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Fig. 2. Y : the domain of unrestricted codes.

where�(�) is the best upper bound on the rate of an unrestricted
code as a function of�:

III. CONCLUSION AND OPEN PROBLEMS

We have geometrically characterized the domain of linear and
unrestricted binary codes in the(�; �) plane. For� > 1=2 it might
be worth shelling the domain according to the size of the code
M � 6; 7; � � � : A similar study for q-ary codes forq > 2 would
also be of interest.
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thank R. Moore for help with preparing the figures using the XYPic
system developped at Macquarie University.

REFERENCES

[1] V. M. Blinovskii, “Lower asymptotic bound on the number of linear
code words in a sphere of given radius inFn

q
,” Probl. Pered. Inform.,

vol. 23, pp. 50–53, 1987. English translation in:Probl. Inform. Transm.,
vol. 23, no. 2, pp. 130–132, 1987.

[2] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein,Covering Codes. Ams-
terdam, The Netherlands: Elsevier, 1997.

[3] G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr., and J. R. Schatz,
“Covering radius—Survey and recent results,”IEEE Trans. Inform.
Theory, vol. IT-31, pp. 328–343, 1985.

[4] G. D. Cohen, S. Litsyn, A. C. Lobstein, and H. F. Mattson, Jr., “Covering
radius: 1984–1994,”AAECC, vol. 8, 1997, to be published.

[5] T. Helleseth, T. Kløve, and J. Mykkeltveit, “On the covering radius of
binary codes,”IEEE Trans. Inform. Theory, vol. IT-24, pp. 627–628,
1978.

[6] H. Janwa, “Some new upper bounds on the covering radius of binary
linear codes,”IEEE Trans. Inform. Theory, vol. 35, pp. 110–122, 1989.

[7] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[8] P. Stokes, “Some properties of the covering radius of error-correcting
codes,” Ph.D. dissertation, QMW College, London, 1992; see also
Springer Lecture Notes in Mathematics, no. 1518. Berlin, Germany:
Springer-Verlag, 1993, pp. 170–177.
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Abstract—New single asymmetric error-correcting codes are proposed.
These codes are better than existing codes when the code lengthn is
greater than 10, except for n = 12 and n = 15. In many cases one can
construct a codeC containing at least d2n=ne codewords. It is known
that a code with jCj � d2n=(n + 1)e can be easily obtained. It should
be noted that the proposed codes forn = 12 and n = 15 are also the
best known codes that can be explicitly constructed, since the best of the
existing codes for these values ofn are based on combinatorial arguments.
Useful partitions of binary vectors are also presented.

Index Terms— Asymmetric error-correcting codes, constant-weight
codes, lower bounds, partitions.

I. INTRODUCTION

In this correspondence new codes of asymmetric distance2,
capable of correcting a single asymmetric error, are presented. The
asymmetric distance between two binary vectors,x andy, of length
n is defined by

�(x; y) = maxfN(x; y); N(y; x)g

whereN(x; y) = jfi: xi = 1 and yi = 0gj and the minimum
asymmetric distance of a codeC is defined by

�(C) = minf�(x; y): x; y 2 C; x 6= yg:

The function� is used to measure both the asymmetric distance
between two binary vectors and to measure the asymmetric distance
between a set of vectors (or a code). One may use the notation
�(fx; yg) instead of�(x; y) for consistency; however, for simplicity
the latter form is used here.

The Hamming distance between two vectors can be defined as
D(x; y) = jfi: xi 6= yigj:

The theory and construction of asymmetric codes have been studied
since the 1950’s, and several code construction procedures and
bounds have been published [1]–[6]. For example, it is known that
a single asymmetric error-correcting code withjCj � d2n=(n+ 1)e

can be obtained by the group code [1]. Construction procedures which
produce slightly better codes and upper bounds for these codes can be
found in the literature, for example, in [3]–[6]. Additionally, bounds
and tables for constant-weight codes have been reported [7], [8]; these
are sometimes useful in constructing partitions as well as asymmetric
error-correcting codes.

The main idea of the proposed construction method is to form the
code from the Cartesian product of two sets of smaller codes, say

C = A1 �B1 [ A2 �B2 [ A3 �B3 � � � :

The choice of some simple properties aboutA’s andB’s guarantees
the generation of a code with asymmetric distance2, as explained
in Section II.
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TABLE I
NEW SINGLE ASYMMETRIC ERROR-CORRECTING CODES

For an easy reference, Table I lists the new codes and the best
known codes given in [1]–[4].

II. CONSTRUCTION METHOD

Before describing the construction method, we give the following
definition.

Definition 1: LetA be the set of all the2p binary vectors of length
p and letA1; A2; � � � ; Ap be a partition ofA, i.e.,Ai \ Aj = �

and [ Ai = A; such that�(Ai) � 2 for 1 � i � p0:

Let B be the set of the2q�1 even-weight binary vectors of length
q andB1; B2; � � � ; Bq be a partition ofB such that�(Bj) � 2 for
1 � j � q0:

Let C be the code obtained by the Cartesian product ofAi �Bi,
i.e.,

C = A1 �B1 [ A2 �B2 [ A3 �B3 � � � : (1)

When p0 6= q0, someAi’s or Bi’s will be empty; in particular,
Ai � Bi is empty for i> min(p0; q0): Obviously, the codeC has
�m

i=1jAij � jBij codewords wherem = min(p0; q0): Several authors
[7]–[10] have used the partitioning construction to design codes. We
employ the same approach to construct asymmetric error-correcting
codes, also our procedure to construct some partitions used this
method.

Theorem 1: The codeC, obtained in (1), of lengthn = p+ q is
a single asymmetric error-correcting code.

Proof: Let x; y 2 C andx 6= y: Let x = x0x00 andy = y0y00

wherex0 2 Ai, x00 2 Bi, y0 2 Aj , andy00 2 Bj :

Case 1:i = j: eitherx0 6= y0 ) �(x0; y0) � 2 ) �(x; y) � 2

or x00 6= y00 ) �(x00; y00) � 2 ) �(x; y) � 2:

Case 2:i 6= j: Here we haveD(x0; y0) � 1 since x0 6= y0,
andD(x00; y00) � 2 sincex00 6= y00 andx00 and y00 are both even.
Therefore,D(x; y) � 3) �(x; y) � 2:

Example 1: To construct a single asymmetric error-correcting
code withn = 6, let p = 2 andq = 4: ThenA = f00; 01; 10; 11g

can be partitioned intoA1 = f00;11g; A2 = f01g andA3 = f10g:

And B = f0000;0011;0101; � � � ; 1111g can be partitioned into
B1 = f0000;0011;1100;1111g; B2 = f0101;1010g; B3 =

f0110;1001g:

We obtain a codeC of length 6 where

C = A1 �B1 [ A2 �B2 [ A3 �B3

having2 � 4 + 1 � 2 + 1 � 2 = 12 codewords as follows:

00 0000

00 0011

00 1100

00 1111 A1 �B1

11 0000

11 0011

11 1100

11 1111

01 0101

01 1010 A2 �B2

10 0110

10 1001 A3 �B3

III. PARTITIONING

In order to maximize the size of the codeC of lengthn, appropriate
values ofp andq, satisfyingn = p+ q, must be chosen. Oncep and
q are chosen, “good”A andB partitions should be obtained.

The norm of a partitionP = fP1; P2; � � � ; Pmg is defined as sum
of squares, i.e.�m

i=1jPij
2, as in [7]. In almost all cases, partitions

with better norms produce better codes.
In general, we may not be able to obtain the best partition (in fact,

it may not exist) but as a rule of thumb a good partition should have
as few classes as possible and classes’ size should be maximized.
After the selection of theA andB partitions, the code is formed by
taking the Cartesian product of the largest class ofA with the largest
class ofB, then the second largest with the second largest, and so
on. Without loss of generality, any partitionP = fA1; A2; � � � ; Amg

is assumed to satisfyjAj j � jAj+1j for all j:

A Partitions

Most of the A partitions given in Table II are obtained using
the Abelian group partitioning given in [1] and [5]. In some cases
partitions that are better than group partitions can be obtained. For
example, forp = 5, Table III gives a better partition. The Appendix
explains a procedure which can be used to obtain betterA partitions
in many other cases, for example, forp = 6; 10; and11.

B Partitions

TheB partitions shown in Table IV are obtained from the partitions
of the constant-weight vectors into classes with Hamming distance4

(see [7]). For example, the entries forq = 4 which are4, 2, and2
are obtained as follows.

First, the vectors of weight0 are partitioned into one class, namely,
f0000g; the vectors of weight2 are partitioned into three classes,
f0011;1100g;f1001;0110g; and f1010;0101g; and the vectors of
weight 4 have one class which isf1111g: The eight even-weight
vectors of length4 can then be partitioned into three classes of size
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TABLE II
A PARTITIONS

TABLE III
THE SIX A PARTITIONS FOR p = 5

4, 2, and 2, respectively, as follows:

f0000; 0011; 1100;1111g; f1001;0110g; andf1010;0101g

where each partition is of asymmetric distance2. The constant-weight
partitions of different weights are listed in [7] for binary vectors
of length up to14. Partitions of larger even-weight vectors can be
obtained using the procedure given in [7], and partitions of different
even weights can be assembled (as given in the above example) to
obtain partitions of all even-weight vectors of the required length.

It was shown in [8] that whenq = 2
i, or q = 3 � 2

i for i � 1,
the even-weight vectors can be partitioned intoq � 1 classes. For
example, whenq = 4, we obtain a partition with the followingthree
sizes:4, 2, 2. We note that the procedure given in [8] also works
when q = 5 � 2

i, for i � 1; this is because, as given in Table IV,
the even-weight vectors of length10 can be partitioned intonine
classes, and consequently, whenq = 5 � 2

i, it can be partitioned
into 5 � 2

i � 1 classes.
Theorem 2: Let q = r � 2

i where1 � r � 6 and i � 1. One
can construct a codeC of length n = 2q � 2 containing at least
d2n=ne codewords.

Proof: Let n = 2q � 2 and letp = q � 2: The setA of all the
2
p
= 2

q�2 binary vectors can be partitioned intoA1; A2; � � � ; Aq�1,
e.g., using any Abelian group of sizeq� 1: Sinceq = r� 2

i where
1 � r � 6 and i � 1, as described above, the setB of the 2

q�1

binary even-weight vectors of lengthq can be partitioned intoq � 1

classes, viz.,B1; B2; � � � ; Bq�1:

Therefore,

C = A1 �B1 [ A2 � � � �B2 [ Aq�1 �Bq�1

of size

jCj =

q�1

i=1

jAij � jBij:

Since it is assumed thatjAj j � jAj+1j and jBj j � jBj+1j, the size
of jCj is minimized when

jAij =
2
q�2

q � 1
and jBij =

2
q�1

q � 1
; for 1 � i � q � 1:

TABLE IV
B PARTITIONS

Therefore,

jCj �

q�1

i=1

2
q�2

q � 1
�

2
q�1

q � 1

=
2
2q�3

q � 1
=

2
2q�2

2q � 2
=

2
n

n
:

Hence,jCj � d2n=ne:

IV. CONCLUDING REMARKS

The proposed codes improve the existing lower bounds for all
codes of lengthn> 10 (exceptn = 12 andn = 15). Moreover, the
proposed codes forn = 12 andn = 15 are the best known codes that
can be explicitly constructed, since the codes given in [4] are based
on combinatorial arguments. It has been shown that, in many cases,
the proposed codesC contains at leastd2n=ne codewords. Although
we present here codes only up ton = 22, the construction procedures
can be applied to larger word sizes to obtain code lengths larger than
the best existing codes. This contention has not been proved here, but
from the trend we observe in Table I, as well as by using numerical
verification of the statement for larger values ofn (for n � 40), we
suspect it might be true even forn> 40: In addition, whenever we
use a value ofq which can be partitioned intoq � 1 classes, we can
obtain jCj> 2

n=n not only forn = 2q� 2 but also for other values
of n in this vicinity where “good”p partitions exist. For example,
we can get 15 partitions of even-weight vectors whenq = 16, and
so we can obtain codes with size more thand2n=ne not only when
n = 30, but for n = 28 and 29 as well.

Obviously, betterA and B partitions will yield better codes. A
similar technique can also be used to construct codes capable of
correcting more than one asymmetric error.
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For a given value ofn, appropriate values ofp and q must be
chosen in order to maximize the code length. The values ofp andq
that produce codes forn � 22 are listed in Table V. We note that, in
general,p< q � p+5: Furthermore, we note that, for the values ofn

discussed in the correspondence,q is even, andp is the largest integer
less thanq; the only exceptions occur whenn = 15 andn = 19:

Finally, it was noticed that in many cases the single asymmetric
error-correcting codes satisfyb2n=nc � jCj � b2n=(n � 1)c for
2 � n � 22: For n = 11; 12; the lower bound is not satisfied
as shown in Table V. The codes have to be slightly improved for
n = 11 and 12 to satisfy the lower bound, e.g., forn = 12 one
needs to get a code with 341 codewords instead of 340 codewords.
The existing upper bounds are more thanb2n=(n�1)c for n � 11, so
the observation about the upper bound may not be true forn � 11

but it is plausible.

APPENDIX

IMPROVED A PARTITIONS

The improvedA partitions—which are partitions of binary vectors
such that the minimum asymmetric distance between elements in any
class is at least2—given here are obtained using a procedure very
similar to the method given in Section II for constructing asymmetric
error-correcting codes. To obtain partitions of all binary vectors of
lengthp, we start with two numberss andt, wheres = b(p�1)=2c,
and t = d(p + 1)=2e: Note thatp = s + t: The goal is to produce
p + 1 partitions which are better than the group partitions. (It may,
however, be possible to find anA partition, which is more useful for
constructing asymmetric error-correcting codes, than ap+1 partition.)

Then, we employ in different distinct combinations all partitions of
vectors of lengths, and all partitions of the odd- as well as the even-
weight vectors of lengtht to produce the desired partitions of length
p: We know that it is possible to gets+ 1 partitions of the vectors
of lengths, andt partitions of all odd- (or even-) weight vectors of
lengtht [7]; the former is the same as theA partitions, and the latter
are similar to theB partitions. Thus it is always possible to obtain2t
partitions of binary vectors of lengthp: Whenp is odd,2t = p+ 1,
but whenp is even,2t = p + 2: The proposed procedure produces
betterA partitions (than the group partitions) for all odd values ofp,
but only for certain even values ofp, as detailed below.

Whenpmod4 = 0, we get more partitions using our procedure,
so we prefer thep + 1 partitions obtained using the group method.
For odd values ofp, i.e., whenpmod4 = 1 or 3, we can always get
p+1 partitions, and in many cases we obtain better partitions than the
group partitions. However, we observe that our procedure produces a
flat partition (that is, all partitions having nearly equal elements), as
does the group method, whenp = 2i�1: Finally, whenpmod4 = 2,
we getp + 1 partitions which are better than those obtained using
the group method whenevert = r � 2i, where1 � r � 6; this is
because, as described in Section III, we can gett � 1 partitions of
the even-weight vectors of lengtht in these cases. Therefore, for all
odd values ofp, and for quite a few cases whenp is even, we can
obtainA partitions which are at least as good as (and in most cases
better than) those obtained using the group method.

As an example, theA partition for p = 6 of sizes12, 10, 10, 8,
8, 8, and 8 is illustrated.

We gets = b6�1=2c = 2 andt = d6+1=2e = 4: Recall that one
can partition all binary vectors of length2, S = f00;01; 10; 11g,
into S1 = f00;11g; S2 = f01g; S3 = f10g: All the even-weight
binary vectors of length4, T = f0000;0011;0101; � � � ; 1111g;

can be partitioned into T1 = f0000;0011;1100;1111g;

T2 = f0101;1010g; T3 = f0110;1001g: And the eight odd-weight
vectors T 0 = f0001;0010;0100; � � � ; 1110g can be partitioned
into four classesT 0

1 = f0001;1110g; T 0

2 = f0010;1101g;

TABLE V
CARDINALITY OF THE ASYMMETRIC CODES

LENGTH n VERSUS. b2n=nc AND b2n=n� 1c

T 0

3 = f0100;1011g; and T 0

4 = f1000;0111g: Now we can obtain
the following sevenA partitions of all the26 binary vectors:

A1 =S1 � T1 [ S2 � T2 [ S3 � T3 of size12

A2 =S1 � T2 [ S2 � T3 [ S3 � T1 of size10

A3 =S1 � T3 [ S2 � T1 [ S3 � T2 of size10

A4 =S1 � T
0

1 [ S2 � T
0

2 [ S3 � T
0

3 of size8

A5 =S1 � T
0

2 [ S2 � T
0

3 [ S3 � T
0

4 of size8

A6 =S1 � T
0

3 [ S2 � T
0

4 [ S3 � T
0

1 of size8

A7 =S1 � T
0

4 [ S2 � T
0

1 [ S3 � T
0

2 of size8:

Notice thatA1 [ A2 [ � � � [ A7 contain all the 64 binary
vectors of length6, Ai \ Aj = � when i 6= j, and�(Ai) � 2

for 1 � i � 7:

The sizes ofA1; A2; � � � ; A7 are 12; 10; 10; 8; 8; 8; and 8, re-
spectively, as given in Table II. This can be contrasted with the flat
partition of the26 binary vectors:10; 9; 9; 9; 9; 9; and 9 obtained
using the group method, whereZ7, the only Abelian group is used.

This procedure may be deemed as a generalized version of the code
construction procedure proposed in Section II. Clearly, eachAi in the
above example is obtained in the same wayC is obtained, only using
different combinations ofS; T; andT 0 partitions. Theorem 1 shows
that the codeC obtained using our procedure produces a set of binary
vectors satisfying the minimum asymmetric distance of2. Therefore,
we can offer arguments similar to those made in the proof of Theorem
1 to show that each of theAi’s in the above procedure produces
partitions satisfying the minimum asymmetric distance property. We
also note that each of theAi’s employs a unique combination ofS; T;
andT 0 partitions, and that� Ai = 2p: Thus it can be concluded that
the proposed partitioning method produces valid partitions of the2p

binary vectors.
We note that it is not necessary to always match the even partitions

with rotated versions of the other partitions. For instance, if we have
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four partitions in each ofS; T; andT 0; then the following combination
would giveA partitions better than those obtained using the simple
rotation strategy used in the previous example:

A1 =S1 � T1 [ S2 � T2 [ S3 � T3 [ S4 � T4

A2 =S1 � T2 [ S2 � T1 [ S3 � T4 [ S4 � T3

A3 =S1 � T3 [ S2 � T4 [ S3 � T1 [ S4 � T2

A4 =S1 � T4 [ S2 � T3 [ S3 � T2 [ S4 � T1

A5 =S1 � T
0

1 [ S2 � T
0

2 [ S3 � T
0

3 [ S4 � T
0

4

A6 =S1 � T
0

2 [ S2 � T
0

1 [ S3 � T
0

4 [ S4 � T
0

3

A7 =S1 � T
0

3 [ S2 � T
0

4 [ S3 � T
0

1 [ S4 � T
0

2

A8 =S1 � T
0

4 [ S2 � T
0

3 [ S3 � T
0

2 [ S4 � T
0

1:

We observe that the “best” strategy depends on the lengths and
distributions ofS; T; and T 0: It is clear that the efficiency of the
resulting single asymmetric error-correcting code depends on our
ability to find “good” partitions, which suggests that more research
in this direction is in order.
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New Constant Weight Codes
from Linear Permutation Groups

Kari J. Nurmela, Markku K. Kaikkonen,
and Patric R. J.̈Osterg̊ard, Member, IEEE

Abstract—New constant weight codes are found by considering certain
linear permutation groups. A code is obtained as a collection of orbits of
words under such a group. This leads to a difficult optimization problem,
where a stochastic search heuristic, tabu search, is used to find good
solutions in a feasible amount of time. Nearly 40 new codes of length at
most 28 are presented.

Index Terms—Combinatorial optimization, constant weight codes, per-
mutation groups, tabu search.

I. INTRODUCTION

The aim of this correspondence is to construct new constant weight
codes with the help of an optimization heuristic, tabu search. These
new codes give improved lower bounds onA(n; d; w), the maximum
number of binary words of lengthn, minimum distanced, and
constant weightw.

Several recent papers have discussed this problem and a variety of
optimization methods have been applied [4], [5], [10]. Unfortunately,
a search without limitations on the structure of the code does not
work well if we are searching for a large code; in such cases, we can
predefine a structure (automorphism group) of the code to facilitate
the search.

The approach of searching fort-designs with predefined automor-
phisms was considered by Kramer and Mesner in [11]. For constant
weight codes, a similar approach was taken by Brouwer [1], Brouwer
et al. [2], and Kibler [9]. We have developed this approach further
and carried out a computer-aided search for new codes. We have
managed to improve 37 codes withn � 28 and4 � d � 12 in the
tables of [2].

The automorphism groups used in this correspondence are primar-
ily linear permutation groups. The codes obtained are invariant under
such groups, with the occasional exception of a few words of a code.
The main groups used in this work are affine groups (also in finite
rings), projective special linear groups, and subgroups of these. These
groups are discussed in Section II.

The problem of finding codes of maximal size invariant under a
given permutation group is an instance of the problem of finding
the largest cliques in a graph with weighted vertices, which is NP-
complete [6]. That is why we use a stochastic search algorithm,
tabu search, which we believe can here relatively well handle
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