
269 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

Then

f0(x)f2(x) = (x� 8)(x+ 8)(x� 1) = x
3 +�1x2 + x� 1

f0(x)f1(x) = (x� 8)(x+ 1) = x
2
� 7x� 8:

LetC be the code such thatC = hff0(x)f2(x); 13f0(x)f1(x)gi. We
note that the code is also nonfree. Thenrank (C) = 4�deg(f0(x)) =
3 andd(C) = 2 = 4� 3 + 1. So the code is also MDR.

A. Chinese Remainder Theorem of RS Codes

We shall show how the CRT construction applies to RS codes. Let
n be a divisor ofgcd (�1(p

m
1 ); � � � ; �1(p

m
s )), with k = s

i=1 p
m
i ,

where�i is an element of
p

satisfying the conditions given above.

Namely,�i is a unit,�n=1i , �ji 6= 1 for j < n, and1��
j
i is a unit for

j = 1; 2; � � � ; n � 1.

Lemma 3.4:�=��1k (�1; � � � ; �s) has the desired properties ink:
Proof: It is clear that� is a unit. If�j were1 for j < n then that

would imply that�ji was1 in p giving a contradiction. Moreover,

(��1k (�1; � � � ; �s))
n = ��1k (�n1 ; � � � ; �

n
s ) = 1

since��1k is a ring isomorphism.
Then it is clear that1� �j is a unit forj = 1; � � � ; n� 1.

Let fC(p )g be the cyclic codes given in Theorem 2.6, respectively.

Theorem 3.5: If fC(p )g are Reed–Solomon codes of designed
distance�, then CRT(C(p ); � � � � � � ; C(p )) is also a Reed–Solomon
code of designed distance�.

Proof: From Proposition 2.4 and Theorem 2.6, we can take a
proper generator polynomialf 00(x) of CRT(C(p ); � � � ; C(p )) as

f0(x) = ��1
k f

(1)
0 (x); � � � ; f

(s)
0 (x) :

Sincef (i)0 (x) = (x��i)(x��2
i ) � � � (x����1

i ), for all i and by the
above lemma

f
0

0(x) =��1
k (x� �1; � � � ; x� �s) � � ��

�1
k

� x� �
��1
1 ; � � � ; x� �

��1
s

=(x� �)(x� �
2) � � � x � �

��1
:

The theorem follows.
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A Single Asymmetric Error-Correcting Code with
Codewords of Dimension

Sulaiman A. Al-Bassam and Sultan Al-Muhammadi

Abstract—A new single asymmetric error-correcting code is proposed.
This code is constructed using a product of two codes of smaller dimen-
sions. The proposed code is of dimension17 and of size 8192, i.e., with2
codewords. The best known code of dimension17 has size 7968 and capable
of handling 12 information bits only. The only other three known cases of
single asymmeteric codes accommodating one more extra information bit
than the symmetric case are for code dimensions2; 4; and 16.

Index Terms—Asymmetric errors, Cartesian product, error correction,
lower bounds, partitions.

I. INTRODUCTION

In this work, a new code capable of correcting a single asymmetric
error is proposed. Before describing the code construction we recall
few definitions. The asymmetric distance of two binary vectorsx and
y of the same length is defined as

da(x; y) = maxfN(x; y); N(y; x)g

where

N(x; y) = jfi: xi = 1 andyi = 0gj

i.e., the number of positions wherex has a1 andy has a0.
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The minimum asymmetric distance of a codeC is defined as follows:

Da(C) = minfda(x; y) : x; y 2 C andx 6= yg

In general, a codeC can correctd asymmetric errors or fewer if
Da(C) > d. In the proposed code the asymmetric distanced is 2.

The construction of the proposed code(C) is similar to that given
in [1]. The method is based on the Cartesian product of two sets of
partitioned codes, sayfA1; A2; � � �g andfB1; B2; � � �g, where

C = A1 �B1 [A2 �B2 [A3 �B3 [ � � � :

These two sets are defined as follows.
Let A be the set of all the2p binary vectors of lengthp and let

A1; A2; � � � ; Ap be a partition ofA, i.e.,

Ai Aj = �

and

Ai = A

such thatDa(Ai) � 2 for all i.
Also, let B be the set of the2q�1 even-weight binary vectors of

lengthq andB1; B2; � � � ; Bq be a partition ofB such thatDa(Bi) �
2 for all i.

It was shown in [1] that the code constructed using this method is of
asymmetric distance2. The cardinality of the code is clearly

jCj = jA1j � jB1j + jA2j � jB2j + jA3j � jB3j + � � �

and the dimension of the constructed code isp + q.

II. THE NEW CODE

The code of dimension17, given in [7], had 7968 codewords. In
[1], a code with 7688 codewords was constructed using the Cartesian
product of two partitions,A andB. TheA partition contains all bi-
nary vectors of lengthp = 7 and it is obtained from the Abelian
groupZ8; yielding eight partitions each of size16 codewords, i.e.,
A = fA1; A2; � � � ; A8g with jAij = 16 for all i. From [2], one
may obtain aB partition containing all the even binary vectors of
lengthq = 10 having nine partitionsB = fB1; B2; � � � B9g with
the following nine sizes:72; 70; 70; 70; 62; 60; 54; 40; and14; re-
spectively. Using the Cartesian product method with theseA andB
partitions, the code of dimension17 and of size

16 � (72 + 70 + 70 + 70 + 62 + 60 + 54 + 40) + 0 � 14 = 7688

codewords can be obtained.
Here, a new A partition of length 7 bits is given. The

new A partition has eight partitions with the following sizes:
18; 18; 18; 18; 17; 16; 13; and10. The actual partition is shown in
Fig. 1. Applying the Cartesian product method using thisA partition
with the aboveB partition gives a new code of dimension17 and of
size:

18�(72+70+70+70)+17�62+16�60+13�54+10�40+0�14 = 8192

codewords which is exactly equal to213. This code improves the best
known code by 224 codewords.

The newA partition is obtained using graph-coloring method. In this
method, a graphG = (N; E) is constructed with the set of nodes,N ,
being all27 binary vectors, and the set of edgesE is defined as follows:

E = f(x; y): x; y 2 N ; Da(x; y) = 1g:

The nodes of the graph are colored using eight colors. From the setup
of the graph, we see that if(x; y) 2 E thenx andy have different
colors,8 x; y 2 N . Clearly, the subset of nodes having colork, say
Ak, satisfies the conditionDa(Ak) � 2 and hence constitutes a single
asymmetric error-correcting code.

It should be noted that, using this newA partition, one can also
improve two other codes given in [1], namely, the code of dimension

Fig. 1. The newA-partition of the 2 binary vectors, with cardinalities
18; 18; 18; 18;17; 16; 13; and10; respectively.

15 from 2188 to 2214 codewords and the code of dimension19 from
28032 to 28548.

III. CONCLUSION

A single asymmetric error-correcting code with 17 bits now can
accommodate 13 information bits. Previously, only 12 information bits
were possible which was similar to thesymmetriccase. The maximum
symmetric single error-correcting code of dimension17 is at most
217=18, by the Hamming bound, which is only 7281 codewords.
Therefore, the maximum number of information bits in any single
symmetric error of dimension17 is at most 12.

The only three other known cases of single asymmeteric codes acco-
modating one more extra information bit than the symmetric case are
of dimensions2; 4, and16.
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Optimal Double Circulant Self-Dual Codes Over

T. Aaron Gulliver, Senior Member, IEEE

Abstract—Optimal double circulant self-dual codes over have been
found for each lengthn � 40. For lengthsn � 14; 20; 22; 24; 28, and
30, these codes are optimal self-dual codes. For length26, the code attains
the highest known minimum weight. Forn � 32, the codes presented pro-
vide the highest known minimum weights. The[36; 18; 12] self-dual code
improves the lower bound on the highest minimum weight for a[36; 18]
linear code

Index Terms—Double circulant codes, self-dual codes.

I. INTRODUCTION

A linear [n; k] codeC over 4 is ak-dimensional vector subspace
of n

4 , where 4 is the Galois field with four elements. In this corre-
spondence, the elements of4 are taken to bef0; 1; 2; 3g, where2 = �
and3 = �2, and�2 + �+ 1 = 0. An [n; k; d] code is an[n; k] code
with minimum weightd. The (Hermitian) inner product is defined as

x � y = x1y1 + � � �+ xnyn

for two vectorsx = (x1; � � � ; xn) and y = (y1; � � � ; yn) where
0 = 0, 1 = 1, � = �2 and�2 = �. The dual codeC? of C is
defined as

C? = fx 2 ( 2 � 2)
njx � y = 0 for all y 2 Cg:

C is (Hermitian)self-dualif C = C?. For a self-dual code over4,
the following upper bound is known [9]:

d � 2
n

6
+ 2:

A self-dual[n; n=2; 2bn
6
c + 2] code is calledextremal.
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TABLE I
DC-OPTIMAL SELF-DUAL

CODES

LetAi is the number of codewords of weighti in C. Then the num-
bersA0; � � � ; An form the weight distribution ofC.

A pure double circulantcode has a generator matrix of the form
[I; R] whereI is the identity matrix of ordern andR is ann by n
circulant matrix. A[2n; n] code over 4 with generator matrix of the
form

� � � � � �




I
... R0




(1)

whereR0 is ann� 1 by n� 1 circulant matrix, and�; � and
 2 4

is called abordered double circulantcode. These two families of codes
are collectively calleddouble circulant(DC) codes [6]. Both pure and
bordered DC self-dual codes exist for all even lengths.

All self-dual codes over 4 are classified for lengthsn � 16 [2],
[7] and the extremal codes are classified for lengths18 and20 [5]. The
highest possible minimum weight is also known for lengthsn�24 and
n=28; 30. For length26, the highest minimum weight is8 or 10.

By exhaustive search, the highest minimum weight has been deter-
mined for double circulant self-dual codes over4 with lengthn � 40.
For all lengthsn � 30; n 6= 18, these codes attain the highest pos-
sible minimum weight (except length26, where the code attains the
highest known minimum weight). Forn � 32, the codes presented
have the highest minimum weights for self-dual codes. In fact, the
[36; 18; 12] self-dual code improves the lower bound on the highest
minimum weight for a linear code over4. The notation and termi-
nology for coding theory follow that in [6].

II. OPTIMAL SELF-DUAL DOUBLE CIRCULANT CODES

A self-dual DC code is calledDC-optimal if it attains the highest
possible minimum distance for a self-dual DC code of that length.
For lengthsn � 20, the DC-optimal codes are equivalent to known
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	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


