends m = r.x
	
	check m2 = s.b

	6
	Steps 1-5 are repeated until Victor is convinced that Peggy must know x (with prob 1-2-k, for k iterations).


Figure 3: ZKP Square-root problem

4. Zero-knowledge proofs using elliptic curves

In this section, we show how elliptic curves can be used to in zero-knowledge proofs. First we show two examples of using elliptic curve in zero-knowledge proof. One example is on discrete logarithm over elliptic curve (DLEC) problem, and the other is on square root problem over elliptic curve (SREC). We choose these two examples to show why elliptic curve is good for one but not the other, as we explain in the next section.

Generally, an elliptic curve over some field K (of characteristic ( 2, 3) is the set of all points (x, y) ( K ( K that satisfy the equation

y2 = x3  + ax + b,

where a, b ( K. If characteristic of K is 2 or 3, then the elliptic curve equation will have some other types [16].

4.1. Discrete logarithm over elliptic curve problem

Like the discrete logarithm problem presented in the previous section, the DLEC can be expressed in terms of points on an elliptic curve instead of integers modulo n. Formally, DLEC can be explained as follow:

Given an elliptic curve E over a field Fn, and B, G ( E/ Fn {G is “generator” or its order contains large prime}, find m such that m.G = B. Where 
m.G denotes repeated addition of G m times [16]. Solving this problem is known to be computationally infeasible too. The zero-knowledge proof of this problem is described as follow:

Given an elliptic curve E over a field Fn, G ( E/ Fn (generator, or its order contains a large prime), and B = m.G ( E/Fn, Peggy wants to prove in zero-knowledge that she knows m.

Solution: Since Peggy claims that she knows m such that m.G = B, where B is public, she generates a random r ( Fn and computes A = r.G. She sends A to Victor. Now Victor flips a coin and conveys the outcome to Peggy. If it is heads, Peggy sends r to Victor and he verifies that r.G = A. If it is tails, she sends x = r + m and Victor verifies x.G = A+B. Repeating these steps increases exponentially the confidence of Victor that Peggy knows the secret m. 
Figure 4 summarizes the iterative protocol of zero-knowledge proof of the discrete log problem over elliptic curve.

	
	
	Peggy (P)
	Victor (V)

	0
	
	g, B, m
	G, B

	1
	Peggy generates random r
	r
	

	2
	P sends A = r.G to V
	A
	A

	3
	V flips a coin c =  H or T
	c
	c

	4
	If c = H, P sends r to V


	
	Check

r.G = A

	5
	If c = T,  P sends x = r + m
	
	Check 

x.G= A+B

	6
	Steps 1-5 are repeated until Victor is convinced that Peggy must know m (with probability 1-2-k, for k iterations).


Figure 4: ZKP DLEC
4.2. Square-root over elliptic curve problem

The elliptic curve version of the zero-knowledge proof for the square-root problems can be described as follows:

Given E/Fn (for composite n) and B ( E/ Fn, Peggy wants to prove in zero-knowledge that she knows A ( E/Fn such that 2A = B, i.e. A + A = B.

Since n is composite, solving this problem is known to be infeasible. Here, we present an iterative protocol for this proof.

Solution: Peggy wants to prove that she knows A such that 2A = A+A = B. First, Peggy generates a random R ( E/Fn and computes S = 2R. She sends S to Victor. Victor flips a coin. Based on the outcome, Peggy either sends R to Victor, or computes M = R+A and 
sends M instead. Victor verifies the value he receives accordingly. By repeating the protocol enough number of times, Victor can be convinced that Peggy is not cheating. 
Figure 5 summarizes the protocol.

	
	
	Peggy (P)
	Victor (V)

	0
	
	A, B
	B

	1
	Peggy generates random R ( E/Fn
	R
	

	2
	P sends S = 2R to V
	S
	S

	3
	V flips a coin  c =  H or T
	c
	c

	4
	If c = H, 

P sends r to V
	
	Check

2R = S

	5
	If c = T, 

P sends M = R+A
	
	Check

2M = S+B

	6
	Steps 1-5 are repeated until Victor is convinced that Peggy must know x (with probability 1-2-k, for k iterations).


Figure 5: ZKP SREC
5. Discussion

In this section, we will perform a high-level assessment on the proposed approach of using elliptic curve-based zero-knowledge proofs in e-commerce.

5.2. High-level assessment

The high level assessment will be in light of the following aspects: technological, economic, social, and regulatory aspects [17]. Although the analysis performed by Lee, et al. in [17] was on payment systems, nevertheless these aspects are applicable and are vital to the success of such solutions.

The proposed approach covers the following key requirements:

	Authentication:
	Yes, it provides user authentication via proven the possession of an authentication secret. 

	Privacy:
	Yes, the private information is not revealed; only the possession of such information is checked.

	Low Cost:
	Yes, the cost of such system can be economic compared to monopoly solutions from single vendors, such as Visa or Discover.

	Ease of Use:
	Yes, the authentication process is performed transparent to the users.


There are other quality issues (level of service) related to the design of the solution. We will point out the main ones here: 

	Scalability:
	The system shall be able to scale as the number of users grows. This requirement is achievable as the computation is efficiently performed. 

	Security:
	Zero-knowledge proofs on DLEC provide higher level of security than on discrete logarithm over Zn, or current RSA. Refer to Section 5.2.

	Compatibility:
	The interface shall be simple and shall adhere to current existing e-commerce technologies. As compatibility is a major factor that affects the acceptance and adoption of the users, more detailed prototyping is required to ensure compatibility.


5.2. Advantages of elliptic curve-based ZKP

Elliptic curve protocols give more security in building the zero-knowledge proof protocol [10]. Having DLEC as building blocks makes the zero-knowledge proof scheme more secure than the classical scheme using multiplicative groups (e.g. Zn). It has been proven in [18] that the classical DL problem in Fq* can be solved in sub-exponential time, L(1/3). The time complexity to solve the classical DL problem reduced to

Exp(O( (log q)1/3 (log log q)2/3))

However, the best-known algorithm to solve the DLEC problem in E/Fq is by using giant-step baby-step approach, but it takes exponential time [11]. The time complexity of the algorithm is O(N1/2), where N is the group order. For an elliptic curve over the field Fq, the time complexity is Exp(O(log q)). 

The observation we make here is that if the Elliptic curve scheme is not based entirely on DLEC, weaker parts in the scheme can be attacked in sub-exponential time, and hence using elliptic curve gives no more security than the classical ones. For example, the protocol of the zero-knowledge proof of the square-root problem (SREC) presented in Section 4 has no advantage over the protocol presented in Section 3.4 even though it is elliptic curve-based. The reason is that Victor can solve for R at step 2 of the protocol (of Section 4) by factoring n in sub-exponential time. Then he can cheat at step 3 by setting the coin to tail to force Peggy to send him M = R+A. Once Victor gets M, he can learn the secret A (in sub-exponential time) as A = M-R.

6. Conclusion

In this paper, we proposed an approach using elliptic curve-based zero-knowledge proofs in e-commerce applications. Zero-knowledge proofs techniques are powerful tools in such critical applications for providing both security and privacy at the same time. We briefly introduced the class of zero-knowledge proof as a subclass of interactive proof. We demonstrated that using elliptic curved-based zero-knowledge proof give more security in the case of discrete logarithm problem, but not in the case of square-root problem. The improvement of security is due to the higher complexity of solving the discrete logarithm problem over elliptic curves than over the multiplicative group Zn. This advantage is applicable to all applications in which the zero-knowledge proof is based on the discrete logarithm over elliptic curve, including: anonymity revocable off-line digital cash, and its batching scheme. 
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