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Abstract—New single asymmetric error-correcting codes are proposed.
These codes are better than existing codes when the code lengthis
greater than 10, except forn = 12 and » = 15. In many cases one can
construct a codeC' containing at least[2™/n] codewords. It is known
that a code with |C| > [2™/(n + 1)] can be easily obtained. It should
be noted that the proposed codes forr = 12 and n = 15 are also the
best known codes that can be explicitly constructed, since the best of the
existing codes for these values of are based on combinatorial arguments.
Useful partitions of binary vectors are also presented.

=

Index Terms— Asymmetric error-correcting codes, constant-weight
codes, lower bounds, partitions.

Fig. 2. Y: the domain of unrestricted codes. I. INTRODUCTION

In this correspondence new codes of asymmetric distahce
capable of correcting a single asymmetric error, are presented. The
where () is the best upper bound on the rate of an unrestrict@&$ymmetric distance between two binary vectergndy, of length
code as a function of. n is defined by

A(z,y) = max{N(x,y), N(y,v)}

IIl. ' CONGLUSION AND OPEN PROBLEMS where N(z,y) = [{ir ; = 1 andy; = 0}| and the minimum

We have geometrically characterized the domain of linear amdymmetric distance of a code is defined by
unrestricted binary codes in thg, §) plane. Fors >1/2 it might ) e A N L
be worth shelling the domain according to the size of the code A(C) = min{A(z,y): 2.y € Crx # y}.

M < 6,7,---. A similar study forg-ary codes forg>2 would The functionA is used to measure both the asymmetric distance
also be of interest. between two binary vectors and to measure the asymmetric distance
between a set of vectors (or a code). One may use the notation
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TABLE | Case 2:i # j: Here we haveD(z',y’) > 1 sincex’ # ¥,
NEw SINGLE ASYMMETRIC ERROR-CORRECTING CODES and D(z".y") > 2 sincez" # y"” andz” andy” are both even.
— Therefore,D(x,y) > 3 = A(x,y) > 2. O
n | proposed codes | existing codes . . . .
5 7 2 Example 1: To construct a single asymmetric error-correcting
3 9 9a code withn = 6, letp = 2 andq = 4. Then A = {00,01, 10, 11}
4 4 48 can be partitioned intot; = {00,11}, A, = {01} and A3 = {10}.
5 6 6e And B = {0000,0011,0101,---,1111} can be partitioned into
6 12 19b B, = {0000,0011,1100,1111}, B, = {0101,1010}, B; =
7 16 18° {0110,1001}.
8 28 36¢ We obtain a code&” of length6 where
9 52 62¢
10 104 108¢ C=A4; xB1 U A, x By U A3 x By
11 180* 174¢
12 336 3404 having2 x4 + 1% 2+ 1% 2 = 12 codewords as follows:
13 652 6244
14 1204* 11394 00 0000
15 2188 2216¢ 00 0011
16 4232 41682 00 1100
e 139511 00 LLL 4 x By
19 28032~ 262657 L1 0000
20 53856 499402 110011
21| 101576 95326° 111100
22 | 195700* 182362° 11 111
* Code by Varshamov [1] 31 (1)(1)(1)(1) Ay X Bo

¢ Code by Delsarte and Piret [3] 10 1001 As x Bs

4 Code by Zhang and Xia [4]
I1l. PARTITIONING

* Proposed code improving the existing code In order to maximize the size of the codeof lengthn, appropriate
values ofp andgq, satisfyingn = p + ¢, must be chosen. Ongeand
g are chosen, “good4 and B partitions should be obtained.

For an easy _refer(_ance, Table I lists the new codes and the bestha norm of a partition? = {P., P, -, P} is defined as sum
known codes given in [1]-[4]. of squares, i.e£7,|P;|?, as in [7]. In almost all cases, partitions
with better norms produce better codes.
1. CONSTRUCTION METHOD In general, we may not be able to obtain the best partition (in fact,

Before describing the construction method, we give the followinfy MaY Not exist) but as a rule of thumb a good partition should have
definition. as few classes as possible and classes’ size should be maximized.

Definition 1: Let A be the set of all the? binary vectors of length After the selection of thel and B partitions, the code is formed by
p and letA,, Ay, -+, A, be a partition ofd, e, 4; N A; = ¢ taking the Cartesian product of the Iargest classl afith the largest
and U A; = A, such thatA(4;) > 2 for 1 < i < p'. class of B, then the second largest with the second largest, and so

Let B be the set of the? ! even-weight binary vectors of length ©n- Without loss of generality, any partitidl = {4, Az, -+, A }
qandB,,Bs, -, B, be a partition ofB such thatA(B,) > 2 for 'S assumed to satisfyd ;| > |A;41] for all j.
1<y <¢q.

Let C be the code obtained by the Cartesian product ok B;,
ie.,

A Partitions

Most of the A partitions given in Table 1l are obtained using
the Abelian group partitioning given in [1] and [5]. In some cases
C=A, XxB, UAy X By U A3 X Bg---. (1) partitions that are better than group partitions can be obtained. For
example, forp = 3, Table Ill gives a better partition. The Appendix
When p’ # ¢/, someA;’s or B;’s will be empty; in particular, explains a procedure which can be used to obtain bettpartitions
A; x B; is empty fori > min(p’,¢'). Obviously, the code” has in many other cases, for example, for= 6, 10, and 11.
¥ |As| * | B:| codewords where» = min(p’, ¢'). Several authors N
[7]-[10] have used the partitioning construction to design codes. W& Partitions
employ the same approach to construct asymmetric error-correcting he B partitions shown in Table IV are obtained from the partitions
codes, also our procedure to construct some partitions used thighe constant-weight vectors into classes with Hamming distdance

method. (see [7]). For example, the entries fer= 4 which are4, 2, and2
Theorem 1: The codeC, obtained in (1), of lengtlh = p + ¢ is are obtained as follows.
a single asymmetric error-correcting code. First, the vectors of weight are partitioned into one class, namely,
Proof: Letz,y € C andz # y. Letz = 2’2" andy = y'y"”  {0000}; the vectors of weigh® are partitioned into three classes,
wherez' € 4;, 2" € B;, y' € A;, andy” € B;. {0011,1100}, {1001,0110}, and {1010,0101}; and the vectors of

Case 1:i = j: eithera’ # ¢y’ = A(2',y’

) > 2= A(x,y) > 2 weight4 have one class which i§1111}. The eight even-weight
orz" #£y" = A(2",y") > 2 = Az,y) > 2.

vectors of lengtht can then be partitioned into three classes of size
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TABLE I
A PARTITIONS
P A1 A2 A3 A4 A5 As A7 Ag Ag Alg Au A12 Remark
1 1 1 1] Z,
2 2 1 1 1] Zs
3 2| 2| 21 2 (1] Z4
4 4 3| 3| 3| 3 [1] Zs
5 6 6 6 6 4 4 see Table III
6 12| 10| 10 8 8 8 8 Appendix A
7 16 16 16 16| 16| 16| 16 | 16 [1] Zs
8 32| 28| 28| 28 28 28| 28| 28| 28 [5) Z3 x Z3
9 52| 52| 51 51 51| 51} 51| 51| 51 51 1} Z1o
10 | 104 | 102 | 102 | 102 | 102} 90| 88| 84 | 84 84 82 Appendix A
11 | 180 | 180 | 176 | 172 | 172 | 168 | 168 | 168 | 168 | 168 | 164 | 164 | Appendix A
TABLE 111 TABLE IV
THE SIX A PARTITIONS FORp = 5 B PARTITIONS
Ay Az As Aq As As g | Bi| Ba| Bs| Ba| Bs | Bs| By | Bs | By | By | Bny
00001 00010 00100 10000 01000 00000 1 1
11000 01100 10010 01010 10100 11100 2 9
00110 10001 01001 00101 00011 01011 3 9 1 1
10011 11010 10101 10110 10111 11111 4 al 2| 9
01101 00111 01110 11001 5 4l 3| 3| 3| 3
11110 11101 11011 01111 6 sl 6l 6| 6| 6
7 12 | 11 10| 10 9 8 4
. 8 241 224 20| 20| 18| 16 8
4, 2, and2, respectively, as follows: ol 361 351! 350 35| 33| 321 32| 13| 5
{0000, 0011,1100,1111}, {1001,0110}, and{1010, 0101} 10| 724 70| 70} 70} 62} 60) 54| 40 14
11 (125|124 | 118 | 117 | 110 | 101 | 100 | 94 | 79| 46 10
where each partition is of asymmetric distaBc&he constant-weight 12 | 248 | 246 | 234 | 234 | 224 | 198 | 192 | 176 | 136 | 94 | 66

partitions of different weights are listed in [7] for binary vectors
of length up tol4. Partitions of larger even-weight vectors can be
obtained using the procedure given in [7], and partitions of differemherefore,
even weights can be assembled (as given in the above example) to o1 .
obtain partitions of all even-weight vectors of the required length. C| > Z 94—2 o 9q-1
It was shown in [8] that whe = 2*, or ¢ = 3 x 2* fori > 1, - g—1 qg-1
the even-weight vectors can be partitioned igte- 1 classes. For
example, whery = 4, we obtain a partition with the followinthree
sizes:4, 2, 2. We note that the procedure given in [8] also works
wheng = 5 x 2', for i > 1; this is because, as given in Table IV.Hence,|C| > [2"/n].
the even-weight vectors of lengtt) can be partitioned intamine
classes, and consequently, wher= 5 x 2¢, it can be partitioned
into 5 x 2 — 1 classes. IV. CONCLUDING REMARKS
Theorem 2: Let ¢ = r x 2° wherel < r < 6 andi > 1. One The proposed codes improve the existing lower bounds for all
can construct a cod€' of lengthn = 2¢ — 2 containing at least codes of lengthn > 10 (exceptn = 12 andn = 15). Moreover, the

=1
22q73 22q72 277

_q—1:2q—2_ n’

[2" /n] codewords. proposed codes for = 12 andn = 15 are the best known codes that
Proof: Letn = 2¢ — 2 and letp = ¢ — 2. The setA of all the can be explicitly constructed, since the codes given in [4] are based

2P = 2972 pinary vectors can be partitioned into , As,---, A,—;, 0N combinatorial arguments. It has been shown that, in many cases,

e.g., using any Abelian group of size- 1. Sinceq = r x 2° where the proposed codeS contains at least2” /»] codewords. Although

1 <7 < 6andi > 1, as described above, the sBtof the 2?~'  we present here codes only upito= 22, the construction procedures

binary even-weight vectors of lengthcan be partitioned intg — 1  can be applied to larger word sizes to obtain code lengths larger than

classes, viz.B1, B2, -, Bg_1. the best existing codes. This contention has not been proved here, but
Therefore, from the trend we observe in Table |, as well as by using numerical

verification of the statement for larger valuesroffor n < 40), we
suspect it might be true even far> 40. In addition, whenever we
of size use a value ofy which can be partitioned intg — 1 classes, we can
a—1 obtain|C'| > 2™ /n not only forn = 2¢ — 2 but also for other values
|C| = Z |A:| * | Bs). of n in this vicinity where “good”p partitions exist. For example,
i=1 we can get 15 partitions of even-weight vectors whes 16, and
Since it is assumed thtt;| > |4,41] and|B;| > |Bj+1], the size SO We can obtain codes with size more tHafi /»] not only when
of |C| is minimized when n = 30 but forn = 28 and 29 a_s_well. -
Obviously, betterA and B partitions will yield better codes. A
for1<i<gq-1. similar technique can also be used to construct codes capable of
g—1 - correcting more than one asymmetric error.

C:A1 XB1 U AgX---Bg U Aq_1 XBq_1

242 2¢~!
and |B;| =

Al =

qg—1
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For a given value of:, appropriate values of and ¢ must be TABLE V
chosen in order to maximize the code length. The valugs arfid ¢ CARDINALITY OF THE ASYMMETRIC CODES
that produce codes far < 22 are listed in Table V. We note that, in LENGTH n VERSUS. 2" /n| AND [2"/n — 1]
generalp < ¢ < p+5. Furthermore, we note that, for the valuesiof
discussed in the correspondengés even, ang is the largest integer n| |Z] |existing | p| q|proposed | X upper
less thany; the only exceptions occur when= 15 andn» = 19. code code bound [6]
Finally, it was noticedthat in many cases the single asymmetric
error-correcting codes satisfi2”/n| < |C] < |2"/(n — 1)] for 2 2 2001 2 2 4 2
2 < n < 22. Forn = 11,12, the lower bound is not satisfied 3 2 2: 12 2 4 2
as shown in Table V. The codes have to be slightly improved for g g ga (1) j é g g
n = 11 and12 to satis_fy the lower bound_, e.g., far = 12 one 6 10 261 2| 4 12 12 19
needs to get a code with 341 codewords instead of 340 codewords. ; 18 1851 3| 4 16 21 18
The existing upper bounds are more thaf /(n—1)] forn > 11, so 8 39 36| 2! 6 28 36 36
the observation about the upper bound may not be true: for 11 9 56 62¢| 31 6 52 64 62
but it is plausible. 10 102 108°| 4] 6 104 113 117
11 186 174 | 5| 6 180* 204 210
12 341 3404 | 4| 8 336 372 410
IMPROV?; Pf NFEX)I;TITIONS 13 630 624: 5| 8 6527 682 786
14 1170 11394 | 6| 8 1204* 1260 1500
The improvedA partitions—which are partitions of binary vectors 15 2184 22169 | 6| 9 2188 2340 2828
such that the minimum asymmetric distance between elements in any16 4096 4168% | 6| 10 4232* 4369 5430
class is at least—given here are obtained using a procedure very 17 7710 76884 | 7110 7968" 8192 10379
similar to the method given in Section Il for constructing asymmetric 18 | 14563 | 13951¢ | 8110 | 14624 | 15420 19898
error-correcting codes. To obtain partitions of all binary vectors of 19| 27594 | 26265¢ | 7|12 28032* | 29127 38008
lengthp, we start with two numbers and¢, wheres = |(p —1)/2], 20| 52428 | 49940% ) 8 )12 53856 | 55188 73174
andt = [(p + 1)/2]. Note thatp = s + t. The goal is to produce 211 99864 1 95326" | 9\ 12 10157671 104857 140798
190650 | 182326° | 10 | 12 | 195700* | 199728 271953

p + 1 partitions which are better than the group partitions. (It may,
however, be possible to find ah partition, which is more useful for (a,b,¢,d, and  are the same as in Table 1.)
constructing asymmetric error-correcting codes, thas & partition.)

Then, we employ in different distinct combinations all partitions of ) ) _
vectors of lengths, and all partitions of the odd- as well as the evenls = {0100,1011}, and 7} = {1000501116}- Now we can obtain
weight vectors of length to produce the desired partitions of lengtihe following sevend partitions of all the2” binary vectors:

p. We know that it is'possible to get+ 1 partitions Qf the vectors A =5 xTi U SoxTo U Sy xTs of size12
of length s, andt partitions of all odd- (or even-) weight vectors of

lengtht [7]; the former is the same as thepartitions, and the latter A2 =51 xTz U 52 xT5 U 55 x T of sizel0

are similar to theB3 partitions. Thus it is always possible to obt&inh As =51 xT5 U So x Ty U S3 x Ty of sizel0
partitions of_ binary vectors of lengthh Whenp is odd,2¢t = p + 1, A, =S xT U Sy x T, U S5 x T2, of size8
but whenp is even,2t = p 4+ 2. The proposed procedure produces . ) ) )
better A partitions (than the group partitions) for all odd valuegpf As =51 xT, U 5 x T3 U 53 x T, of size8
but only for certain even values ¢f as detailed below. Ag =51 xTs U Sy x Ty U S5 x TJ of size8
When 14 = 0, we get more partitions using our procedure, , .
pmoc g b gourp A =S, X T, U So x T U Ss x T}, of sizeS.

so we prefer the + 1 partitions obtained using the group method.
For odd values of, i.e., whenpmod 4 = 1 or 3, we can always get  Notice that4d; U 4, U --- U Ar contain all the 64 binary
p—+1 partitions, and in many cases we obtain better partitions than thectors of lengths, A, N A; = ¢ wheni # j, and A(4;) > 2

group partitions. However, we observe that our procedure produceal < i < 7.

flat partition (that is, all partitions having nearly equal elements), asThe sizes of4,, 4,,---, A7 are 12, 10, 10, 8, 8, 8, and 8, re-

does the group method, when= 2° — 1. Finally, whenp mod 4 = 2,  spectively, as given in Table II. This can be contrasted with the flat
we getp + 1 partitions which are better than those obtained usingartition of the2°® binary vectors:10, 9, 9, 9, 9, 9, and9 obtained

the group method whenever= » x 2¢, wherel < r < 6; this is using the group method, whe# , the only Abelian group is used.
because, as described in Section Ill, we cantgetl partitions of This procedure may be deemed as a generalized version of the code
the even-weight vectors of lengthin these cases. Therefore, for allconstruction procedure proposed in Section Il. Clearly, ehcim the

odd values ofp, and for quite a few cases whenis even, we can above example is obtained in the same wais obtained, only using
obtain A partitions which are at least as good as (and in most castifferent combinations of, 7, and” partitions. Theorem 1 shows

better than) those obtained using the group method. that the cod&” obtained using our procedure produces a set of binary
As an example, thel partition forp = 6 of sizes12, 10, 10, 8, vectors satisfying the minimum asymmetric distance.ofherefore,
8, 8, and 8 is illustrated. we can offer arguments similar to those made in the proof of Theorem

We gets = [6—1/2] = 2 andt = [6+1/2] = 4. Recall that one 1 to show that each of thel;’s in the above procedure produces
can partition all binary vectors of length S = {00,01,10,11}, partitions satisfying the minimum asymmetric distance property. We
into S; = {00,11}, S> = {01}, S3 = {10}. All the even-weight also note that each of th&;’s employs a unique combination 5t T,
binary vectors of lengttd, T = {0000,0011,0101,---,1111}, and7’ partitions, and that A; = 2. Thus it can be concluded that

can be partitioned into7y = {0000,0011,1100,1111}, the proposed partitioning method produces valid partitions oRthe
T, = {0101,1010}, T3 = {0110,1001}. And the eight odd-weight binary vectors.
vectors 7' = {0001,0010,0100,---,1110} can be partitioned = We note that it is not necessary to always match the even partitions

into four classes7; = {0001,1110}, 75 = {0010,1101}, with rotated versions of the other partitions. For instance, if we have
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four partitions in each of, T, andT”, then the following combination New Constant Weight Codes
would give A partitions better than those obtained using the simple from Linear Permutation Groups
rotation strategy used in the previous example:
Kari J. Nurmela, Markku K. Kaikkonen,
and Patric R. JOstergrd, Member, IEEE

A =51xTi U SoxTo U S3xT3 U Sy xTy
A2 :51><T2 U SzXTl U S;;X’T.i @] S4XT3
Abstract—New constant weight codes are found by considering certain

A3 =51 XT3 U So xTy U S5 xT1 U Sy xTs linear permutation groups. A code is obtained as a collection of orbits of
i ] , T words under such a group. This leads to a difficult optimization problem,
A1 =51 xTy U S xTy U Sy xTy U Si xTh where a stochastic search heuristic, tabu search, is used to find good
As =8 xT) U SoxTy U S3xTy U SyxTy solutions in a feasible amount of time. Nearly 40 new codes of length at

) ) } ) most 28 are presented.
A =851 xT5 U Sy xT] U Sy xT, U Sy xTq . . o .

; , , , Index Terms—Combinatorial optimization, constant weight codes, per-
Ar =51 xTy U SaxT, U S3xT; U Sy xT, mutation groups, tabu search.
Ag :51><T4, U SzXTé U S3XTr_; U S4><T1’.

I. INTRODUCTION

We observe that the “best” strategy depends on the lengths andhe aim of this correspondence is to construct new constant weight
distributions of S, T, and T". It is clear that the efficiency of the codes with the help of an optimization heuristic, tabu search. These
resulting single asymmetric error-correcting code depends on d@w codes give improved lower bounds 4w, d, w), the maximum
ability to find “good” partitions, which suggests that more researdgtumber of binary words of length, minimum distanced, and
in this direction is in order. constant weightw.

Several recent papers have discussed this problem and a variety of
optimization methods have been applied [4], [5], [10]. Unfortunately,
ACKNOWLEDGMENT a search without limitations on the structure of the code does not

work well if we are searching for a large code; in such cases, we can
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whose queries and suggestions have improved this correspondenﬁﬁ-rsms was considered by Kramer and Mesner in [11]. For constant

weight codes, a similar approach was taken by Brouwer [1], Brouwer

et al. [2], and Kibler [9]. We have developed this approach further

and carried out a computer-aided search for new codes. We have
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