
Two-way Hashing with

Separate Chaining and Linear Probing

Ebrahim Malalla

School of Computer Science

McGill University, Montreal

March 2004

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfilment of the requirements of the degree of Doctor of Philosophy

c© Ebrahim Malalla, 2004.

To my heros

Abstract

Two-way chaining is a novel hashing scheme that uses two independent truly uniform

hash functions f and g to insert m keys into a hash table with n chains, where each

key x is inserted into the shortest chain among the chains f(x) and g(x), breaking ties

randomly. It is known [13, 18] that the worst-case search time of two-way chaining

is log2 log n + m/n + O(1), asymptotically almost surely. In this thesis, we study the

two-way chaining paradigm under different assumptions.

First, we generalize the result to nonuniform hash functions. We analyze two-way

chaining in the fixed density model where the two independent hash functions behave

according to two densities defined on the unit interval. When m = Ω(n), we prove

that asymptotically almost surely, the worst-case search time is at least log2 log n −
O(1). If, in addition, the densities are bounded, then it is at most log2 log n+O(m/n).

Secondly, we consider the off-line version of two-way chaining where all the hashing

values available for the m keys are known in advance. For constant k ∈ N, we show

that there is a threshold ck such that if m ≤ ckn, then one can assign the keys to the

chains so that the maximum search time is at most 2k, asymptotically almost surely.

We tightly estimate ck, and prove that it is, in fact, asymptotic to k. Algorithms for

finding such assignments are also given.

Thirdly, we utilize the two-way chaining paradigm to design efficient open ad-

dressing hashing schemes. We study two-way linear probing algorithms. These are

iii

algorithms that employ two independent linear probe sequences to hash the keys.

We prove an Ω(log log n) universal lower bound on the worst-case search time of any

two-way linear probing algorithm, where n is the hash table size. We show, however,

that some simple two-way linear probing algorithms, unexpectedly, have implausible

worst-case performances. Subsequently, we present several efficient two-way linear

probing algorithms whose performance matches the lower bound. Simulations back

up the theoretical results.

iv

Résumé

L’enchâınement à deux choix est une méthode de hachage qui emploie deux fonctions

uniformes indépendantes f et g pour insérer m clefs dans une table avec n châınes,

où chaque clef x est insérée dans la châıne la plus courte parmi les châınes f(x) et

g(x). On sait que le maximum des temps de recherche est log2 log n + m/n + O(1),

asymptotiquement presque sûrement. Dans cette thèse, nous étudions le paradigme

d’enchâınement à deux choix dans différents contextes.

D’abord, nous généralisons le résultat aux fonctions de hachage non-uniformes.

Nous analysons l’enchâınement à deux choix dans le modèle de densité où les deux

fonctions de hachage se comportent selon deux densités définies sur l’intervalle d’unité.

Quand m = Ω(n), nous prouvent cela asymptotiquement presque sûrement, le temps

maximal de recherche est au moins log2 log n − O(1). Si, en outre, les densités sont

bornées, alors il est tout au plus log2 log n + O(m/n).

En second lieu, nous considérons la version off-line où toutes les valeurs de hachage

pour les m clefs sont connues à l’avance. Pour la constante k ∈ N, nous prouvons

qu’il y a un seuil ck tel que si m ≤ ckn, on peut assigner les clefs aux châınes de sorte

que le temps maximum de recherche soit tout au plus 2k, asymptotiquement presque

sûrement. Nous estimons ck, et montrons qu’il est, en fait, asymptotique à k. Des

algorithmes efficaces sont donnés.

Troisièmement, nous utilisons le paradigme d’enchâınement à deux choix pour

v

concevoir des algorithmes de hachage du type “open addressing”. Nous proposons

des algorithmes linéaires à deux choix. Ce sont des algorithmes qui utilisent deux

recherches linéaires à partir de deux fonctions de hachage indépendantes. Nous prou-

vons une limite inférieure en universelle de Ω(log log n) pour le temps maximum de

recherche de n’importe quel algorithme de hachage linéaire à deux choix, où n est la

taille de la table. Nous montrons, cependant, que quelques algorithmes de hachage

linéaires à deux choix simples, inopinément, avons des exécutions des cas les pires

décevantes. Nous présentons deux algorithmes de hachage linéaires à deux choix effi-

caces dont la performance est optimale en n. Des résultats de simulation confirment

les propriétés théoriques.

vi

And surely your Lord is full of

bounty for mankind, but most of

them do not give thanks. And

verily your Lord knows what their

hearts hide, and what they reveal.

The Noble Qur’an, (27: 73–74)

Acknowledgements

Writing this acknowledgement is one of the joyful moments that I have dreamed of,

countless times, during the last years. The praise is for Allah, the most merciful,

the most compassionate, for blessing me beyond deserving with the support of many

people who have had a profound impact on my life. A word of thank you to these

people is certainly not enough.

Referring to the humongous difficulty of teaching me, and the heavy responsibility

ahead of him, my supervisor once said to me: “I used to have only two daughters,

and now, I have a new son!” From the time of accepting to be my supervisor to

this wonderful moment, Luc Devroye has never stopped guiding me in the right

direction. His continuous and monotonically increasing help goes beyond definition.

His valuable advice, suggestions, and corrections improved this work dramatically.

Indeed, every beautiful idea in this thesis was originally conceived in his mind. I am

deeply indebted for his warm kindness, infinite patience, and absolute generosity. It

is my pleasure to express my sincere gratitude to him. Luc, it is an honor to be your

student.

Appreciations must be expressed to the friendly colleagues and professors of the

School of Computer Science for the warm congenial atmosphere. Particular thanks

are due to Ketan Dalal for his help in improving the simulation programs.

I would like also to take this opportunity to declare my indebtedness to the in-

vii

credible people who played a pivotal role in my life. I am most indebted to the man

who showed me the beauty of pure thinking, to my favorite mathematician, Roshdi

Khalil: you are always an inspiration. To the friends who encouraged and supported

me when I needed them. Every single member of my family, to whom I dedicate this

thesis, deserves a thank you for believing in me. My deepest gratitude goes out to

my dear brother Abu Hussain, and my beloved sister Om Hassan. At the top are my

mom and dad who always believe that I can fly!

Montreal, March 2004 E. M.

viii

Contents

Abstract iii

Résumé v

Acknowledgments vii

Introduction 1

0 Preliminaries 11

0.1 Basic Notations . 11

0.2 Probabilistic Inequalities . 12

0.3 Allocation Processes . 18

0.3.1 Classical Allocation Processes 20

0.3.2 Multiple-choice Allocation Processes 21

0.4 Hashing Assumptions . 27

I Hashing with Separate Chaining 31

1 Uniform Two-way Chaining 33

1.1 History and Motivation . 33

1.2 Two-way Chaining . 37

ix

x CONTENTS

1.3 The Lower Bound . 42

1.4 The Upper Bound . 46

2 Nonuniform Two-way Chaining 55

2.1 Motivation . 55

2.2 The Fixed Density Model . 57

2.3 Lower Bounds . 61

2.4 Upper Bounds . 70

2.4.1 Bounded Densities . 70

2.4.2 Unbounded Densities . 81

3 Orientation and Off-line Two-way Chaining 89

3.1 Motivation . 89

3.2 k-orientability . 92

3.3 Useful Characterization . 97

3.4 Upper Bounds . 103

3.5 Lower Bounds . 105

3.5.1 Tight Asymptotic Estimations 108

3.5.2 Further Improvements . 120

4 Speedups and Trade-offs 131

4.1 Increasing the Choices . 133

4.2 Hashing with Balanced Trees . 136

4.3 Partially Off-line Processes . 138

4.4 Processes with Load Thresholds . 144

CONTENTS xi

II Hashing with Open Addressing 149

5 Two-way Linear Probing: the Naked Idea 151

5.1 History and Motivation . 152

5.2 Two-way Linear Probing . 156

5.3 Universal Lower Bound . 159

5.4 Life is not Always Good! . 160

6 New Paradigms for Two-way Linear Probing 169

6.1 Two-way Locally-linear Probing . 170

6.2 Two-way Pre-linear Probing . 172

6.3 Two-way Post-linear Probing . 175

6.4 Other Variants . 184

6.5 Simulation Results . 187

Conclusion and Future Work 191

Appendix: Finishing the Proof of Theorem 3.4 195

List of Algorithms 203

Index of Notation 205

Bibliography 207

Introduction

Since its invention in the middle of the last century, hashing has never been more

appealing than today. Its presence in many branches of computer science has mo-

tivated many researchers to find new creative ways for improving its performance.

While the average performance of hashing is clearly a crucial factor in practice, its

worst-case performance cannot be ignored. The last decade has witnessed the birth

of new hashing schemes that advance the worst-case performance of hashing to a

plausible level. This thesis is a humble step on the same road focusing only on the

worst-case performance of hashing.

A classical hash table implementation [103, 80, 169] uses one hash function f to

insert m distinct input keys that come from a finite universe set of keys U into a table

of size n. The hash table is a one-dimensional array with n cells which we denote,

throughout, by the set T := {0, . . . , n− 1}. The ratio α := m/n is called the load

factor of the hash table. In an ideal situation, the hash function f would be perfect,

that is, an injective function. A key x, then, is hashed to the cell f(x). Throughout,

we define the insertion and search times to be the number of probes (table accesses)

needed to insert or locate a key, respectively, plus the time required to compute the

hashing addresses. For simplicity, we ignore, throughout, the evaluation time of the

hash functions.

Many techniques have been developed to derive perfect hash functions. However,

1

2 INTRODUCTION

all of them, understandably, are off-line techniques, that is, they require prior knowl-

edge of the input keys. Usually, they work only with static hash tables which means

that the keys are not allowed to be updated. Alternatively, the hash function f can

be chosen uniformly at random from the set of all possible functions that map U into

T . In this case, we say that the hash function f is truly uniform as its hashing values

are independent and uniformly distributed over the hash table. The function also is

independent of the input keys. However, the birthday paradox [66] reveals that when

m = ω(
√

n), then with high probability (that is, with probability goes to one as n

goes to infinity), there are two keys that will be mapped to the same cell. That is, a

collision will occur. Several collision resolutions have been devised. Among these are

separate chaining and open addressing. For a historical background of these methods

and others see [103, 121].

Hashing with Separate Chaining

Collisions can be resolved by allowing each cell in the hash table to have a separate

linked list or chain. Keys that hash to a certain cell are inserted into the chain pointed

to by the cell.

Classical Uniform Chaining

Classically, a truly-uniform hash function f is used to insert m keys sequentially

into a table with n chains, where each key x is appended to the chain f(x). The

insertion time is constant, and the search time of any key x is at most the length of

the chain f(x), where the length of a chain is defined to be the number of keys the

chain contains. The average chain length α [103, 80, 169] is bounded if α can be kept

bounded. This is not the case with the maximum search time which is proportional

to the longest chain length. Gonnet [79] showed that for constant load factor, the

INTRODUCTION 3

maximum chain length is asymptotic to log n/ log log n, in probability. This fact has

been proved earlier in terms of balls and bins, see [99, 105]. Other proofs appeared

more recently in [130, 153].

Two-way Uniform Chaining

Azar, Broder, Karlin and Upfal [13] suggested a new hashing scheme called two-way

chaining. Two independent and truly-uniform hash functions f and g are used to

hash the keys sequentially. Each key x is inserted into the shortest chain among

the chains f(x) and g(x), breaking ties randomly. Assuming that we save with each

chain its length, the insertion time is still constant. To search for any key x, we check

both chains f(x) and g(x). Thus, the average search time is not more than twice the

average search time of classical uniform hashing with chaining explained above. The

maximum search time is at most twice the length of the longest chain. However, Azar

et al. [13] proved that when the load factor α is constant, the longest chain length

decreases dramatically to log2 log n±Θ(1), with high probability.

The two-way chaining paradigm has provoked an avalanche of research [18, 24, 39,

114, 134, 170, 177]. The hashing scheme has several advantages over other proposed

methods that lead to plausible worst-case performance like the ones in [74, 23, 50].

It uses only two hash functions, it is easy to parallelize, it does not involve rehashing

of data, and it is on-line and suitable for dynamic hashing.

Nonuniform Chaining

Truly uniform hash functions tend to distribute the keys evenly over the hash table;

and hence, if U is an ordered set, these functions are, most likely, not order-preserving.

Uniform order-preserving hash functions can be designed if the key statistics are

known priori [155, 76]. If the order-preserving hash function is independent of the

4 INTRODUCTION

key distribution, the hashed values are typically nonuniformly distributed over the

hash table, see, e.g., [82] and [41, p. 2]. Order-preserving functions are helpful for

operations that require sorted or nearly sorted keys like range search and finding the

k-nearest neighbors; see [42] for such applications. Lately, there has been growing

interest in locally-sensitive hash functions [112, 91, 77, 25, 160]. These functions are

sensitive to the similarity of the keys: they map keys that are similar to close chains.

Evidently, the image of a locally-sensitive function also has a possibly nonuniform

distribution. All of this underlines the importance of studying the performance of

hashing schemes with nonuniform hash functions.

The worst case performance of classical chaining with nonuniform distributions

was studied by Devroye [41]. He represented the hash table by the unit interval

[0, 1] partitioned into n equal-sized subintervals. The hashing locations of the keys,

say Y1, . . . , Ym, are assumed to be independent and have a common density function

h over [0, 1]. The t-th key is hashed to the i-th chain, if Yt belongs to the i-th

subinterval. For constant load factor and bounded density h, he showed that the

expected maximum chain length is still asymptotic to log n/ log log n. A tight upper

bound is also given for unbounded densities. This leads us to study under which

circumstances the bounds proved for two-way uniform chaining remain valid with

nonuniform hash functions.

Off-line and Static Uniform Chaining

In the off-line version of two-way uniform chaining, the choices of hashing addresses

available for all keys, where each key has two choices, are known in advance, before

the insertion process starts. One can ask, then, if it is possible to assign each key to

one of its two hashing addresses in a way that minimizes the length of the longest

chain. Notice that the hashing choices are still independent and uniformly distributed

INTRODUCTION 5

as they are the images of truly uniform hash functions. The problem is useful for

constructing efficient static hashing schemes, and giving insight into the competitive

analysis of two-way chaining where the performance of the on-line version is compared

to its off-line correspondent. Czumaj and Stemann [39] studied the problem, and

proved that if m ≤ 1.67545943... × n, then with high probability there exists an

assignment for the keys such that the maximum chain length is at most two. But can

we improve the bound on m? What about higher maximum chain lengths? Let mk,

for k ≥ 2, be the maximum m such that there is an assignment where the maximum

chain length is at most k, with high probability? Czumaj and Stemann’s analysis

implies that 2mk ≥ k+
√

k log k+Ω(log k), for k large enough. But can we do better?

It is a question we shall address.

Thesis Contributions: Part I

The thesis is divided into two parts. The unifying theme of the thesis is the worst-

case performance of two-way hashing methods using chaining and open addressing.

The first part of the thesis is devoted to our contributions in two-way chaining.

Chapter 1: We give a new proof of the lower bound on the length of the longest

chain produced by the on-line two-way uniform chaining algorithm, and we simplify

the so called witness tree method (used in [170]) to prove the upper bound.

Chapter 2: We analyze the worst-case performance of on-line two-way chaining

with independent nonuniform hash functions, f and g. Our analysis is based on the

following fixed density model. We assume that the hash functions f and g map U
to the unit interval [0, 1] which is partitioned into n equal-sized subintervals where

each subinterval represent a chain. All hashing locations are independent, and for

each key x, the values f(x) and g(x) behave according to independent fixed densities

6 INTRODUCTION

hf and hg, respectively, over [0, 1]. We prove that when m keys are inserted into

n chains using this model, where m/n is constant, the maximum chain length is at

least log2 log n − Θ(1), with high probability; and if the densities are bounded by

some constants, then it is at most log2 log n + Θ(1), with high probability. Upper

bounds for unbounded densities with some conditions are also studied. Bounds for

other cases such as the heavily- and lightly-loaded cases, or the dynamic case are also

given.

Chapter 3: We extend the results in the literature for off-line two-way uniform

chaining. We reduce the assignment problem to an orientation problem in a ran-

dom graph with n vertices (chains) and m edges (keys). We show that there is an

assignment for the keys where the maximum chain length is at most k, for k ≥ 2,

if and only if the random graph is k-orientable, that is, if there exists an orienta-

tion of the edges such that the maximum out-degree is at most k. The problem

now is to estimate the maximum number of edges (keys) mk such that the random

graph is k-orientable, with high probability. We give another proof for a character-

ization by Frank and Gyárfás [73] that any graph is k-orientable if and only if the

number of edges of any subgraph is at most k times the number of its vertices. We

use this fact to approximate mk for small k, and we show that for k large enough,

1 − 2k exp(−k + 1 + e−k/4) < mk/(kn) < 1 − exp
(−2k

(
1− e−2k

))
. Algorithms for

finding a k-orientation are also presented.

Chapter 4: Finally, we discuss some of the speedups of two-way chaining, and

the trade-offs between the number of hashing choices for each key, the search and

insertion times, and the memory size.

INTRODUCTION 7

Hashing with Open Addressing

Another method for resolving collisions is open addressing. The hash table does not

have chains, and each cell can harbor at most one key. However, each key x has an

infinite probe sequence fi(x) ∈ T , for i ∈ N which it follows sequentially until an

empty cell is found where a key is inserted. The probe sequence is combined with a

replacement strategy. During the insertion process, if a key x initiates the i-th probe

and arrives at the cell fi(x) that is already occupied by another previously inserted

key y, i.e., fi(x) = fj(y), for some j ∈ N, then a replacement strategy is used to

resolve the collision. The strategy could be one of the following:

1. first come first served (fcfs) [147]: The key y is kept in its cell, and

the key x is referred to the next cell fi+1(x).

2. last come first served (lcfs) [151]: The key x is inserted into the cell

fi(x), and the key y is pushed along to the next cell in its probe sequence,

fj+1(y).

3. robin hood [29, 28]: The key which travelled the furthest is inserted into

the cell. That is, if i > j, then the key x is inserted into the cell fi(x), and the

key y is pushed along to the next cell fj+1(y); otherwise, y is kept in its cell,

and the key x tries its next cell fi+1(x).

There are many types of probe sequences, but the commonly used ones are:

1. Random Probing [136]: For every key x, the infinite sequence fi(x) is as-

sumed to be independent and uniformly distributed over T . That is, we require

to have an infinite sequence fi of truly uniform and independent hash functions.

If for each key x, the first n probes of the sequence fi(x) are distinct, i.e., it is

a random permutation, then it is called uniform probing [147].

8 INTRODUCTION

2. Linear Probing [147]: For every key x, the first probe f1(x) is assumed to be

uniform on T , and the next probes are defined by fi+1(x) = fi(x) + 1 mod n,

for i = 1, . . . , n. So we only require f1 to be a truly uniform hash function.

Random and uniform probings are, in some sense, the idealized models [164, 178],

and their plausible performances are among the easiest to analyze; but obviously they

are unrealistic. Linear probing is perhaps the simplest to implement, but it behaves

poorly when the table is almost full.

Classical Open Addressing

In classical open addressing hashing, m keys are inserted, on-line and sequentially,

into a table of size n by using only one probe sequence with a common replacement

strategy. When we search for a key x, we have to follow the probe sequence fi(x)

sequentially until the key is found or an empty cell in the case of unsuccessful search.

The load factor α ∈ (0, 1) is assumed to be a constant. The asymptotic average-case

performance has been extensively analyzed for different types of probe sequences

[103, 80, 169]. The expected search times were proven to be constants, more or

less, depending on α only. We focus, however, on the worst-case search time which

is proportional to the length of the longest probe sequence over all keys (llps, for

short).

Pittel [149] proved that in linear probing with fcfs policy, the llps needed to

insert (or search for) any key is asymptotic to (α− 1− log α)−1 log n, in probability.

Gonnet [79] proved that with uniform probing and fcfs replacement strategy, the

expected llps is asymptotic to log1/α n − log1/α log1/α n + O(1). However, Poblete

and Munro [151, 152] showed that if random probing is combined with lcfs policy,

then the expected llps is at most (1 + o(1))Γ−1(αn) = O(log n/ log log n), where Γ

is the gamma function.

INTRODUCTION 9

On the other hand, the robin hood strategy with random probing leads to a

more striking performance. Celis [28] first proved that the expected llps is O(log n).

However, Devroye, Morin and Viola [45] tightened the bounds and revealed that the

llps is indeed log2 log n±Θ(1), w.h.p., thus achieving double logarithmic worst-case

insertion and search times for the first time in classical open addressing hashing. Un-

fortunately, one cannot ignore the unrealistic assumption in random probing about

the availability of an infinite collection of independent and truly uniform hash func-

tions. On the other side of the spectrum, it is known [147, 103] that the llps in linear

probing, which is more realistic, is independent of the replacement strategy, because

the insertion of any order of the keys results in the same set of occupied cells. This

emphasizes the need for inventing nonclassical linear probing schemes.

Thesis Contributions: Part II

Our chief objective in the second part of this thesis is to design on-line linear probing

schemes that achieve double logarithmic worst-case performance. This is done by

exploiting the idea behind the two-way chaining paradigm. We promote the concept

of two-way linear probing. These are hashing algorithms that initiate for each key two

independent linear probe sequences with fcfs policy to find two empty cells where

the key is inserted into one of them according to some strategy. For example, one of

the trivial strategies inserts each key into the empty cell found by the shortest probe

sequence. Another simple strategy inserts each key into the empty cell adjacent to

the smallest cluster, where a cluster is an isolated set of consecutively occupied cells.

Chapter 5: We prove an Ω(log log n) universal lower bound on the performance of

any strategy that uses two linear probe sequences, even if the starting points of these

sequences are chosen according to arbitrary probability distributions. Furthermore,

10 INTRODUCTION

we demonstrate that not every two-way linear probing algorithm behaves nicely. We

show, for instance, that when any of the above two strategies is used to construct

a hash table with constant load factor, the maximum unsuccessful search time is

Ω(log n/ log log n), with high probability.

Chapter 6: We introduce, subsequently, two on-line two-way linear probing algo-

rithms that accomplish Θ(log log n) worst-case unsuccessful search time, with high

probability. Simulation results that support the analysis of these algorithms are also

presented. We study the performance of off-line two-way open addressing.

Say: bring your proof, if you are truthful.

The Noble Qur’an, (2: 111), (27: 64)

Chapter 0

Preliminaries

In this chapter we define some of the notations and recall some useful results from

probability theory and analysis of algorithms.

0.1 Basic Notations

Throughout, we use R and N to denote the conventional sets of real numbers, and

positive integers, respectively. For n ∈ N, we write [n] to denote the set {1, . . . , n}.
We use log for the natural logarithm.

Asymptotics

We will often use the following standard asymptotic notations to describe the relative

order of magnitude between two sequences xn and yn defined on N. For simplicity,

we assume that xn and yn are nonnegative for all sufficiently large n. We write

xn = O(yn), or equivalently, yn = Ω(xn) to mean that there is a constant c > 0

such that xn ≤ cyn, for all n large enough. If xn = O(yn) and xn = Ω(yn), we

write xn = Θ(yn). We write xn
n−→x to mean that xn converges to x, as n goes to

infinity. The statement “xn/yn
n−→ 0” can be rewritten alternatively as xn = o(yn),

11

12 CHAPTER 0. PRELIMINARIES

yn = ω(xn), xn ¿ yn, or yn À xn. We also write xn ∼ yn to mean that xn is

asymptotic to yn, that is, xn/yn
n−→ 1.

Probability

We write P {A} for the probability measure of an event A, and P {A|B} for the

conditional probability of event A given that event B is true. All the random variables

we deal with in this thesis are real-valued measurable functions defined on some

probability space. The expected value and the variance of a random variable X are

denoted by E [X] and Var [X], respectively. The covariance of two random variables

X and Y is denoted by Cov [X , Y]. We denote by I[A] the indicator function of

the event A which is 1 if A occurs, and 0 otherwise. For any random variables X and

Y , we write X
L
= Y to mean that X is distributed as Y , that is, X is equal to Y in

law, or P {X ≥ t} = P {Y ≥ t}, for any t ∈ R.

We say that a sequence of events An occurs with high probability (abbreviated

w.h.p.), or equivalently, it is true asymptotically almost surely (abbreviated a.a.s.) if

and only if P {An} n−→ 1. Let X1, X2, . . ., and X be any random variables. We say

that Xn converges in probability to X, as n goes to infinity, if and only if for any

constant ε > 0, we have

lim
n→∞

P {|Xn −X| > ε} = 0 .

We say that Xn is asymptotic to an in probability, where an is a real-valued sequence,

if Xn/an converges to 1 in probability.

0.2 Probabilistic Inequalities

Probabilistic analysis of algorithms is largely about bounding probabilities, especially

those of large deviations. Most of the following probabilistic inequalities can be found

0.2. PROBABILISTIC INEQUALITIES 13

in any classical probability-oriented textbook, e.g., [7, 97, 137]. See also [100, 116,

123].

Perhaps the simplest probability tail inequality is the one implied by the definition

of expectation of any nonnegative random variable X which is

E [X] =

∫ ∞

0

P {X ≥ x} dx ≥ P {X ≥ 1} .

This leads to Markov’s inequality : for any random variable X, and t > 0, we have

P {|X| ≥ t} ≤ E [|X|]
t

.

Thus, if f is a nonnegative nondecreasing function defined on R, then for any random

variable X, and t ∈ R,

P {X ≥ t} = P {f(X) ≥ f(t)} ≤ E [f(X)]

f(t)
.

If we choose f(x) = x2, we obtain Chebyshev’s inequality : for any random variable

X with bounded mean, and t > 0,

P {|X − E [X]| ≥ t} ≤ Var [X]

t2
.

These bounds are in many cases insufficient. Sharp concentration inequalities can

be obtained for random variables that can expressed as functions of independent or

almost independent random variables (see below).

Binomial Inequalities

The binomial random variable Bin(n, p), where n ∈ N, and p ∈ [0, 1], has the following

distribution:

P {Bin(n, p) = k} =

(
n

k

)
pk(1− p)n−k , for k ∈ {0, . . . , n} .

14 CHAPTER 0. PRELIMINARIES

Such a random variable can be represented as a sum of n independent binary random

variables (or coin flips) where the probability of having 1 is p. The binomial distrib-

ution is concentrated around its mean np, i.e., the probability that it deviates from

its mean is very small. The following lemma bounds the upper tail probabilities.

Lemma 0.1 (Okamoto [139]). For p ∈ (0, 1), and n, t ∈ N, let β := t/n, and suppose

that n > t > np > 0. Then

P {Bin(n, p) ≥ t} ≤ Υ(β, p)n def
=

((
1− p

1− β

)1−β (
p

β

)β
)n

(1)

≤
(epn

t

)t

e−pn (2)

≤
(epn

t

)t

. (3)

Observe that if t = εnp, for some constant ε > 1, then inequality (2) can be

written as

P {Bin(n, p) ≥ εnp} ≤ exp (−(ε log ε− ε + 1)np) , (4)

which is known as Angluin-Valiant’s inequality [11]. All of the above bounds

are tight up to a factor of Θ(1/
√

n), that is, P {Bin(n, p) ≥ t} = anΥ(β, p)n, where

an = Θ(1/
√

n). Analogous inequalities hold also for the lower binomial tails, but

we shall not need them here. The binomial bounds have been implicitly established

earlier by Chernoff [31], and were later extended to sums of bounded random variables

[16, 11, 88, 93].

The following lemma establishes lower bounds on the upper tail probabilities.

Lemma 0.2. Let n,m ∈ N such that m/n
n−→α, for some constant α ∈ (0, 1). Let

p = c/n, for some constant c > 0. Then for t ∈ [m− 1], and n large enough, we have

P {Bin(m, p) ≥ t} ≥
(c α

2t

)t e−c α

2
.

0.2. PROBABILISTIC INEQUALITIES 15

Proof. Since (1− 1/n)t ≥ 1− t/n, then for n large enough, we have

(
n

t

)
1

nt
≥ n

n− t

(
n− 1

t

)
(1− 1/n)t

(n− 1)t
≥

(
n− 1

t

)
1

(n− 1)t
.

By repeating this step, we get
(

n
t

)
n−t ≥ (

t
t

)
t−t = t−t. Observe that (1−c/n)n n−→ e−c.

Therefore, for n large enough,

P {Bin(n, p) ≥ t} ≥ P {Bin(n, c/n) ≥ t}

≥
(

n

t

) (c

n

)t (
1− c

n

)n

≥ e−c

2

(c

t

)t

.

Since m/n
n−→α, then for n large enough, p ≥ cα/(2m). Hence, applying the above

inequality, we get

P {Bin(m, p) ≥ t} ≥ e−cα

2

(c α

2t

)t

.

Functions with Bounded Differences

The following lemma is useful for bounding complicated random variables that can

be written as “nice” functions of independent random variables.

Lemma 0.3 (McDiarmid [122]). Let X1, . . . , Xn be independent random variables

taking values in a set A, and let f be any real-valued measurable function defined on

the set An. Suppose that for each i ∈ [n], there exists ci > 0 such that

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci ,

i.e., the function f has bounded differences. Then for any t ≥ 0, we have

P {f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≥ t} ≤ exp

(−2t2∑n
i=1 c2

i

)
,

and similarly,

P {f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≤ −t} ≤ exp

(−2t2∑n
i=1 c2

i

)
.

16 CHAPTER 0. PRELIMINARIES

Notice that the lemma does not require identical distributions for the Xi’s. Weaker

versions of the lemma for not-totally independent random variables have been also

established, see e.g., [122, 123, 116].

Negative Association

The definition of conditional probability says that P {A ∩B} = P {A|B}P {B}, for

any event A and B. Thus, by induction, we see that for any events A1, . . . , An,

P

{
n⋂

i=1

Ai

}
= P {A1 |A2, . . . , An}P {A2 |A3, . . . , An} · · ·P {An−1 |An}P {An} .

This inequality is useful for studying the maximum value over a set of random values.

Plainly, if X1, . . . , Xn are random variables, then

P
{

max
i

Xi ≤ t
}

= P {X1 ≤ t, . . . , Xn ≤ t}

= P {X1 ≤ t |X2 ≤ t, . . . , Xn ≤ t} · · ·P {Xn ≤ t} .

Computing the exact probabilities P {Xi ≤ t |Xi+1 ≤ t, . . . , Xn ≤ t} is usually hard.

However, the probabilities can be bounded from above by P {Xi ≤ t}, if the random

variables are negatively associated, which means that when some of these variables

are known to be small, the others are highly unlikely to be small too. The negative

association, which is sometimes called negative dependence or correlation, is studied

by many researchers, e.g., [56, 57, 63, 68, 98, 111]:

Definition 0.1. Any nonnegative random variables X1, . . . , Xn are said to be nega-

tively associated, if for every disjoint index subsets I, J ⊆ [n], and for any functions

f : R|I| → R, and g : R|J | → R that are both non-decreasing or both non-increasing

(componentwise), we have Cov [f(Xi, i ∈ I) , g(Xj, j ∈ J)] ≤ 0, that is,

E [f(Xi, i ∈ I) g(Xj, j ∈ J)] ≤ E [f(Xi, i ∈ I)] E [g(Xj, j ∈ J)] .

0.2. PROBABILISTIC INEQUALITIES 17

Once we establish that X1, . . . , Xn are negatively associated, it follows, by consid-

ering inductively the indicator functions, that for any nonnegative numbers t1, . . . , tn,

P {X1 ≤ t1, . . . , Xn ≤ tn} ≤ P {X1 ≤ t1}P {X2 ≤ t2, . . . , Xn ≤ tn}

≤
n∏

i=1

P {Xi ≤ ti} ,

and similarly,

P {X1 ≥ t1, . . . , Xn ≥ tn} ≤
n∏

i=1

P {Xi ≥ ti} ,

The next lemmas provide some tools for proving the negative association. For proofs

see [63, 98, 57].

Lemma 0.4 (Zero-One Lemma). Any binary random variables X1, . . . , Xn whose

sum is one are negatively associated.

Lemma 0.5. If {X1, . . . , Xn} and {Y1, . . . , Ym} are independent sets of negatively

associated random variables, then the union {X1, . . . , Xn, Y1, . . . , Ym} is a set of neg-

atively associated random variables.

Lemma 0.6. Suppose that X1, . . . , Xn are negatively associated. Let I1, . . . , Ik ⊆ [n]

be disjoint index subsets, for some positive integer k. For j ∈ [k], let hj : R|Ij | → R be

non-decreasing functions, and define Zj = hj(Xi, i ∈ Ij). Then the random variables

Z1, . . . , Zk are negatively associated. In other words, non-decreasing functions of dis-

joint subsets of negatively associated random variables are also negatively associated.

The same holds if hj are non-increasing functions.

As an example of negative association we consider the multinomial distribution.

Let X1, . . . , Xm be independent random numbers chosen from [n] with a common

probability distribution, that is, P {Xj = i} = pi, for all j ∈ [m], and i ∈ [n], where

p1 + · · ·+ pn = 1. For i ∈ [n], let Ni be the number of times the number i is chosen,

18 CHAPTER 0. PRELIMINARIES

i.e., Ni =
∑m

j=1 I[Xj=i] . The vector N = (N1, . . . , Nn) is said to have the multinomial

distribution with parameters m and (p1, . . . , pn): for k1, . . . , kn ∈ [m],

P {N = (k1, . . . , kn)} =
m!

k1! · · · kn!
pk1

1 · · · pkn
n ,

if k1 + · · ·+ kn = m, and it is zero, otherwise. The random variables N1, . . . , Nn are

binomially distributed (Ni
L
= Bin(m, pi), for all i ∈ [n]), but they are not independent.

They are, however, negatively associated. This can be seen by applying Lemma 0.4

to each set of the random variables
{
I[X1=i] , . . . , I[Xm=i]

}
, for all i ∈ [n], and then

using Lemmas 0.5 and 0.6. This leads to Mallows’ inequalities [120]:

P {N1 ≤ t1, . . . , Nn ≤ tn} ≤
n∏

i=1

P {Ni ≤ tn} , and

P {N1 ≥ t1, . . . , Nn ≥ tn} ≤
n∏

i=1

P {Ni ≥ tn} .

Remark 0.1. Sometimes the negative association of random variables can only be

proven if a certain event A is true. Generally, we say that the non-negative random

variables X1, . . . , Xn are negatively associated when conditioned on an event A, if

E [f(Xi, i ∈ I) g(Xj, j ∈ J) |A] ≤ E [f(Xi, i ∈ I) |A] E [g(Xj, j ∈ J) |A] .

for every disjoint index subsets I, J ⊆ [n], and for any functions f : R|I| → R, and

g : R|J | → R that are both non-decreasing or both non-increasing (componentwise).

One can easily verify that the proofs of Lemmas 0.4, 0.5, and 0.6 are still true when

considered with conditioning on some event A. For example, if whenever an event A

is true, X1, . . . , Xn are binary random variables whose sum is one, then the binary

random variables are negatively associated when conditioned on A.

0.3 Allocation Processes

Allocating balls into bins is one of the historical assignment problems [99, 105]. For-

mally the problem is defined as follows. We are given m balls that have to be placed

0.3. ALLOCATION PROCESSES 19

sequentially into n distinct bins, where each bin can hold an unlimited number of

balls. The load of a bin is defined to be the number of balls it contains. The aim

is to design an efficient allocation process that achieves a load distribution on the

bins as uniformly as possible. Throughout, we say that an allocation process is on-

line, if each ball is assigned upon arrival without knowing anything about the future

balls. If the process waits until all the m balls arrive, and considers all the available

information about the balls before it places them, then we say that the allocation is

off-line.

Remark 0.2. Throughout the thesis, any allocation process is considered to be off-

line if and only if we mention that explicitly, otherwise it is assumed to be on-line.

The balls-and-bins problem is very useful for modelling many applications in

computer science such as load balancing, dynamic resource allocation, circuit routing,

IP address lookups, and of course hashing. The balls may represent keys, tasks,

jobs, users or processes, while the bins may be chains, servers, printers, machines, or

processors. For example, in the context of PRAM simulation on distributed memory

machines (DMM), we have m processors sharing a memory of PRAM machine that

we want to simulate on a DMM machine with n processors and a memory partitioned

into n modules, one module per processor. Distributing m balls into n bins means

mapping m cells of the shared memory of the PRAM to the n memory modules of

the DMM. We shall also explain, in Section 0.4, how the balls and bins can be used

to model hashing. For an in-depth view of other applications see [13, 24, 39, 130, 134].

For the remainder of this chapter, we will concentrate on allocation processes that

minimize the maximum bin load among all the bins upon their termination.

20 CHAPTER 0. PRELIMINARIES

0.3.1 Classical Allocation Processes

Randomization has been shown to be very effective in minimizing the maximum bin

load. For instance, the classical allocation process places each ball on-line into a bin

chosen independently and uniformly at random, with replacement. Throughout, we

shall refer to this process by Classical(n, m), for inserting m balls into n bins.

Figure 1: An illustration of Classical(n, m). Each ball is placed in a bin chosen

independently and uniformly at random.

The properties of the classical balls-and-bins model (or sometimes called the classi-

cal occupancy model) have been extensively analyzed in the probability and statistics

literature [99, 105, 100, 107, 20, 75]. Clearly, the load of any bin has the binomial

distribution Bin(m, 1/n), and hence, its expected value is m/n. The bin load vector

is multinomial, and by Mallows’ inequality, the bin loads are negatively associated.

However, it is not difficult to show that each bin load behaves asymptotically as an

independent Poisson random variable with parameter m/n.

Theorem 0.1. Upon termination of Classical(n,m), where m = Θ(n), the maxi-

mum bin load among all bins is asymptotic to log n/ log log n, in probability.

Proofs of the theorem can be found in [99, 105]. In the context of uniform hashing,

Gonnet [79] gave another proof based on Poisson approximation which has been

simplified by Mitzenmacher [130]. Recently, Raab and Steger [153] presented a new

0.3. ALLOCATION PROCESSES 21

proof using the second moment method, and analyzed the heavily loaded case when

m À n. The process has been also analyzed under assumptions of limited randomness

[6, 52, 48, 50, 124], and for nonuniform distributions [41]. Another variation of the

classical model has been studied in [55].

0.3.2 Multiple-choice Allocation Processes

The idea of using multiple choices for each ball appears to have been conceived in

1986 in the work of Eager et al. [59]. The power of the idea became more evident

in the work of Karp, Luby and Meyer auf der Heide [101]. The authors studied the

balls-and-bins problem in the context of PRAM simulation on a distributed memory

machine. They allowed each ball to choose two bins independently and uniformly at

random, while a simple parallel algorithm decides in which of the two possible bins

the ball has to be placed. They proved that if m = n, then the allocation process

terminates with O(log log n log∗ n) maximum bin load, w.h.p.

The Greedy Strategy

In 1994, Azar, Broder, Karlin and Upfal [13] proposed the following novel allocation

process. For each ball, we choose d ≥ 2 bins independently and uniformly at random,

with replacement. Then we insert the ball into the least full bin among the d bins,

breaking ties randomly. Throughout, we will write Uniform-GreedyMC(n,m, d)

to denote this greedy multiple-choice allocation process for inserting m balls into n

bins. In the case d = 2, we may sometimes, for simplicity, omit the third parameter,

and just write Uniform-GreedyMC(n, m). The balls are assumed to be inserted

on-line and sequentially, unless otherwise explicitly specified.

Notice that the allocation (insertion) time for any ball, (that is, the number of bin

accesses) is always d. The maximum bin load of Uniform-GreedyMC(n,m, d),

22 CHAPTER 0. PRELIMINARIES

Figure 2: An illustration of Uniform-GreedyMC(n,m, 4). Each ball is inserted

into the least loaded bin among 4 bins chosen independently and uniformly at random,

with replacement, breaking ties arbitrarily.

surprisingly, decreases significantly , even for d = 2. Azar et al. [13] proved that

the maximum bin load Ln upon termination of Uniform-GreedyMC(n, n, d) is

logd log n ± Θ(1), w.h.p., that is, |Ln − logd log n| ≤ c, w.h.p., for some constant

c > 0. One can easily generalize these bounds to the case m = Θ(n). It is also known

that the greedy strategy is stochastically optimal in the following sense.

Theorem 0.2 (Azar et al. [13]). Let n,m, d ∈ N, where d ≥ 2, and m = Θ(n). Upon

termination of Uniform-GreedyMC(n,m, d), the maximum bin load is logd log n±
Θ(1), w.h.p. Furthermore, the maximum bin load of any on-line allocation process

that inserts m balls sequentially into n bins where each ball is inserted into a bin

among d bins chosen independently and uniformly at random, with replacement, is at

least logd log n−Θ(1), w.h.p.

The proof of the above bounds given by Azar et al. [13] uses the layer induction

method. Mitzenmacher [130, 132] gave another proof based on a system of differential

equations called the fluid limit model. The upper bound is proved via the witness tree

method by Vöcking [170]. In Chapter 1, we shall simplify the witness tree argument,

and present a new proof for the lower bound. A survey of proof techniques can be

0.3. ALLOCATION PROCESSES 23

found in [134].

The heavily loaded case—when m = ω(n)—of the greedy allocation process has

been analyzed by Berenbrink et al. [18]. Using Markov chains, the authors studied

the stationary state of the allocation process, and proved the following result.

Theorem 0.3 (Berenbrink et al. [18]). There is a constant C > 0 such that for

any integers m ≥ n > 0, and d ≥ 2, the maximum bin load upon termination of

Uniform-GreedyMC(n,m, d) is logd log n + m/n± C, w.h.p.

Azar et al. [13] also studied an infinite dynamic version of the greedy allocation

process Uniform-GreedyMC(n, n, d). Initially, suppose that n balls are inserted

by Uniform-GreedyMC, and then at each step a previously inserted ball is selected

independently and uniformly at random and removed from the system; and a new

ball is inserted into the least bin among d bins chosen independently and uniformly at

random, breaking ties randomly. After Ω(n2 log log n) steps, the maximum bin load

still is logd log n + O(1), w.h.p. Vöcking [170] extended the result to any sequence of

deletions and insertions that is specified before the algorithm starts. Other infinite

dynamic variants of the greedy multiple-choice allocation process are considered in

[33, 34].

Theorem 0.4 (Vöcking [170]). Suppose that a possibly infinite sequence of deletions

and insertions of balls, that is defined in advance, is performed on-line by algorithm

Uniform-GreedyMC where each ball is inserted into the least loaded bin among

d ≥ 2 bins chosen independently and uniformly at random from a set of n ∈ N bins.

Suppose also that at any point of time, there are at most m = Ω(n) balls in the bins.

Then the maximum bin load at any fixed time is logd log n + O(m/n), w.h.p.

The off-line version of Uniform-GreedyMC(n,m, 2) where the choices available

for all balls are known in advance before we insert any ball is studied in [13]. The

24 CHAPTER 0. PRELIMINARIES

analysis was further improved by Czumaj and Stemann [39]. A more detailed history

of the off-line process is given in Chapter 3.

Asymmetric Variant

Theorem 0.2 asserts that the greedy multiple-choice process is stochastically optimal

as long as each ball is inserted on-line into a bin among d bins chosen indepen-

dently and uniformly at random, with replacement. However, Vöcking [170, 171]

demonstrated that it is possible to improve the performance of the greedy process,

if nonuniform distributions on the bins and a tie-breaking rule are carefully chosen.

He suggested the following variant. First, assume the bins are numbered from 1 to

n. Partition the n bins into d groups of almost equal size, that is, each group has

size Θ(n/d). Allow each ball to select upon arrival d bins. All the bins are chosen

independently at random where the i-th bin must be chosen uniformly from the i-th

group. Each ball is placed on-line, as before, in the least full bin among the d bins. Up

to this point, with just these modifications (i.e., the ties are still broken randomly),

the maximum bin load, upon termination, is still logd log n±Θ(1), w.h.p.

2 3 4 5 6 7 8 12111091

Figure 3: An illustration of LeftMC(n,m, 4). Each ball is placed in the least full

bin among 4 independent bins where the i-th bin is chosen uniformly from the i-th

group. Upon a tie, the ball is placed in the leftmost bin.

0.3. ALLOCATION PROCESSES 25

Vöcking introduced one more crucial change: an asymmetric tie-breaking rule

called Always-Go-Left. It states that upon a tie, the ball is always placed in the

leftmost bin among the d bins. We shall write LeftMC(n,m, d) to refer, throughout,

to this variant of the greedy multiple-choice process for inserting m balls into n bins.

Vöcking [170] showed that upon termination of LeftMC(n, n, d), the maximum

bin load is log log n/(d log φd) + O(1), w.h.p., where φd is a constant related to a

generalized Fibonacci sequence. For example, the constant φ2 = 1.61... corresponds to

the well-known golden ratio, φ3 = 1.83..., and φ4 = 1.92.... In general, limd→∞ φd = 2,

and φ2 < φ3 < φ4 < · · · < 2. Notice that this is an improvement on the performance

of GreedyMc(n, n, d), as d log φd > (d− 1) log 2 > log d. For example, when d = 2,

the maximum bin load of LeftMC(n, n) is 0.72... × log2 log n + O(1), whereas in

Uniform-GreedyMC(n, n), it is log2 log n + O(1). The process LeftMC(n,m, d)

is also optimal in the following sense.

Theorem 0.5 (Vöcking [170]). Let n, m, d ∈ N, where d ≥ 2, and m = Θ(n). The

maximum bin load of LeftMC(n,m, d) upon termination is log log n/(d log φd) ±
Θ(1), w.h.p. Moreover, the maximum bin load of any on-line allocation process that

inserts m balls sequentially into n bins where each ball is placed into a bin among d

bins chosen according to arbitrary, not necessarily independent, probability distribu-

tions defined on the bins is at least log log n/(d log φd)−Θ(1), w.h.p.

Notice that the lower bound on the maximum bin load of LeftMC(n,m, d)

holds with any probability distributions defined on the bins, and any tie-breaking

rule. This is an important result that we shall need in Chapter 2 when we investigate

the performance of Uniform-GreedyMC(n, m) with nonuniform distributions. An

analogous version of Theorem 0.4 is also proved in [170] confirming that in the dy-

namic situation, the maximum bin load of LeftMC(n,m, d) does not increase.

The plausible improvement that LeftMC(n,m, d) achieves has been reaffirmed

26 CHAPTER 0. PRELIMINARIES

by Mitzenmacher and Vöcking [135, 134] where the process is analyzed in the context

of the fluid limit model. Berenbrink et al. [18] studied the heavily loaded case and

recorded the following theorem.

Theorem 0.6 (Berenbrink et al. [18]). There is a constant C ′ > 0 such that for

any integers m ≥ n > 0, and d ≥ 2, the maximum bin load upon termination of

LeftMC(n, m, d) is log log n/(d log φd) + m/n± C ′, w.h.p.

Applications and Extensions

A great deal of research has been focused during the last years on analyzing, improv-

ing, and generalizing the greedy multiple-choice paradigm. The versatile paradigm

has been used to derive efficient algorithms for many applications in computer science.

Broder and Mitzenmacher [24] applied the two-way chaining scheme, i.e., algorithm

Uniform-GreedyMC(n,m), to improve IP address lookups in internet routers. By-

ers et al. [26] used the multiple-choice technique to implement distributed hash tables

efficiently. The technique has also been utilized in computer graphics [177], routing

and interconnection networks [34, 114, 128, 8], queueing systems [130, 131, 135, 172],

and shared memory simulations [37, 127].

Many variants and extensions of the greedy multiple-choice process have been

introduced and studied in various settings. Mitzenmacher et al. [133] and Shah et

al. [159] studied a variant of the greedy multiple-choice process with memory where

each time a ball is placed, the least loaded bin of that ball’s choices after placement is

remembered and used as one of the possible choices for the next ball. The performance

of this process is proved to be asymptotically equivalent to LeftMC(n,m, d).

Czumaj and Stemann [39] suggested adaptive multiple-choice allocation processes

that achieve optimal trade-offs between the maximum bin load, the maximum alloca-

tion time and the average allocation time. For instance, one of the adaptive processes

0.4. HASHING ASSUMPTIONS 27

they proposed allows each ball to choose one bin, and inserts the ball into it if its

load is at most logd log n + O(1). Otherwise, it chooses d − 1 more bins and inserts

the ball into the least full one. The bins are chosen independently and uniformly at

random, with replacement. The authors showed that the maximum bin load upon

termination is at most logd log n + O(1), w.h.p., while the maximum allocation time

is at most d, and the average allocation time is 1.146194 + o(1), w.h.p.

Other studies considered parallel and distributed processes [2, 1, 17, 163], in-

finite (dynamic) processes with deletion [13, 17, 33, 39, 170], processes that allow

re-allocations of the balls [39], and processes with balls of different weights [19].

0.4 Hashing Assumptions

In any hashing scheme (with separate chaining or open addressing) mentioned in

the thesis, we insert a set K of m ∈ N distinct input keys, that comes from a finite

universe set of keys U , into a table of size n ∈ N. The keys corresponds to records

or data. The hash table is a one-dimensional array with n cells or locations denoted

by the set T := {0, . . . , n− 1}. In hashing with chaining, each cell in the hash table

contains a pointer to a separate chain or linked list. The length of a chain is

defined to the number of keys it contains. The symbol α is reserved, throughout,

to denote the load factor of the hash table m/n. The hashing process uses hash

functions that map U into T . Let F(U , T) denote the set of all possible hash functions

mapping U to T . Let u := |U|, and notice that |F(U , T)| = nu. We say that a hash

function f : U → T is truly uniform to mean that it is chosen uniformly at random

from the set F(U , T). Observe that any truly uniform hash function f satisfies the

following properties:

1. For any x ∈ U , the random hashing value f(x) is uniformly distributed over T ,

28 CHAPTER 0. PRELIMINARIES

because for any i ∈ T , we have

P {f(x) = i} =
nu−1

nu
=

1

n
.

2. The hashing values produced by f are mutually independent (or u-wise inde-

pendent), because for any distinct x1, . . . , xk ∈ U , and any i1, . . . , ik ∈ T , where

k ∈ [u], we have

P {f(x1) = i1, . . . , f(xk) = ik} =
nu−k

nu
=

1

nk

= P {f(x1) = i1} · · ·P {f(xk) = ik} .

One can see now that the classical uniform hashing with chaining where m keys are

hashed into n separate chains via only one truly uniform hash function, and which

we denote throughout by ClassicChain(n,m), is stochastically equivalent to the

classical allocation process Classical(n,m) described above. Similarly, the greedy

multiple-choice process Uniform-GreedyMC(n,m) is stochastically equivalent to

the uniform two-way chaining scheme, see Chapter 1.

x

T

f(x)

U

|K| = m

K

|T | = n

x

Figure 4: Algorithm ClassicChain(n,m) where keys are hashed by a single truly

uniform hash function.

The performance of any hashing algorithm is obviously affected by the complexity

of the hash functions it uses. A good hash function is one that can be generated,

0.4. HASHING ASSUMPTIONS 29

evaluated, and stored in efficient time and space. The time and space needed to

generate a hash function should be at least linear in the hash table size, and the

evaluation time should be constant. However, the key probabilistic assumption upon

which the mathematical analysis of uniform hashing schemes is built is that the

random hash functions used by these schemes are truly uniform. To implement

this assumption, we face two practical problems. First, the ability to draw a hash

function uniformly at random from the set F(U , T) depends heavily on the existence

of a pure and true random bit generator, which has not been realized to date. Second,

even if we assume the availability of a true source of randomness, the complexity of

generating a truly uniform hash function is untractable. Assuming that any key in

U can be represented by one word in [u], i.e., by d log2 u e bits, we need Θ(u log n)

time and space (or number of random bits) to generate and store one truly uniform

hash function. That is, the size of the hash function is larger than the size of the

table it intends to serve. Notice that the a hash table with Θ(n) keys consumes only

Θ(n log u) bits.

Thus, naturally, one wonders if a certain hashing scheme that uses truly uniform

hash functions is efficiently realizable and computable in real life in a way that is

provable to yield almost the same theoretical performance. The concept of universal

hashing, introduced by Carter and Wegman [27, 173], has been proved to be very

fruitful in analyzing many hashing schemes under assumptions of limited randomness.

The hash functions, there, are drawn uniformly from a smaller family of functions

mapping U to T , instead of the set F(U , T). Although, the hashing values of such

functions are almost uniform and almost k-wise independent, for some k ¿ n, they

are sufficient enough to give almost the same performance of truly uniform hash

functions [52, 48, 50, 161].

30 CHAPTER 0. PRELIMINARIES

In this thesis, however, and for simplicity, all the hashing schemes are studied

with truly uniform hash functions, except in Chapter 2 where we analyzed two-way

chaining with nonuniform hash functions that satisfy only Property 2. We also assume

that the hashing schemes are implemented on a RAM model of computation where

memory access and the standard arithmetic and logic operations can be executed in

one unit time; in particular, probing or accessing a hash table cell can be done in one

unit time. Furthermore, we assume that a pure random source is available, that is,

it is feasible to choose objects uniformly at random. This assumption, in particular,

is reasonable, as high quality pseudo-random bit generators are readily available.

We define the search time of any hashing algorithm as the number of probes

or table accesses the algorithm performs to find a key. Observe that we ignore the

time required to evaluate the hash functions. In particular, we define the search

time in algorithm ClassicChain(n, m) to be one (for accessing the pointer to the

chain) plus the number of keys the algorithm examines. For example, in Figure 4,

the time needed to search for the key x according to our definition is 5. Similarly, the

insertion or deletion time is defined to be the number of probes the algorithm

performs to insert or delete a key, respectively.

Finally, notice that any hashing scheme can be classified as on-line or off-line

just as we classify any allocation process. That is, a hashing scheme is said to be

on-line, if each key is hashed upon arrival without knowing any information about

the future keys. It is said to be off-line if the hashing values available for all keys are

known in advance before any insertion. Throughout the thesis, all hashing schemes

are assumed to be on-line, unless we explicitly mention otherwise. Moreover, hashing

schemes can be also described as static when the hashing data are not allowed to be

updated or deleted. Otherwise, the hashing scheme is said to be dynamic.

Part I

Hashing with Separate Chaining

31

32

Hashing emerges as a heuristic technique for supporting dictionary operations to

store and retrieve information in constant expected time. In hashing with separate

chaining, keys that collide in the same cell are inserted into a separate chain (or linked

list) pointed to by the cell. According to Knuth [103], hashing with chaining seems

to have been originated by H. P. Luhn in an internal IBM memorandum in 1953.

However, Dumey [58], in 1956, was the first to describe the technique in the open

literature. Since then, various hashing schemes with different collision resolutions

have been invented and analyzed. Most notably are open addressing schemes [147],

coalesced hashing [167, 168], extendible hashing [65], linear and dynamic hashing [108,

113, 110], perfect hashing [74, 50, 144], universal hashing [27, 173], cuckoo hashing

[146, 69], and, of course, two-way chaining [13, 170]. Comparison-based or tree-

oriented data structures are also suggested for implementing dictionaries. However,

their expected performance is slow, especially, when the data structure is updated.

A wealth of information about these methods and others can be found in [103, 121,

80, 169, 145].

This part of the thesis is devoted only to the two-way chaining paradigm. We

study the on-line uniform version in Chapter 1, and the on-line nonuniform case in

Chapter 2. We analyze the off-line uniform version in Chapter 3. Chapter 4 contains

a discussion on some trade-offs and speedups of this hashing paradigm.

Chapter 1

Uniform Two-way Chaining

We begin our study by presenting another proof of the first part of Theorem 0.2 con-

cerning the worst-case performance of the greedy multiple-choice allocation process

Uniform-GreedyMC(n,m, d). We only consider the case d = 2. We shall see in

Chapter 4 that the best worst-case performance, however, is achieved when d = 3.

We choose the case d = 2 for the sake of simplicity, and because its average-case

performance is better than the case d = 3.

1.1 History and Motivation

Dictionaries are fundamental data structures designed specially for storing data and

supporting basic operations like insert, delete and search. Dictionaries can be static

or dynamic. In static dictionaries, the data structures are not allowed to be updated.

Hashing emerges as a very efficient technique for implementing dictionaries. For ex-

ample, algorithm ClassicChain(n,m), the classical uniform hashing with separate

chaining, is widely known for its simplicity and its plausible average performance.

Indeed, the expected average successful search time is 1 + α/2, and the expected

unsuccessful search time is 1 + α, where α := m/n, see [80, 35, 169]. Unfortunately,

33

34 CHAPTER 1. UNIFORM TWO-WAY CHAINING

the worst-case unsuccessful search time which is proportional to the length of the

longest chain is proved in [79] to be asymptotic to log n/ log log n, in probability,

when m = Θ(n). This is also a direct application of Theorem 0.1, as the classi-

cal allocation process Classical(n,m) is stochastically equivalent to this hashing

scheme.

Carter and Wegman [27, 173] suggested the concept of universal hashing as a theo-

retical framework for analyzing classical chaining with more practical hash functions.

They showed that the asymptotic average performance of ClassicChain(n,m) can

be almost preserved (up to a constant factor), if we choose the hash function uni-

formly at random from a smaller class of functions mapping the universe set of keys

U to the hash table T . The class of functions can be designed to be small and con-

tains only efficient hash functions that can be generated in linear time and space,

and evaluated in constant time. Many such classes have been designed, see e.g.,

[6, 48, 52, 53, 141, 161]. Nonetheless, none of these classes lead to a better worst-case

performance (when used in classical hashing with separate chaining) than the one

achieved by a truly uniform hush function.

During the last two decades, an intensive research has been concentrated on im-

proving the worst-case search time, and consequently, many randomized hashing

schemes (with or without chaining) have been introduced. We survey the most promi-

nent ones.

Randomized Perfect Hashing

A perfect hash function on a subset of keys K ⊆ U is a 1-1 function that maps K
to the hash table T . A perfect hashing algorithm is an algorithm that inserts the

keys without any collisions. Thus, the worst-case search time can be dramatically

decreased, if the perfect hash functions used by the algorithm are constructed in an

1.1. HISTORY AND MOTIVATION 35

efficient way. Notice that by the birthday paradox, any randomly chosen hash func-

tion is perfect only on some subsets of keys, but not on every subset, unless the size

of T is very large. Thus, the challenge is to design efficient perfect hashing schemes

for hash tables of linear size, i.e., |T | = O(|K|). Many such schemes have been intro-

duced [74, 36, 50, 142, 144] with efficient perfect hash functions that can be evaluated

in constant time and constructed in expected linear time and space. For example,

Fredman et al. [74] presented a randomized perfect hashing algorithm that inserts n

keys into a hash table of size n + o(n), and achieves constant maximum search time,

and constant expected amortized insertion time. The hashing algorithm, however, is

off-line and static. The algorithm first uses a hash function chosen randomly from a

small class of functions to partition the set of input keys into Θ(n) disjoint groups.

Each group, then, is hashed to a separate sub-table by a perfect hash function chosen

randomly from a set of functions designed specifically for that group.

The static hashing algorithm has been generalized by Dietzfelbinger et al. [50]

to the dynamic situation where updates and deletions are allowed, while preserving

almost the same performance. Similarly, they used a random hash function to parti-

tion the keys into Θ(n) disjoint groups, and a different perfect hash function to hash

each group. However, to cope with the dynamic data, they used a rehashing tech-

nique where the whole hash table is reconstructed from the beginning by using new

random hash functions whenever the number of updates exceeds certain limit. The

worst-case search time, and the expected amortized insertion and deletion times are

still constants, but the storage space consumed by the hash table is 35(1+ c)n, where

c > 0 is a constant. The update performance of this scheme was further improved

in Dietzfelbinger and Meyer auf der Heide [51, 52], where a new efficient universal

class is used to achieve constant worst-case time for any dictionary operation, with

high probability. Notice that all of these schemes employ Θ(n) random hash func-

36 CHAPTER 1. UNIFORM TWO-WAY CHAINING

tions that require a large number of random bits. Dietzfelbinger et al. [48] described

how one can reduce the number of random bits consumed by these schemes by using

polynomial hash functions. For a more detailed study of perfect hashing, see [36, 145].

Open Addressing Schemes

Many open addressing schemes with improved worst-case performance are based,

more or less, on multilevel hashing where the hash table is partitioned into multiple

sub-tables, and different hash functions are used for each sub-table. For instance,

Broder and Karlin [23] divide the hash table into Θ(log log n) blocks, and with each

block, they use a different hash function chosen randomly form a universal class of

functions. The first hash function is used to insert each key into the first block. If a

collision happens, then the key is hashed by the second hash function into the second

block. If a collision occurs again, then the third block is checked by the third hash

function, and so on. If a collision occurs in the last block, then a rehashing technique

is used. The expected amortized time for insertion, deletion or search is constant,

but the worst-case search time is Θ(log log n), deterministically. Of course, if parallel

computations including memory accesses and hash function evaluations are allowed,

then any instruction can be executed in constant time.

Most recently, Pagh and Rodler [146] introduced cuckoo hashing. They insert n

keys into a hash table that is partitioned into two parts, each of size d (1 + ε)n e,
for some constant ε > 0. It uses two independent hash functions chosen from an

O(log n)-universal class—one function only for each sub-table. Each key is hashed

initially by the first function to a cell in the first sub-table. If the cell is full, then

the new key is inserted there anyway, and the old key is kicked out to the second

sub-table to be hashed by the second function. The same rule is applied in the second

sub-table. Keys are moved back and forth until a key moves to an empty location or a

1.2. TWO-WAY CHAINING 37

limit of O(log n) moves is reached. When the limit is reached, new independent hash

functions are chosen, and the whole table is rehashed. The worst-case search time is

at most two, and the amortized expected insertion time, nonetheless, is constant. An

off-line and static version of this algorithm had previously appeared in [144]. Other

analyses and extensions of this scheme can be found in [44, 69, 53, 141].

Deterministic Dictionaries

Deterministic methods for implementing dictionaries that do not use random bits in-

clude perfect hashing, and comparison-based or tree-oriented data structures (see e.g.,

[10, 129, 86, 143, 145] and the references cited there). All of these techniques, how-

ever, require ω(log log n) time either for searching, or for updating and maintaining

the data structure. For example, Andersson [10] designed a deterministic dictionary

that can be constructed in linear time and space, but the worst-case search time is

Ω(log n). On the other hand, Hagerup et al. [86] presented a deterministic dictionary

that has constant worst-case search time, but the insertion time is Ω(log n). Pagh

[143] considered a compromised deterministic dictionary where the search time is

(log log n)O(1), and the update time is (log n)O(1). Needless to say that in some of the

comparison-based data structures such as balanced trees, the worst-case cost for any

operation is Ω(log n).

1.2 Two-way Chaining

The two-way chaining paradigm suggested by Azar et al. [13] is a simple approach for

dramatically improving the worst-case search time of hashing with chaining. To avoid

any ambiguity, we define it formally as follows. Recall that we denote the universe

set of keys by U , and the hash table by T . The cells of the hash table are numbered,

and each cell points to a separate chain or linked list. For simplicity, we will say “the

38 CHAPTER 1. UNIFORM TWO-WAY CHAINING

chain i” to mean the chain that is pointed to by the cell i. The length of a chain is

defined to be the number of keys it contains. We assume, throughout, that we save

with each cell in the hash table the length of the chain that the cell points to, and

we keep it updated.

Definition 1.1. An on-line two-way chaining algorithm is an algorithm that satisfies

the following:

1. It inserts a set of keys K ⊆ U sequentially (one after another) into a hash table

T where collisions are resolved by separate chaining.

2. It uses two hash functions f, g : U → T .

3. Each key x ∈ K is inserted into the shortest chain (i.e., with the least number

of keys) among the two chains f(x) and g(x), where ties are broken according

to some fixed strategy.

Clearly, the insertion time of any two-way chaining algorithm is constant. To

search for any key x, we examine the two chains f(x) and g(x), sequentially and

alternatingly. Thus, the maximum unsuccessful search time is proportional to twice

the length of the longest chain. Trivially, the performance of any two-way chaining

algorithm depends on the type of the hash functions and the tie-breaking rule it uses.

Throughout the thesis, we write Nonuniform-ShortChain to denote the on-

line two-way chaining algorithm that satisfies the following:

A. It uses two independent random hash functions f and g, i.e., f(x) and g(x) are

random variables with two independent probability distributions defined on T .

B. If for some key x, both chains f(x) and g(x) have the same length, then the

algorithm breaks the tie randomly.

1.2. TWO-WAY CHAINING 39

x

U

|K| = m

K

|T | = n

x

g(x)

f(x)

T

Figure 1.1: Algorithm Uniform-ShortChain(n,m) where f and g are independent

and truly uniform hash functions.

If, moreover, the hash functions f and g are independent and truly uniform, then we

write Uniform-ShortChain. This means that f and g are chosen independently

and uniformly at random from the set of all possible hash functions F(U , T). We

often write Nonuniform-ShortChain(n, m) or Uniform-ShortChain(n,m), for

n,m ∈ N, to mean that the algorithms insert a set of keys K into the hash table T ,

where |K| = m, and |T | = n.

Observe that algorithm Uniform-ShortChain(n,m) is stochastically equivalent

to the greedy multiple choice allocation process Uniform-GreedyMC(n,m). Thus,

by Theorems 0.2 and 0.3, the maximum chain length is log2 log n+m/n±Θ(1), w.h.p.,

for m = Ω(n). On the other hand, the following theorem states that the average

search time of algorithm Uniform-ShortChain(n,m) is not more than twice the

average search time of the classical uniform chaining algorithm ClassicChain(n,m).

Theorem 1.1 (Azar et al. [13]). Let n,m ∈ N. The average expected successful

search time of algorithm Uniform-ShortChain(n,m) is at most 2 + m/n, and the

average unsuccessful search time is at most 2 + 2m/n.

One can also mimic the multiple choice allocation process LeftMC(n,m) de-

signed by Vöcking [170, 171] to derive a two-way chaining algorithm. Indeed, we

40 CHAPTER 1. UNIFORM TWO-WAY CHAINING

shall write Left-ShortChain to denote the on-line two-way chaining algorithm

that satisfies the following:

A. The hash functions f and g are chosen independently and uniformly at random

from the sets F(U , T1), and F(U , T2), respectively, where T1 := {0, . . . , bn/2 c},
and T2 := {dn/2 e , . . . , n− 1} constitute a partition of the hash table.

B. If for some key x, the chains f(x) and g(x) have the same length, the key is

inserted into the chain f(x).

The notation Left-ShortChain(n,m) has the same meaning as we explain above

for other algorithms. Similarly, algorithm Left-ShortChain(n,m) is stochastically

equivalent to LeftMC(n,m), and by Theorems 0.5 and 0.6, the maximum chain

length is 0.72... × log2 log n + m/n ± Θ(1), w.h.p., when m = Ω(n). The average

search time is at worst twice the average search time of ClassicChain(n,m).

It is evident that these two-way chaining algorithms reduce, stochastically and

asymptotically, the worst-case performance exponentially—comparing to classical

chaining method—at the expense of doubling the average case performance. Two-way

chaining also has several advantages over the other hashing methods we mentioned

above for improving the worst-case behavior of hashing. Clearly, it is on-line and

dynamic, it employs only two hash functions, it is easy to parallelize, and it does

not use any rehashing technique. Unlike most of the above schemes, its worst-case

insertion time is still constant. It consumes almost the same storage space as classical

chaining. Note that the additional memory space is needed only to store at worst

n integers which corresponds to the chain lengths where each one consumes at most

O(log log log n) bits, w.h.p. Furthermore, the same hashing performance is provably

achievable even if the hash functions are chosen from a smaller class of hash functions,

e.g., an O(log n)-universal class, like the ones in [48, 101].

1.2. TWO-WAY CHAINING 41

The two-way chaining paradigm has been effectively used to derive many efficient

algorithms for various applications [24, 26, 114, 37, 177]. As we mentioned earlier,

the use of two hash functions appeared previously in [59, 101], and later in [146]. For

more related history and other applications see Section 0.3.2.

In Chapter 2, we present a stochastic analysis of the worst-case performance of

algorithm Nonuniform-ShortChain(n,m), where n,m ∈ N and the two used hash

functions are possibly nonuniform. Observe that the hash functions used in Left-

ShortChain are also nonuniform. For the remainder of this chapter, however, we

will concentrate on the worst-case performance of the uniform two-way chaining when

the load factor is 1, that is, algorithm Uniform-ShortChain(n, n).

Theorem 1.2. Upon termination of algorithm Uniform-ShortChain(n, n), where

n ∈ N, the maximum (unsuccessful or successful) search time is 2 log2 log n ± Θ(1),

w.h.p.

It is worth noting that many techniques are used to analyze the worst-case per-

formance of two-way chaining algorithms. Azar et al. [13] used the layer induc-

tion method to bound the maximum chain length of Uniform-ShortChain(n,m).

Mitzenmacher [130, 132] used a system of differential equations in his fluid limit model.

Using a method called witness trees, Vöcking [170, 171] studied the worst-case perfor-

mance of algorithms Uniform-ShortChain(n,m) and Left-ShortChain(n,m).

Berenbrink et al. [18] utilized coupling methods of Markov chains to investigate the

heavily loaded case (where m À n) of both of these algorithms. See also [134] for a

brief explanation of these techniques.

We prove, in the next section, the lower bound stated in Theorem 1.2 by using a

waiting time argument. In Section 1.4, we use a simpler version of the witness tree

method to prove the matching upper bound.

42 CHAPTER 1. UNIFORM TWO-WAY CHAINING

1.3 The Lower Bound

Recall that the time needed to search for any key x by the hashing algorithm

Uniform-ShortChain is defined to be the number of keys visited during the search

operation plus two for reading the two head-pointers to the two chains f(x) and g(x),

where f and g are the hash functions used by the algorithm. Notice that if y is the

last key inserted into a chain of maximum length, then the difference between the

lengths of the chains f(y) and g(y) is at most one. Thus, the worst-case (unsuccessful

or successful) search time is equal to twice the maximum chain length plus constant.

Since the maximum chain length in algorithm Uniform-ShortChain(n, n) is dis-

tributed as the maximum bin load in the greedy multiple-choice allocation process

Uniform-GreedyMC(n, n), it suffices to prove the following theorem.

Theorem 1.3. For n ∈ N, let Ln be the maximum bin load upon termination of

algorithm Uniform-GreedyMC(n, n). Then Ln ≥ log2 log2 n−Θ(1), w.h.p.

Proof. Recall that the allocation process Uniform-GreedyMC(n, n) inserts n balls

sequentially into n bins, where each ball is inserted into the least full bin among two

bins chosen independently and uniformly at random, breaking ties randomly. The

following proof uses a waiting time argument that divides the allocation process into

multiple stages. Initially, suppose we have a set of n0 > 0 bins that we call the set of

the initial survival bins. At each stage we refine these survival bins by selecting some

of them, until we reach the stage where we have only one survival bin at which we

stop. An initial survival bin survives the first stage if and only if a ball is inserted

into it during the first stage; and for all k ≥ 2, a survival bin of the (k − 1)-th stage

survives the k-th stage if it satisfies one of the following conditions:

1. The bin contains at least k balls before it is chosen by a ball (as one of its two

choices) during the k-th stage.

1.3. THE LOWER BOUND 43

2. The bin contains k − 1 balls before it is chosen by a ball which is inserted into

it during the k-th stage.

Observe that for all k ≥ 1, any bin that survives the k-th stage has at least k balls

in it. In the two conditions above, we say that the ball helps the bin to survive. We

say that the survival time of a survival bin of the k-th stage is t, if the ball that helps

it to survive the k-th stage is the t-th ball inserted during the k-th stage. The first

stage starts with the first ball we insert. Then we keep inserting balls sequentially,

and wait until n1 < n0/2 bins from the initial survival bins survive the first stage, at

which it finishes. Then the second stage starts by inserting more balls sequentially,

and it finishes once n2 < n1/2 bins survive, and so on. In the k-th stage, we wait

until nk < nk−1/2 bins survive. The sequence nk will be picked later on. Let Tk be

the number of balls inserted during the k-th stage. That is, Tk is the survival time

of the last survival bin of the k-th stage. Now if r is our lower bound and assuming

nr ≥ 1, we only need to show that
∑r

k=1 Tk ≤ n, w.h.p. In other words, the number

of balls that we should insert to reach the r-th level is, asymptotically almost surely,

not more than n.

Consider only the k-th stage. Let At be the event that the t-th ball inserted

during the k-th stage helps a bin to survive. Let Ht be the history up to time t.

Recall that the load of any survival bin of the (k− 1)-th stage is at least k− 1. So, if

the t-th ball chooses two survival bins of the (k − 1)-th stage that have not survived

the k-th stage yet (and there are at least nk−1−nk such bins), then the t-th ball helps

at least one bin to survive the k-th stage. Since the bins are chosen independently

and uniformly at random, and nk < nk−1/2, then we have

P {At |Ht−1} ≥
(

nk−1 − nk

n

)2

>
(nk−1

2n

)2 def
= ρk .

Let Sj be the survival time of the j-th survival bin of the k-th stage. Clearly, S1 > t

if and only if the first t balls inserted during the k-th stage did not help any bin to

44 CHAPTER 1. UNIFORM TWO-WAY CHAINING

survive. By using conditional probabilities, we see that

P {S1 > t} = P {Ac
1}P {Ac

2 |Ac
1} · · ·P

{
Ac

t | ∩t−1
j=1 Ac

j

}

< (1− ρk)
t ≤ e−tρk = P {E/ρk > t} ,

where E is an exponential random variable with density h(x) = e−x on [0,∞). Note

that E [E] = Var [E] = 1, see e.g., [83]. Since the above chain of inequalities

is valid for all t, we say that S1 ≺ E/ρk: S1 is stochastically smaller than E/ρk.

Switching to exponential random variables helps us to bound the variable Tk. Recall

that Tk is the survival time of the last survival bin of the k-th stage, i.e., Tk = Snk
.

However, Snk
= S1 + (S2 − S1) + · · · + (Snk

− Snk−1), and each difference Sj − Sj−1

is stochastically smaller than E/ρk. Thus, if Gnk
:=

∑nk

j=1 Ej, where E1, . . . , Enk
are

independent exponential random variables, then Tk = Snk
≺ Gnk

/ρk. Observe that

E [Gnk
/ρk] = nk/ρk, and Var [Gnk

/ρk] = nk/ρ
2
k, because the Ej are independent.

Therefore, we have the following probabilistic duality

P {Ln < r} ≤ P
{

r∑

k=1

Tk > n

}
≤ P

{
r∑

k=1

Gnk

ρk

> n

}
.

For simplicity, let Zr =
r∑

k=1

Gnk
/ρk, and notice that

E [Zr] =
r∑

k=1

nk

ρk

=
r∑

k=1

4nkn
2

n2
k−1

,

and

Var [Zr] =
r∑

k=1

nk

ρ2
k

≤ 1

ρr

r∑

k=1

nk

ρk

=
4n2

n2
r−1

E [Zr] .

Now for n large enough, we define n0 := n, and for k ≥ 1,

nk :=
⌊

n2k+κ−1
/

22k+κ
⌋

,

where κ > 1 is an integer to be chosen later. There are two reasons for using κ: one

of them is to make sure that nk < nk−1/2, for all k ≥ 1, and hence κ must be at least

1.3. THE LOWER BOUND 45

2. The other reason will be clarified soon. Notice that for all k > 0, we have

nk ≤ n2k+κ−1

22k+κ , and n2
k−1 ≥

n222(k+κ)

26 · 22k+κ ,

Also, if we put r := d log2 log2 n− κ− 1 e, we see that nr ≥ 1, for n large enough,

and n2
r−1 ≥ 2−8 n(log2 n)2. Thence,

E [Zr] = 4
r∑

k=1

nkn
2

n2
k−1

≤ 27

r∑

k=1

n

2k+κ
≤ 27n

2κ
=

n

2
,

which is true if we set κ := 8. Hence, we get Var [Zr] ≤ 29n2(log2 n)−2 = o(n2).

Using Chebyshev’s inequality, we conclude that

P {Ln < r} ≤ P {Zr > n} ≤ P {Zr − E [Zr] > n/2} ≤ 4Var [Zr] /n2 = o(1) .

Remark 1.1. In dynamic hashing, keys (or balls) are allowed to be deleted or up-

dated. Clearly, the above proof is not valid if we consider any arbitrary sequence

of insertions and deletions of balls ω1, ω2, ω3, . . ., where ωt is the t-th request to be

performed by algorithm Uniform-GreedyMC which inserts each ball into the least

loaded bin among two bins chosen independently and uniformly at random from a set

of n ∈ N bins. This is mainly because the number of balls at any level may decrease

or increase with time, and the insertion of the future coming balls, obviously, depends

on the distribution of the balls that still reside in the bins. However, assuming that

the sequence of requests is specified in advance, that is, independently of the decisions

made by the algorithm, one can show that the maximum bin load at a fixed time t is

still at least log2 log n−Θ(1), w.h.p., provided that there exist at least Ω(n) balls in

the bins at that time. For example, suppose that ω1, . . . , ωn are requests for insertion

of balls, and ωt, for t > n is an insertion or a deletion request such that at any time t

there are at least Ω(n) balls that reside in the bins. Then considering only the balls

46 CHAPTER 1. UNIFORM TWO-WAY CHAINING

that still exist in the bins, one can see that each one of these balls has been inserted

on-line (without using any information about the balls that are inserted after it) into

a bin among two bins chosen independently and uniformly at random. Therefore, by

the second part of Theorem 0.2, the maximum bin load is at least log2 log n−Θ(1),

w.h.p.

1.4 The Upper Bound

Theorem 1.4. For n ∈ N, let Ln be the maximum bin load upon termination of

algorithm Uniform-GreedyMC(n, n). Then Ln ≤ log2 log2 n + Θ(1), w.h.p.

We prove this theorem by using the witness tree method which has appeared in

many studies, see e.g., [33, 34, 127, 134, 157, 170]. The proof we provide here is

similar to the one used in [157, 170], but it is simpler, shorter, and clearer. We show

that if there exists a bin with at least h balls, then there is a witness tree of height

h that describes the history of that bin, and the probability that such tree occurs

tends to zero, as n goes to infinity, when h is sufficiently large. The formal definition

of a witness tree is given below. Recall that the balls are inserted sequentially into

the bins where each ball is placed into the least loaded bin among two bins chosen

independently and uniformly at random, breaking ties randomly. Throughout, we

assume the balls are numbered 1, . . . , n according to their insertion time. For each

t ∈ [n], we write Xt and Yt to denote the first and the second choices of bins available

for ball t, i.e., the t-th inserted ball. We shall first define the history tree of a ball

which could be full or truncated. A witness tree is a special truncated history tree.

1.4. THE UPPER BOUND 47

The History Tree

We define for each ball t a full history tree Tt, which is a deterministic colored binary

tree that is labelled by ball numbers except possibly the leaves. Each ball is identified

with the bin that contains it. So the full history tree Tt, indeed, describes the history

of the bin that contains the t-th ball up to its insertion time. It is a binary tree

that represents all the pairs of bins available for all other balls upon which the final

position of the ball t relies. Formally, we define it as follows. The root of Tt is labelled

t, and is colored white. The root has two children, a left child corresponding to the

bin Xt, and a right child corresponding to the bin Yt. The left child is labelled and

colored according to the following rules:

(a) If the bin Xt contains some balls at the time of insertion of ball t, and the

last ball inserted in that bin, say τ , has not been encountered thus far in the

Breadth-First-Search (bfs) order of the binary tree Tt, then the node is labelled

τ and colored white.

(b) As in case (a), except that τ has already been encountered in the bfs order. We

distinguish such nodes by coloring them black, but they get the same label τ .

(c) If the bin Xt is empty at the time of insertion of ball t, then it is a “dead end”

node without any label and it is colored gray.

Similarly, the right child of t is labelled and colored by following the same rules but

with the bin Yt. We continue processing nodes in bfs fashion. A black or gray node

in the tree is a leaf and is not processed any further. A white node with label τ is

processed in the same way we processed the ball t, but with its two bins Xτ and Yτ .

We continue recursively constructing the tree until all the leaves are black or gray.

See Figure 1.2 for an example of a full history tree.

48 CHAPTER 1. UNIFORM TWO-WAY CHAINING

47

39 34

24 26 17 29

3

13 16

11

219

5

17

5

9 16

Figure 1.2: The full history tree of ball 47. White nodes represent type (a) nodes.

Black nodes are type (b) nodes—they refer to balls already encountered in bfs order.

Gray nodes are type (c) nodes—they occur when a ball selects an empty bin.

Note that every internal (white) node of the full history tree has two children.

Furthermore, there is at least one gray leaf. Also, since the insertion process is

sequential, node values (ball numbers) along any path down from the root must be

decreasing (so the binary tree has the heap property), because any non-gray child

of any node represents the last ball inserted in the bin containing it at the insertion

time of the parent. We will not use the heap property however.

It is clear that the full history tree permits one to deduce the load of the bin that

contains the root ball at the time of its insertion: it is the length of the shortest

path from the root to any gray node, where the length of a path is defined to be the

number of edges in it. Thus, if the bin’s load is more than h, then all gray nodes

must be at distance more than h from the root, that is, all the first h + 1 levels do

not contain any gray node. This leads to the notion of a truncated history tree

of height h, that is, with h + 1 levels of nodes. The top part of the full history tree

Tt that includes all nodes at the first h + 1 levels is saved, and the remainder is

truncated, see Figure 1.3.

1.4. THE UPPER BOUND 49

h

level 0

level h

72

65 61

64 60 58 56

61 47 56 55 47 52

40 40 39 48

33 27 21 22 20 19

18 21 15 10 20 13 17 9

Figure 1.3: A truncated history tree of height h for ball 72.

We are in particular interested in truncated history trees of height h that do not

contain any gray nodes. Thus, by the property mentioned above, the length of the

shortest path from the root to any gray node in the full history tree (and as noted

above, there is at least one such node) would have to be at least h + 1. Therefore,

the load of the bin harboring the root’s ball would have to be at least h + 1. More

generally, if the load is at least h + ξ for a positive integer ξ, then all nodes at the

bottom level of the truncated history tree of height h that are not black nodes (and

there is at least one such node) must be white nodes representing balls that belong

to bins with load of at least ξ at their insertion time. We redraw these node as boxes

to denote the fact that they represent bins of load at least ξ, and we call them “bin

nodes”.

The Witness Tree

Let ξ ∈ N be a fixed integer to be picked later. For h, k ∈ N, where h + ξ ≤ k,

a witness tree Wk(h) is a truncated history tree of height h of a ball in the set [k],

and with two types of leaf nodes, black nodes and “bin” nodes. This means that

each internal node has two children, and the node labels belong to the set [k]. Each

black leaf has a label of an internal node that precedes it in bfs order. Bin nodes

50 CHAPTER 1. UNIFORM TWO-WAY CHAINING

are unlabelled nodes that represent bins with load of at least ξ. Bin nodes must all

be at the furthest level from the root, i.e., at level h, and there is at least one such

node in a witness tree. Notice that every witness tree, by definition, is deterministic,

and independent of the total number of bins. An example of a witness tree is shown

in Figure 1.4.

h

level 0

level h

84

77 62

68 72 42 48

62 55 40 64 40 37 42 45

30 40 30 25 62 48 29 33 26 29

25 13 16 13 22 13 10 26 22 18

10 16

Figure 1.4: A witness tree of height h. The boxes at the lowest level are bin nodes.

They represent selected bins with load of at least ξ. The load of the bin that contains

ball 84 is at least h + ξ.

For any k, h, d ∈ N, and nonnegative integer z, let Wk(h, d, z) denote the class of

all witness trees Wk(h) that have d internal (white) nodes, and z black nodes (and

thus d − z + 1 bin nodes). Notice that, by definition, the class Wk(h, d, z) could be

empty, e.g., if d /∈ [h, 2h), z > d, or h > k. Before we start the proof of Theorem 1.4,

we need to establish some facts. First, the number of witness trees in Wk(h, d, z) can

be bound easily.

Lemma 1.1. For any k, h, d ∈ N, and integer z ≥ 0, we have

|Wk(h, d, z)| ≤ 4d2d+1dzkd .

1.4. THE UPPER BOUND 51

Proof. Without the labelling, there are at most 4d different shape binary trees, be-

cause the shape is determined by the d internal nodes, and hence, the number of trees

is the Catalan number
(
2d
d

)
/(d + 1) ≤ 4d. Having fixed the shape, each of the leaves

is of one of two types. Each black leaf can receive one of the d white node labels.

Each of the white nodes gets one of k possible labels.

The next lemma is a simple but crucial fact. We know that in any witness tree

Wk(h) ∈ Wk(h, d, z), the number of white nodes d ∈ [h, 2h) and the number of black

nodes z ∈ [0, d]. But can we say more?

Lemma 1.2. In any witness tree Wk(h) ∈ Wk(h, d, z), where k, h ≥ 2, if the number

of white nodes d ≤ 2h−η, where η ≥ 1, then the number of black nodes z ≥ η, i.e.,

I[[z≥η]∪[d>2h−η]] = 1.

Proof. Recall that any leaf node is either black or a bin node, every bin node is at

distance h from the root, and any witness tree has at least one bin node. Thus, one

can see that if we have z black nodes, the number of bin nodes is at least 2h−z. Since

d ≤ 2h−η, then 2h−η−z+1 ≥ d−z+1 ≥ 2h−z. If z = 0, then we have a contradiction,

because h > 1. So, assume z ≥ 1. But then 2h−η ≥ 2h−z, that is, z ≥ η.

Note that, unlike for full or truncated history trees, it is not possible to construct

a witness tree Wk(h) for every ball, unless the ball is placed into a bin whose load,

just before the insertion, is at least h + ξ − 1. Considering algorithm Uniform-

GreedyMC(n, k), we say that a witness tree Wk(h) occurs, if the random choices

of the balls represented by the nodes of the witness tree are exactly as indicated

in the witness tree. That is, if we use the information of algorithm Uniform-

GreedyMC(n, k), after its termination, to construct a truncated history tree (of

height h) for the ball represented by the root of the witness tree, then the history

tree must match the witness tree at every level (node for node, color for color, and la-

52 CHAPTER 1. UNIFORM TWO-WAY CHAINING

bel for label), except the lowest level where every white node of the truncated history

tree must correspond to a bin node in the witness tree and must represent a ball at

the top of a bin with at least ξ balls. The bottom line is that a witness tree of height

h occurs if and only if a ball is inserted into a bin of load of at least h + ξ − 1 before

its insertion, i.e., the maximum bin load is at least h+ξ. We would like to bound the

probability that a valid witness tree Wn(h) occurs. Notice that in our case, k = n as

the algorithm inserts n balls.

Lemma 1.3. Considering algorithm Uniform-GreedyMC(n, n), we have for any

integers n, h, d ∈ N, and integer z ∈ [0, d],

sup
Wn(h)∈Wn(h,d,z)

P {Wn(h) occurs} ≤ 1

ξd−z+1nd+z−1
.

Proof. Let Wn(h) ∈ Wn(h, d, z) be a fixed witness tree. We use the conditional

method to compute the probability that Wn(h) occurs, by looking at each node in

bfs order. Suppose that we are at an internal node, say u, in Wn(h). We would

like to find the conditional probability that a certain child of node u is exactly as

indicated in the witness tree, given that everything is revealed except those nodes

that precede u in the bfs order. This depends on the type of the child. If the child is

white or black, then the conditional probability is 1/n, as each ball can be on top of

at most one of the n bins which are picked independently and uniformly at random.

Multiplying just these probabilities yields 1/nd+z−1, as there are d + z − 1 edges in

the witness tree that have a white or black nodes as their lower endpoint. If the child

is a bin node, however, then the conditional probability is at most 1/ξ, because there

are at most bn/ξ c bins with at least ξ balls each is chosen with probability of 1/n.

Since there are d−z+1 bin nodes, and the choices are independent, the result follows

plainly, by multiplying all the conditional probabilities.

After these preliminaries, we can now prove the upper bound.

1.4. THE UPPER BOUND 53

Proof of Theorem 1.4.

Let Ln be the maximum bin load of algorithm Uniform-GreedyMC(n, n). Let

h, ξ, η ∈ [2,∞) be integers to be picked later. By the union bound, we have

p
def
= P {Ln ≥ h + ξ} ≤ P





⋃

Wn(h)

[Wn(h) occurs]



 ≤

∑

Wn(h)

P {Wn(h) occurs} .

Notice that since h ≥ 2, the number of white (internal) nodes d in any witness tree

Wn(h) is at least two, namely, the root and its left child. Using Lemmas 1.1, 1.2 and

1.3, we see that

p ≤
2h−1∑

d=2

d∑
z=0

∑

Wn(h)∈Wn(h,d,z)

P {Wn(h) occurs}

≤
2h−1∑

d=2

d∑
z=0

|Wn(h, d, z)| sup
Wn(h)∈Wn(h,d,z)

P {Wn(h) occurs}

≤
2h∑

d=2

d∑
z=0

2d+14ddznd

ξd−z+1 nd+z−1
I[[z≥η]∪[d>2h−η]]

=
2n

ξ

2h∑

d=2

(
8

ξ

)d d∑
z=0

(
dξ

n

)z

I[[z≥η]∪[d>2h−η]] .

Note that we disallow z = d + 1, because any witness tree has at least one bin node.

We split the sum over d ≤ 2h−η, and d > 2h−η. For d ≤ 2h−η, we have z ≥ η, and

thus
d∑

z=0

(
dξ

n

)z

I[[z≥η]∪[d>2h−η]] =
d∑

z=η

(
dξ

n

)z

≤
(

dξ

n

)η ∞∑
z=0

(
dξ

n

)z

< 2

(
dξ

n

)η

,

provided that n is so large that 2h+1ξ ≤ n, (this insures that dξ/n < 1/2). For

d ∈ (2h−η, 2h], we bound trivially, assuming the same large n condition:

d∑
z=0

(
dξ

n

)z

< 2 .

In summary, we see that

p ≤ 4n

ξ

∑

d>2h−η

(
8

ξ

)d

+ 4

(
ξ

n

)η−1 2h−η∑

d=2

(
8

ξ

)d

dη .

54 CHAPTER 1. UNIFORM TWO-WAY CHAINING

By setting ξ := 16, we get

p ≤ 4n

ξ22h−η + 4C

(
ξ

n

)η−1

,

where C =
∑

d≥2 dη/2d. Clearly, the probability p tends to zero, if we put η := 2, and

h := η+d log2 log2 nη e. Notice that ξ and h satisfy the technical condition ξ2h+1 ≤ n,

asymptotically. ¤

Remark 1.2. The probability p can be made arbitrary small (p = O(1/nδ)), for

any constant δ > 0, by just setting the constant η := δ + 1. We have proved that

the maximum bin load is at most log2 log2 n + 20, w.h.p. However, by adjusting the

constants ξ and η, one can show that the additive constant in the upper bound can be

decreased to 12 + ε, for an arbitrary constant ε > 0. Simulation results of algorithm

Uniform-GreedyMC(n, n) (see e.g., [13, 170]) show that the additive constant is

indeed very small (< 2).

Chapter 2

Nonuniform Two-way Chaining

In this chapter, we analyze the asymptotic worst-case performance of the two-way

chaining algorithm Nonuniform-ShortChain(n,m) with two possibly nonuniform

hash functions. Roughly speaking, we show that whenever the hashing values be-

have according to fixed bounded independent probability distributions, the maximum

search time is 2 log2 log n±Θ(1), w.h.p., for m = Θ(n).

2.1 Motivation

Truly uniform hash functions tend to distribute the keys as evenly as possible over the

hash table. This property is also true for conventional (or universal) hash functions

which are “almost uniform” as they are chosen randomly from a small set of functions

such as the ones in [48, 161, 53]. This means that if the universe set of keys U
is an ordered set, any such hash function is, most likely, not monotonic or order-

preserving function. Uniform order-preserving hash functions can be designed, if the

key statistics are known priori [155, 76]. If the order-preserving hash function is

independent of the key distribution, then the hashed values must be nonuniformly

distributed over the hash table, see, e.g., [82] and [41, p. 2]. Order-preserving hash

55

56 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

functions are helpful for operations that require sorted or nearly sorted keys like range

search and finding the k-nearest neighbors, see [42] for a wide variety of applications.

Lately, there has been growing interest in hashing-based algorithms for solving the

(approximate) k-nearest neighbors problem in high-dimensional spaces, see, e.g., [112,

91, 77]. This is due to the efficiency of hashing as a data structure for implementing

similarity search in a wide range of database applications [25, 54, 87, 92, 117, 160].

In these applications, a finite number of objects (e.g., images, documents, DNA

sequences) is represented by points in a high-dimensional vector space, (e.g., the d-

dimensional cube [0, 1]d), such that objects that have similar features are mapped

to points that are close to each other. The finite universe set of keys U is defined

to be these points. Searching for a key (or object) in the hash table means finding

or approximating the k-nearest neighbors (or similar objects). The heart of this

novel approach is a class of hash functions called locally-sensitive hash functions. A

function f : U ⊆ [0, 1]d → T is a locally-sensitive hash function if and only if for all

x, y ∈ U , we have |f(x)− f(y)| ≤ |U| ‖x− y‖, where ‖·‖ is some given norm defined

on [0, 1]d, for example, Euclidean or `1 norm. Sometimes these functions are called

neighborhood-preserving functions [54], or non-expansive functions [112]. In short,

such hash functions are sensitive to the similarity of the keys: they map keys that

are close to each other, in some sense, to close chains. So, evidently, locally-sensitive

hashing is good for fast retrieval, and for minimizing the number of pages consumed

by the hash tables. The hashing values of such functions, however, for the same

reason explained above, have nonuniform distributions over the hash table.

It is thus important to analyze the performance of hashing schemes with nonuni-

form hash functions. The worst case performance of classical hashing with chaining

where a set of keys K ⊆ U are hashed via a single hash function f was studied

by Devroye [41] for nonuniform distributions. He represented the hash table by the

2.2. THE FIXED DENSITY MODEL 57

unit interval [0, 1] partitioned into n equal-sized disjoint subintervals. Thus, the hash

function f is assumed to map the universe set of keys U to the unit interval [0, 1].

Each key x is hashed to the i-th chain, if f(x) belongs to the i-th subinterval. The

random hashing locations f(x), for all x ∈ U , are assumed to be independent and

have a common density function h defined over [0, 1]. Devroye [41] proved that the

expected maximum chain length is still asymptotic to log n/ log log n, provided that

the load factor of the hash table is constant, and the density h is bounded. A tight

upper bound is also given for unbounded densities.

This motivates us to study the worst-case performance of the two-way chaining

paradigm with nonuniform hash functions. Recall that Vöcking’s algorithm Left-

ShortChain(n,m) is an example of nonuniform two-way chaining where two special

independent nonuniform hash functions are used, combined with the tie-breaking

rule Always-Go-Left. The length of the longest chain produced by the algorithm is

0.72... × log2 log n + m/n ± Θ(1), w.h.p. (Theorems 0.5 and 0.6). The purpose of

this chapter is to analyze the worst-case performance of algorithm Nonuniform-

ShortChain(n,m) by using the fixed density model which we define in the next

section. Recall that this algorithm uses two independent hash functions f and g

which could have any probability distributions over the hash table. Each key x

is inserted into the shortest chain among the chains f(x) and g(x), breaking ties

randomly. Before we state the main results, let us first define the stochastic model

upon which we build our analysis.

2.2 The Fixed Density Model

Throughout, we assume that algorithm Nonuniform-ShortChain(n,m), which

inserts a set of keys K ⊆ U of size m ∈ N into n ∈ N separate chains, is implemented

in the following way. The hash table is associated with the unit interval [0, 1] which

58 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

is partitioned into n disjoint equal-sized subintervals denoted by In,1, . . . , In,n where

the subinterval In,i corresponds to the i-th chain of the hash table. More precisely,

In,1 = [0, 1/n], and In,i = ((i − 1)/n, i/n], for i = 2, . . . , n. The hash functions f

and g map the universe set of keys U to the unit interval [0, 1], and their hashing

values behave according to fixed (possibly different) probability density functions hf

and hg, respectively, defined over [0, 1]. Thus, for all x ∈ U , and i ∈ [n],

P {f(x) ∈ In,i} =

∫

In,i

hf (u) du , and P {g(x) ∈ In,i} =

∫

In,i

hg(u) du .

10

g(x)
f(x)

In,1 In,j In,nIn,i

x

x

Figure 2.1: Illustration of Nonuniform-ShortChain in the fixed density model.

The hash functions f and g map the keys to the unit interval. Key x has two hashing

values f(x) ∈ In,i and g(x) ∈ In,j. The key is inserted into the shortest chain.

Notice that the hash functions and their corresponding densities are fixed for all

n ∈ N. All hashing values f(x) and g(x), for all keys x ∈ K, are assumed to be

mutually independent, i.e., each key has two independent hashing values which are

also independent from the other keys’ hashing values. The keys are inserted on-line

and sequentially as follows. For each x ∈ K, if f(x) ∈ In,i, and g(x) ∈ In,j, for some

2.2. THE FIXED DENSITY MODEL 59

i, j ∈ [n], the algorithm inserts the key x into the shortest chain among the i-th and

the j-th chains of the hash table, breaking ties randomly. See Figure 2.1.

The main result of this chapter is the following theorem.

Theorem 2.1. Suppose that algorithm Nonuniform-ShortChain(n,m), where

n,m ∈ N, is applied in the fixed density model where the hash functions f and g

map the keys according to fixed densities hf and hg over [0, 1], respectively. Let Tn,m

be the maximum (successful or unsuccessful) search time. If α := m/n = Ω(1),

then Tn,m ≥ 2 max(α, log2 log n − c), w.h.p., for some positive constant c; and if

1/ log n ¿ α ¿ 1, then w.h.p., Tn,m ≥ (2 − o(1)) log2 log n. If both densities are

bounded by some constant, then Tn,m ≤ 2 log2 log n + O(α), w.h.p. Moreover, if there

is a sequence λn = O(
√

log log n) such that

∫

hf >λn

hf (u) du +

∫

hg>λn

hg(u) du = o(1/m) ,

then Tn,m = O((α + 1) log log n), w.h.p.

Other bounds are also presented, including ones on the worst-case search time

of the dynamic version of the algorithm. We prove the lower bounds in Section 2.3

by extending the waiting time argument used in the uniform case. In Section 2.4,

we apply the witness tree method to prove the upper bound for the case of bounded

densities. The case of unbounded densities is treated by using the rejection method.

All proofs are presented in the context of the balls-and-bins model, for the sake

of simplicity. Formally, we write Nonuniform-GreedyMC(n,m) to denote the

greedy multiple-choice allocation process that inserts m balls into n bins where each

ball is inserted into the least full bin among two bins chosen according to probability

distributions defined on the bins. The allocation process can be implemented in the

fixed density model as follows. First of all, we assume that the balls are numbered

1, . . . , m according to their insertion time. Each ball t ∈ [m], has two independent

60 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

hashing values Xt and Yt drawn randomly from the unit interval [0, 1] according to

the densities hf and hg, respectively. Thus, for i ∈ [n], and t ∈ [m], we have

P {Xt ∈ In,i} =

∫

In,i

hf (u) du , and P {Yt ∈ In,i} =

∫

In,i

hg(u) du .

11

t

0 0

hg

In,iIn,1 In,n In,1 In,j In,n

hf

Xt Yt

Figure 2.2: Each ball t ∈ [m] has two hashing values Xt and Yt drawn from the unit

interval according to the densities hf and hg, respectively.

The hashing pairs (Xt, Yt), for all t ∈ [m], are assumed to be independent. The balls

are inserted on-line and sequentially. For each t ∈ [m], if Xt ∈ In,i, and Yt ∈ In,j, the

t-th ball is placed into the least full bin among the i-th and the j-th bin, breaking ties

randomly. The maximum bin load of this allocation process is stochastically equiva-

lent to the maximum chain length of algorithm Nonuniform-ShortChain(n,m),

when both are implemented in the fixed density model. Hence, we only need to

bound the maximum bin load upon termination of the allocation process. Recall

that α = m/n.

2.3. LOWER BOUNDS 61

2.3 Lower Bounds

Notice that in the optimal allocation process, each bin receives at least bα c and at

most dα e balls, and the maximum bin load is equal to dα e, deterministically. Thus,

to prove the first lower bound stated in Theorem 2.1, we only need to show that the

maximum bin load is at least log2 log n−Θ(1), w.h.p., for all m = Ω(n).

It is worth mentioning that Vöcking [170], while analyzing the worst-case perfor-

mance of algorithm Left-ShortChain(n,m), proved that if the bins in algorithm

Nonuniform-GreedyMC(n, m), where m = Ω(n), are chosen according to any ar-

bitrary (possibly dependent) probability distributions, then the maximum bin load—

as it is revealed in Theorem 0.5—is at least 0.72... × log2 log n − Θ(1), w.h.p. Of

course, our lower bound is proved only for the fixed density model, but it is obviously

better than Vöcking’s lower bound by a constant factor.

We begin by proving the following intermediate result for nonuniform distributions

that are “sufficiently bounded” in a slightly different model than the fixed density

model. Suppose that for each n ∈ N, we have two sequences of probabilities pn,i

and qn,i, where i ∈ [n], according to which the first and the second choices of bins,

respectively, are chosen independently. That is, if (Xt, Yt) ∈ [0, 1]2 is the hashing pair

available for the t-th ball, and In,i is the subinterval that represents the i-th bin, then

for all t ∈ [m], and i ∈ [n], we have

P {Xt ∈ In,i} = pn,i , and P {Yt ∈ In,i} = qn,i .

Of course,
∑

i pn,i =
∑

i qn,i = 1, for all n ∈ N. This model is more general than the

fixed density model, because the probabilities pn,i and qn,i could be written as

pn,i =

∫

In,i

h1,n(u) du , and qn,i =

∫

In,i

h2,n(u) du ,

where h1,n and h2,n are densities over [0, 1] which could be different for each n; while

in the fixed density model h1,n = hf , and h2,n = hg, for all n ∈ N. Nonetheless, the

62 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

next theorem is true even if the probabilities are obtained from different densities on

[0, 1] for each n.

Theorem 2.2. Suppose that algorithm Nonuniform-GreedyMC(n, m) is imple-

mented in the model defined above with two sequences of probabilities pn,i and qn,i,

where n,m ∈ N. Let α := m/n, and Ln,m be the maximum bin load upon termination.

If there are some constants λ ≥ 1, and δ > 0 such that, for all n large enough,

∑

pn,i≤λ/n

pn,i ≥ δ , and
∑

qn,i≤λ/n

qn,i ≥ δ ,

then Ln,m ≥ log2 log2 n−max (0 , d 13− log2(cα) e)−3, w.h.p., where c = δ3/(2λ−δ).

Proof. Clearly, we can assume that α > 216/(c log2 n), because otherwise, the lower

bound is meaningless as it is non-positive. The following proof is a generalization

of the waiting time argument of Theorem 1.3. We use the same notation. First,

we divide the allocation process into multiple stages. At each stage we refine these

survival bins by selecting some of them until we reach the stage where we have only

one survival bin at which we stop. The set of the initial survival bins, which is

denoted here by In, has n0 > 0 bins. During any stage in the process, we insert

balls sequentially and wait until there are enough survival bins. In the k-th stage,

for example, we wait until nk < nk−1/2 bins survive. We shall define the sequence nk

later on. An initial survival bin survives the first stage if and only if a ball is inserted

into it during the first stage; and for all k ≥ 2, a survival bin of the (k − 1)-th stage

survives the k-th stage if it satisfies one of the following conditions:

1. The bin contains at least k balls before it is chosen by a ball (as one of its two

choices) during the k-th stage.

2. The bin contains k − 1 balls before it is chosen by a ball which is inserted into

it during the k-th stage.

2.3. LOWER BOUNDS 63

A survival bin of the k-th stage has at least k balls in it. In the two conditions above,

we say that the ball helps the bin to survive. We say that the survival time of a

survival bin of the k-th stage is t, if the ball that helps it to survive is the t-th ball

inserted during the k-th stage. We denote by Tk the number of balls inserted during

the k-th stage. This means that Tk is the survival time of the last survival bin of the

k-th stage. Our job, then, is to show that one can reach the r-th level, where r is

the lower bound we want to prove, by inserting at most m balls, or more formally,
∑r

k=1 Tk ≤ m, w.h.p., and nr ≥ 1. Following the same mathematics, we write Ht to

denote the history up to time t, and At to denote the event that the t-th ball inserted

during the k-th stage helps a bin to survive. We let Sj be the survival time of the j-th

survival bin of the k-th stage. We have seen by using conditional probabilities that if

there is a number ρk ∈ (0, 1) such that P {At |Ht−1} > ρk, for all t, then S1 ≺ E/ρk:

S1 is stochastically smaller than E/ρk, where E is an exponential random variable

with density e−x on [0,∞). This means that P {S1 > t} ≤ P {E/ρk > t}, for all t.

Thence, we have

Tk = Snk
= S1 + (S2 − S1) + · · ·+ (Snk

− Snk−1) ≺
nk∑
j=1

Ej

ρk

def
=

Gnk

ρk

,

where E1, . . . , Enk
are independent exponential random variables. We also have

E [Gnk
/ρk] = nk/ρk, and Var [Gnk

/ρk] = nk/ρ
2
k. Consequently, we see that

P {Ln,m < r} ≤ P
{

r∑

k=1

Tk > m

}
≤ P {Zr > m} , (2.1)

where Zr :=
∑r

k=1 Gnk
/ρk. Thus far, we have followed the same footsteps as the ones

in the proof of Theorem 1.3. To complete this proof, we need to define the set of the

initial survival bins In, and the sequences ρk and nk which are the main differences

between the two proofs. Observe that we have not used any thing yet about the

probabilities according to which the bins are selected.

64 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

Define the following sets: Dn := {i : npn,i ≤ λ}, An := {i : δ/2 ≤ npn,i ≤ λ}
and Bn := {i : δ/2 ≤ nqn,i ≤ λ}. Clearly, for all i ∈ An, the probability that a ball

chooses the i-th bin as its first choice is at least δ/(2n) and at most λ/n. Similarly,

Bn represents the set of all bins that can be chosen by balls as their second choices

with probability of at least δ/(2n) and at most λ/n. Notice that by the assumption,

we have
∑

i∈Dn
pn,i ≥ δ . This yields that

δ ≤
∑
i∈An

pn,i +
∑

i∈Dn−An

pn,i < |An| λ
n

+ (n− |An|) δ

2n
= |An| 2λ− δ

2n
+

δ

2
,

and hence, |An| > an, where a
def
= δ/(2λ− δ) ∈ (0, 1). Similarly, |Bn| > an. There are

two cases.

The First Case: |An ∩ Bn| ≥ an/2

In this case, we define In, the set of the initial survival bins, to be the first b an/2 c
bins in An ∩ Bn. Recall that the load of any survival bin of the (k − 1)-th stage is

at least k − 1. Therefore, if the t-th ball chooses two survival bins of the (k − 1)-th

stage that have not survived the k-th stage yet (and there are at least nk−1−nk such

bins), then the t-th ball helps at least one bin to survive the k-th stage. Clearly, if

the i-th bin is a survival bin of the (k − 1)-th stage, then it must be also an initial

survival bin, i.e., i ∈ In. Hence, the probability that it is chosen by a ball as its first

choice (or alternatively, as its second choice) is at least δ/(2n). Since the bins are

drawn independently, and nk < nk−1/2, then we have

P {At |Ht−1} ≥
(

δ(nk−1 − nk)

2n

)2

>

(
δnk−1

4n

)2

> 2−9

(
δnk−1

n

)2
def
= ρk .

Now assume n is sufficiently large, and define the integer sequence

nk =





b an/2 c , if k = 0 ;
⌊

an2k+κ−1
/

22k+κ
⌋

, for k ≥ 1 ,

(2.2)

2.3. LOWER BOUNDS 65

where κ > 1 is an integer to be picked later. Notice that n0 is the number of

the initial survival bins, and if we define the lower bound we want to prove to be

r := d log2 log2 n− κ− 1 e, we see that nr ≥ 1, for n large enough. The integer κ

helps us to satisfy the condition nk < nk−1/2, for all k ≥ 1, (and so it must be at

least 2), and to bound E [Zr], where Zr =
∑r

k=1 Gnk
/ρk. Since for all k > 0,

nk ≤ an2k+κ−1

22k+κ , and n2
k−1 ≥

a2n222(k+κ)

26 · 22k+κ ,

we have

E [Zr] =
r∑

k=1

nk

ρk

=
29

δ2

r∑

k=1

nkn
2

n2
k−1

≤ 214

δ2

r∑

k=1

n

a2k+κ
≤ 214n

aδ22κ
≤ m

2
,

which is true if we set κ = 2 + max (0 , d 13− log2(aδ2α) e). Notice that

κ =





2, if α ≥ 213/(aδ2) ;

2 + d 13− log2(aδ2α) e , otherwise.

Since n2
r−1 ≥ 2−8n(a log2 n)2, we see that

Var [Zr] =
r∑

k=1

nk

ρ2
k

≤ ρ−1
r

r∑

k=1

nk

ρk

= 29

(
n

δ nr−1

)2

E [Zr] ≤ 216nm

(aδ log2 n)2
.

Finally, by returning back to (2.1), and using Chebyshev’s inequality, we get

P {Ln,m < r} ≤ P {Zr − E [Zr] > m/2} ≤ Var [Zr]

(m/2)2
≤ 218

α(aδ log2 n)2
= o(1) ,

which is true because α = Ω(1/ log n). This concludes the first case.

The Second Case: |An ∩ Bn| < an/2

Since |An| > an, then we have |An − Bn| = |An| − |An ∩ Bn| > an/2, and similarly,

|Bn −An| > an/2. Let In,1 be the set of the first b b an/2 c /2 c bins in An −Bn, and

In,2 be the set of the first d b an/2 c /2 e bins in Bn − An. Define In, the set of the

66 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

initial survival bins, to be the union of the two disjoint sets In,1 and In,2. Evidently,

|In| = b an/2 c. For simplicity, let us color the bins in In,1, and In,2 with white and

red, respectively. Observe that if the i-th bin is white, the probability that the first

choice of a ball is the i-th bin is at least δ/(2n); and analogously, if the i-th bin is

red, the probability that the second choice of a ball is the i-th bin is also at least

δ/(2n). Since at each stage we have two disjoint sets of survival bins, we require at

the k-th stage that exactly bnk/2 c white bins, and dnk/2 e red bins survive the k-th

stage. The total number of survival bins of the k-th stage is still nk. The load of any

survival bin (white or red) of the (k − 1)-th stage is still at least k − 1. Let Sk,bnk/2 c

be the survival time of the last survival white bin of the k-th stage. Similarly, let

S∗k,dnk/2 e be the survival time of the last survival red bin of the k-th stage. Thus, by

definition, Tk, which is the survival time of the last survival bin of the k-th stage, can

be written as

Tk = max(Sk,bnk/2 c, S
∗
k,dnk/2 e) < Sk,bnk/2 c + S∗k,dnk/2 e .

Let At be the event that the t-th ball helps a white bin to survive the k-th stage;

and similarly, let A∗
t be the event that the t-th ball helps a red bin to survive the

k-th stage. Obviously, if the first choice of the t-th ball is a white bin, the second

choice is a red bin, and both choices are survival bins of the (k − 1)-th stage that

have not survived the k-th stage yet, then the ball helps at least one bin to survive.

In fact, if one of the bins contains at least k balls, then the ball helps both bins to

survive the k-th stage. The worst-case is when both of the chosen bins have load

k− 1; in this case, the white bin, for example, survives with probability 1/2, because

ties are broken randomly. Notice that the number of survival bins of the (k − 1)-th

stage that have not survived the k-th stage yet is at least bnk−1/2 c − bnk/2 c white

bins plus dnk−1/2 e − dnk/2 e red bins. Since nk < nk−1/2, and the bins are chosen

2.3. LOWER BOUNDS 67

independently, thence

P {At |Ht−1} ≥ 1

2

(
δ(bnk−1/2 c − bnk/2 c)

2n

)(
δ(dnk−1/2 e − dnk/2 e)

2n

)

≥ 1

2

(
δ(nk−1 − nk)

8n

)2

>
1

2

(
δnk−1

16n

)2

= 2−9

(
δnk−1

n

)2

= ρk .

Similarly, P {A∗
t |Ht−1} > ρk. Therefore, following the same preliminary argument

we started with, we get that both Sk,bnk/2 c and S∗k,dnk/2 e are stochastically smaller

than Gbnk/2 c/ρk, and Gdnk/2 e/ρk, respectively, and hence Tk ≺ Gnk
/ρk. Thus, the

probabilistic duality (2.1) still holds. Since the sequence ρk is equal to the one in the

first case, and the number of the initial survival bins n0 is also the same, we can use

the same definition of the sequence nk as in (2.2). The proof now continues exactly

as in the previous case to obtain the same lower bound r with the same κ.

We are almost ready to prove the lower bound for the fixed density model. We

now show that the condition of Theorem 2.2 is satisfied in the fixed density model.

We write L1([0, 1]) to denote the set of all integrable functions on [0, 1]. We say that

a sequences hn converges to h in L1([0, 1]), where hn, h ∈ L1([0, 1]), to mean that for

any Borel set A ⊆ [0, 1], we have

lim
n→∞

∫

A

|hn(x)− h(x)| dx = 0 .

We say that a sequence hn converges to h for almost all x ∈ [0, 1] (or almost every-

where on [0, 1]) to mean that |hn(x)− h(x)| n−→ 0, for all x ∈ [0, 1], except possibly

on a set of Lebesgue measure zero. Now we recall the following theorems. For proofs,

or more exposure on Lebesgue measure theory and real integration, we recommend

[85, 156, 175] and [43, Ch. 2].

Theorem 2.3 (Lebesgue Density Theorem). Let h be a density on [0, 1]. Then for

almost all x ∈ [0, 1],

lim
r→0

1

r

∫

B(x,r)

|h(y)− h(x)| dy = 0 ,

68 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

where B(x, r) is a ball centered at x of Lebesgue measure r.

Theorem 2.4 (Scheffé). If hn is a sequence of densities on [0, 1] that converges almost

everywhere to a density h on [0, 1], then hn converges to h in L1([0, 1]).

The general lower bounds stated in Theorem 2.1 follow easily:

Corollary 2.1. Suppose that algorithm Nonuniform-GreedyMC(n,m), where

n,m ∈ N, is applied in the fixed density model where the hash functions f and g

behave according to fixed densities hf and hg over [0, 1], respectively. Let Ln,m be the

maximum bin load upon termination. There exists a constant c > 0 such that w.h.p.,

Ln,m ≥ log2 log2 n−max (0 , d 13− log2(cα) e)− 3 .

Proof. Choose constants δ ∈ (0, 1), and λ ≥ 1 such that

∫

hf≤λ

hf (x) dx ≥ δ , and

∫

hg≤λ

hg(x) dx ≥ δ .

Notice that these constants depend solely on hf and hg, as

lim
λ→∞

∫

hf≤λ

hf (x) dx = lim
λ→∞

∫

hg≤λ

hg(x) dx = 1 .

Recall that the balls select the i-th bin, where i ∈ [n], according to the probabilities:

pn,i :=

∫

In,i

hf (x) dx , and qn,i :=

∫

In,i

hg(x) dx .

To apply Theorem 2.2, we need to show that there is a constant δ′ > 0 such that for

n large enough,
∑

pn,i≤λ/n

pn,i ≥ δ′ , and
∑

qn,i≤λ/n

qn,i ≥ δ′ .

Define the two sets of bins Pn = {i : pn,i ≤ λ/n}, and Qn = {i : qn,i ≤ λ/n}. Let

hf,n and hg,n be the histograms of hf and hg, respectively, that is, the following

sequences of densities on [0, 1]:

hf,n(x) =
n∑

i=1

n pn,i I[x∈In,i] , and hg,n(x) =
n∑

i=1

n qn,i I[x∈In,i] .

2.3. LOWER BOUNDS 69

In,1
0

qn,ipn,i

In,1
0 1 1In,n In,nIn,iIn,i

λ λ

hf (x) hg(x)

Figure 2.3: The histograms of hf and hg. The figures also show the bins (or the

subintervals) that are chosen with probabilities of at most λ/n.

The Lebesgue density theorem states that the sequences hf,n and hg,n converge

almost everywhere to hf and hg, respectively, on [0, 1]. This is because every subin-

terval In,i is a Borel set whose size is 1/n, and if x ∈ [0, 1], then x ∈ In,j, for some

j ∈ [n]. Hence for almost all x ∈ [0, 1], we have

|hf,n(x)− hf (x)| =

∣∣∣∣∣n
∫

In,j

hf (y) dy − n

∫

In,j

hf (x) dy

∣∣∣∣∣

≤ n

∫

In,j

|hf (y)− hf (x)| dy
n−→ 0 .

Subsequently, Scheffé’s theorem implies that hf,n and hg,n converge to hf and hg,

respectively, in L1([0, 1]), which means that

∫

hf,n≤λ

hf,n(x) dx
n−→

∫

hf≤λ

hf (x) dx , and

∫

hg,n≤λ

hg,n(x) dx
n−→

∫

hg≤λ

hg(x) dx .

Let

IPn :=
⋃

i∈Pn

In,i , and IQn :=
⋃

i∈Qn

In,i .

70 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

Since IPn = {x : hf,n(x) ≤ λ} and IQn = {x : hg,n(x) ≤ λ}, we have

pn
def
=

∑
i∈Pn

pn,i =

∫

IPn

hf,n(x) dx
n−→

∫

hf≤λ

hf (x) dx ≥ δ ,

and similarly,

qn
def
=

∑
i∈Qn

qn,i =

∫

IQn

hg,n(x) dx
n−→

∫

hg≤λ

hg(x) dx ≥ δ .

Thence, there exists n̂ ∈ N such that, for all n > n̂, both pn and qn are at least δ/2.

Therefore, by Theorem 2.2, the result follows with the constant c = δ3/(16λ−4δ).

2.4 Upper Bounds

In this section, we focus on the second part of Theorem 2.1 about the upper bounds

for the worst-case search time of algorithm Nonuniform-ShortChain(n,m). We

will bound the maximum bin load of algorithm Nonuniform-GreedyMC(n,m) in

the fixed density model. We first deal with bounded densities.

2.4.1 Bounded Densities

A density h over [0, 1] is said to be bounded by a constant λ if and only if h(x) ≤ λ,

for almost all x ∈ [0, 1]. Notice that λ ≥ 1 because h is a probability density function.

We shall establish the following theorem.

Theorem 2.5. Suppose that algorithm Nonuniform-GreedyMC(n,m) , where

n,m ∈ N, is applied in the fixed density model where the hash functions f and g

behave according to fixed densities hf and hg over [0, 1], respectively. Let Ln,m be

the maximum bin load upon termination. Let α := m/n. Suppose that both hf and

hg are bounded by some constant λ. Then Ln,m ≤ log2 log2 n + 16λ2α + 4, w.h.p.

2.4. UPPER BOUNDS 71

Moreover, for any constant ε > 1, there is a constant c(ε) such that if α ≥ c log n,

then Ln,m < 2ελα, w.h.p.

In light of Theorem 2.2, it is clear that Theorem 2.5 has the best asymptotic first

term when 1/ log n ¿ α ¿ log log n, and it is optimal modulo a multiplicative factor

for α = Ω(log log n). Recall that Theorem 0.3 reveals that in the case of uniform

densities, the maximum bin load is indeed log2 log n + α±Θ(1), w.h.p.

We prove Theorem 2.5 by using the method of witness tree we explained in Section

1.4. The proof, more or less, is the same as the uniform case, except in computing the

probability of a witness tree. Recall that we write Wk(h), where h, k ∈ N, to denote a

witness tree of height h whose root node represents a ball in the set [k]. The internal

nodes of any witness tree are white labelled nodes, and the leaves are either black

nodes or bin (unlabelled) nodes that represent bins with load of at least ξ, where

ξ ∈ N is a fixed integer to be picked later on. Clearly, h + ξ ≤ k. Every white node

is labelled with a number of a ball that belongs to the set [k]. Each black leaf has a

label of an internal node that precedes it in bfs order. Nodes represent balls which

are identified with the bins that harbor them. For any k, h, d ∈ N, and nonnegative

integer z, we denote by Wk(h, d, z) the class of all witness trees Wk(h) that have

d white nodes, and z black nodes, (and hence, d − z + 1 bin nodes). Since we are

dealing with algorithm Nonuniform-GreedyMC(n,m), the existence of a witness

tree Wm(h) implies the existence of a bin of load at least h+ξ, upon termination. The

main argument, then, is to show that a witness tree Wm(h) occurs asymptotically

almost surely.

Obviously, Lemmas 1.1 and 1.2 can be applied here as they have nothing to do

with probabilities. Thus, we only need to bound the probability that a witness occurs.

Notice that since both of the densities are bounded by λ ≥ 1, then for all i ∈ [n], and

72 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

t ∈ [m], we have

P {Xt ∈ In,i} ≤ λ/n , and P {Yt ∈ In,i} ≤ λ/n ,

where (Xt, Yt) is the hashing pair available for the t-th ball, and In,i is the subinterval

that represents the i-th bin. We have the following lemma.

Lemma 2.1. Let n,m ∈ N. Let A be the event that upon termination of algorithm

Nonuniform-GreedyMC(n, m), there are at most bn/ξ c bins with at least ξ balls.

Then for any integers n, h, d ∈ N, and integer z ∈ [0, d], we have

sup
Wm(h)∈Wm(h,d,z)

P {Wm(h) occurs |A} ≤ λ2d

ξd−z+1nd+z−1
.

Proof. Let Wm(h) ∈ Wm(h, d, z) be a fixed witness tree. To compute the probability

that Wm(h) occurs, we follow the same technique we used to prove Lemma 1.3 for

the uniform case. Using the conditional method, we look at each node in bfs order.

Recall that the bins are drawn independently. Suppose that we are at an internal

node, say u, in Wm(h). Then, conditioning on A and on everything revealed except

those nodes that precede u in the bfs order, the probability that one given child of

node u is exactly as indicated in the witness tree depends on the type of the child.

If the child is white or black, then the conditional probability is not more than λ/n.

Since there are d + z− 1 edges in the witness tree that have a white or black node as

their lower endpoint, then by multiplying just these probabilities, we have (λ/n)d+z−1.

If the child is a bin node, however, then the conditional probability is at most λ/ξ,

because there are at most bn/ξ c bins with at least ξ balls (given A is true). Since

there are d−z+1 bin nodes, this yields (λ/ξ)d−z+1. The result follows by multiplying

the conditional probabilities.

The next lemma shows that event A in Lemma 2.1 is most likely to be true, for

sufficiently large ξ.

2.4. UPPER BOUNDS 73

Lemma 2.2. Let n,m ∈ N. For ` ∈ [n], let N` be the number of bins of load at least

`, upon termination of algorithm Nonuniform-GreedyMC(n,m). If α = o(n1/3),

and 6λα ≤ ` = O(α), then N` ≤ bn/` c, w.h.p.

Proof. Fix ` ≥ 6λα. For i ∈ [n], let Li be the load of the i-th bin after the insertion

of m balls. Clearly, Li =
∑m

j=1 Uji, where Uji is the indicator that ball j is inserted

into bin i. The variables Uji are not independent. However, Uji ≤ Vji, where Vji is

the indicator that at least one of the choices available for ball j is bin i. Evidently,

the variables Vji are independent, and P {Vji = 1} ≤ 2λ/n, for all j ∈ [m]. Thus, Li

is stochastically smaller than Bin(m, 2λ/n), for any i ∈ [n]. Therefore, Chebyshev’s

inequality yields that

E [N`] =
n∑

i=1

P {Li ≥ `} ≤ nP {Bin(m, 2λ/n) ≥ `} ≤ 2λαn

`2(1− 2λα/`)2
≤ 3n

4`
,

because ` ≥ 6λα. Observe that N` can be expressed as a function of 2m independent

hashing values, and if one of these values is changed, then N` may decrease or increase

by at most one. Thus, by McDiarmid’s inequality (Lemma 0.3), we obtain

P {N` ≥ n/`} ≤ P
{

N` − E [N`] ≥ n

4`

}
≤ exp

(−n

16α`2

)
= o(1) ,

if ` = O(α), and α = o(n1/3).

Proof of Theorem 2.5.

First of all, the second part of the theorem can be easily seen, if we imagine that the

greedy allocation process is modified as follows. Instead of inserting each ball into the

least full bin among its two choices, we place it into the first bin and we insert another

auxiliary ball into the second one. Then the maximum bin load in this allocation

process is greater then Ln,m. The modified process is equivalent to the nonuniform

classical allocation process with 2m balls and n bins where the odd-numbered, and the

74 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

even-numbered balls are inserted into bins chosen independently at random according

to the densities hf , and hg, respectively. Since the densities are bounded by λ, then

any bin is chosen—by odd- or even-numbered balls—with probability of at most

λ/n. Thus, the load of any bin in this modified process is stochastically smaller

than Bin(2m,λ/n). By Angluin-Valiant’s binomial tail inequality, we see that for

any constant ε > 1,

P {Ln,m ≥ 2ελα} ≤ nP {Bin(2m,λ/n) > 2ελα}

≤ n exp (−2(ε log ε− ε + 1)λα) = o(1) ,

if α ≥ c log n, for some constant c > (2(ε log ε − ε + 1)λ)−1. Alternatively, one can

prove this also by using the fact that each bin load in the greedy allocation process

is stochastically smaller than Bin(m, 2λ/n), as we have shown in the proof of Lemma

2.2.

Regarding the first upper bound of the theorem, we can assume, subsequently,

and without lose of generality, that 1 ≤ α = O(log n). Let h, ξ, η ∈ [2,∞) be integers

to be defined later. Let A be the event that upon termination of Nonuniform-

GreedyMC(n,m), there are at most bn/ξ c bins that harbor at least ξ balls. Clearly,

P {Ln,m ≥ h + ξ} ≤ P {Ln,m ≥ h + ξ |A}+ P {Ac}
def
= p + P {Ac} .

We bound the probability p by using the witness tree method. Recall that in any

witness tree Wm(h) ∈ Wm(h, d, z), the number of white nodes d ∈ [2, 2h), and the

2.4. UPPER BOUNDS 75

number of black nodes z ∈ [0, d]. Therefore, using Lemmas 1.1, 1.2, and 2.1, we get

p ≤ P
{∪Wm(h) [Wm(h) occurs] |A}

≤
∑

Wm(h)

P {Wm(h) occurs |A}

≤
2h−1∑

d=2

d∑
z=0

∑

Wm(h)∈Wm(h,d,z)

P {Wm(h) occurs |A}

≤
2h−1∑

d=2

d∑
z=0

|Wm(h, d, z)| sup
Wm(h)∈Wm(h,d,z)

P {Wm(h) occurs |A}

≤
2h∑

d=2

d∑
z=0

2d+14ddzmdλ2d

ξd−z+1 nd+z−1
I[[z≥η]∪[d>2h−η]]

=
2n

ξ

2h∑

d=2

(
8αλ2

ξ

)d d∑
z=0

(
dξ

n

)z

I[[z≥η]∪[d>2h−η]] .

The following computations are similar to the proof of Theorem 1.4. We proceed by

splitting the last sum over d ≤ 2h−η, and d > 2h−η. Clearly, when d ≤ 2h−η, we have

z ≥ η, and thus

d∑
z=0

(
dξ

n

)z

I[[z≥η]∪[d>2h−η]] =
d∑

z=η

(
dξ

n

)z

≤
(

dξ

n

)η ∞∑
z=0

(
dξ

n

)z

< 2

(
dξ

n

)η

,

provided that n is so large that 2h+1ξ ≤ n, (this insures that dξ/n < 1/2). For

d ∈ (2h−η, 2h], we bound trivially, assuming the same large n condition:

d∑
z=0

(
dξ

n

)z

< 2 .

Substituting back, we get

p ≤ 4n

ξ

∑

d>2h−η

(
8αλ2

ξ

)d

+ 4

(
ξ

n

)η−1 2h−η∑

d=2

(
8αλ2

ξ

)d

dη . (2.3)

We choose ξ = d 16αλ2 e, so that 8αλ2/ξ ≤ 1/2. With this choice, we have

p ≤ 4n

ξ22h−η + 4C

(
ξ

n

)η−1

,

76 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

where C =
∑

d≥2 dη/2d. Clearly, since α is in the range assumed above, the probabil-

ity p tends to zero, if we put h = η + d log2 log2 nη e, and η = 2. Notice that ξ and h

satisfy the technical condition ξ2h+1 ≤ n, asymptotically. Moreover, since ξ satisfies

the condition of Lemma 2.2, P {Ac} = o(1). ¤

Remark 2.1. It is not difficult to see from the last computations that indeed for any

constant ε ∈ (0, 1),

Ln,m ≤ log2 log2 n + (8 + ε)αλ2 + 3 ,

w.h.p. Also, for α = Θ(1), and any constant η ≥ 2, we have

P
{
Ln,m > log2 log2 n + η + log2 η + (8 + ε)αλ2

}
= O(n1−η) .

The Lightly Loaded Case

In the following theorem, we improve the upper bound for the lightly loaded case,

that is, when α = o(1).

Theorem 2.6. If, in addition to the assumptions of Theorem 2.5, α ≤ 1/(16λ2),

then Ln,m ≤ log2 log2 n− log2 log2(8αλ2)−1 + 4 = log2 log(1/α) n + Θ(1), w.h.p.

Proof. We adjust the last part of the proof of Theorem 2.5, by noting that setting

ξ = 1 suffices for our choice of α. Thus, from (2.3) we obtain

p ≤ 4n
∑

d>2h−η

(8αλ2)d +
4

nη−1

2h−η∑

d=2

(8αλ2)ddη

≤ 4n(8αλ2)2h−η

+
4(8αλ2)2

nη−1

∞∑

d=0

(d + 2)η

2d

= O(α2/n) ,

if we let η = 2, and

h = 2 +

⌈
log2

(
log2 n−2

log2(8αλ2)

)⌉
.

2.4. UPPER BOUNDS 77

Notice that for this analysis to be true, the number of balls m has to be at least h+ξ,

as it is clear from the definition of the witness tree. Finally, if m < h + ξ, then the

result is trivially true.

Theorem 2.6 reveals that if the number of balls m =
⌊
n1−1/2r ⌋

, where

0 < r ≤ log2 log n− log2 log(4λ)− 1 ,

then Ln,m ≤ r + Θ(1), w.h.p. This implies that the maximum bin load is constant

merely by insuring that the load factor is polynomially smaller than one. Secondly,

the greedy multiple-choice allocation process exponentially decreases the maximum

bin load all the time. Compare this with the classical allocation process, where each

ball is inserted into a bin chosen independently at random, the maximum bin load is

at most 2r, w.h.p., [99, 105]. The third implication of Theorem 2.6 is that increasing

the number of bins to n1+o(1) guarantees a plausible decrease in the maximum bin

load. Indeed, inserting n balls into
⌊
n1+1/2r ⌋

bins, where r is as defined above, yields

that the maximum bin load is at most r +Θ(1), w.h.p. For example, we can decrease

the maximum bin load to the level log log log n, if we increase the bins to n1+1/ log log n.

Of course, all the results presented in this section (i,e., for bounded densities) are

also true for the uniform allocation process.

The Dynamic Case

In the dynamic case, we are given a sequence of requests ω1, ω2, ω3, . . ., in advance,

to be performed by algorithm Nonuniform-GreedyMC in the fixed density model

with n ∈ N bins, where the j-th request ωj is either an insertion or a deletion request

of a ball. A deletion request asks the algorithm to remove one of the inserted balls

from its bin. The ball itself is specified in the request. An insertion request asks

the algorithm to insert a new ball. Although the sequence is given in advance, the

78 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

insertion operations are still performed on-line, without any information about the

future requests. The algorithm is applied in the fixed density model: that is, each

new ball is placed into the least full bin among two bins X and Y chosen (at insertion

time) independently at random according to fixed densities hf and hg, respectively,

over [0, 1]. Suppose that the densities are bounded (say by constant λ), and the

sequence of requests is designed such that at any certain time j, there are at most

m ∈ N balls residing in the bins. Then we claim that the upper bounds of Theorems

2.5 and 2.6 are still true. In particular, the maximum bin load at any time is at most

log2 log n + O(α), w.h.p., where α = m/n.

The proofs of the above theorems can be adjusted by adjusting the definition of

the witness tree. First of all, consider a snapshot of the allocation process at an

arbitrary fixed time j, i.e., exactly after the algorithm performs the j-th request. By

assumption, there are at most m balls in the bins. For simplicity, assume there are

exactly m balls, numbered 1, . . . , m according to their insertion times. Let (Xt, Yt)

be the hashing pair available for ball t ∈ [m]. We identify each ball with the bin that

harbors it. The full history tree Tt of a ball t ∈ [m] (at time j) describes the history

of the bin that contains the ball t up to time j; however, we slightly modify its formal

definition as follows. The root of Tt is labelled t, and is colored white. The root has

two children, a left child corresponding to bin Xt, and a right child corresponding to

bin Yt. The left child is labelled and colored according to the following rules:

(a) If the bin Xt contains some balls whose numbers are less than t (i.e., balls that

are inserted before ball t), and the ball with the largest number less than t in

that bin, say τ , has not been encountered thus far in the bfs order of the tree

Tt, then the left child of t is labelled τ and colored white. Notice that ball τ

may not be actually the last ball inserted in bin Xt before insertion time of ball

t, but it has existed at that time and still exists in the bin at time j, and no

2.4. UPPER BOUNDS 79

other ball with larger number has this property.

(b) As in case (a), except that τ has already been encountered in the bfs order. We

color the node black, and label it τ .

(c) If the bin Xt does not contain any ball with number less than t, then the left

child is unlabelled gray node.

Similarly, the right child of t is labelled and colored by following the same rules but

with bin Yt. We continue processing nodes in bfs fashion. A black or gray node

in the tree is a leaf and is not processed any further. A white node with label τ is

processed in the same way we processed the ball t, but with its two bins Xτ and Yτ .

We continue recursively constructing the tree until all the leaves are black or gray.

Obviously, the full history tree has at least one gray node. Notice that the tree is

constructed from the snapshot we made at time j, that is, the above rules are applied

according to the status of the bins at time j.

The difference between this new definition of the full history tree and the old one

is that in the old one, usually the children of any parent node represent the topmost

balls in the bins chosen by the parent at insertion time; whereas in the new definition,

these topmost balls may not exist at time j, so we have to settle with the balls that

have existed at that time and still exist at time j. In the old full history tree, the

load of the bin containing the root’s ball is equal to the length of the shortest path

from the root to any gray node. This is not true any more in the new history tree.

The load of the bin containing the root’s ball at time j is not less than the length of

the shortest path from the root to any gray node, and this is what we want.

Consequently, based on this new definition of the full history tree, we define the

truncated history tree and the witness tree, in the same way as we did before. The

truncated history tree of height h of ball t (at time j) is only the top part of the

80 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

new full history tree Tt which includes all nodes at the first h + 1 levels, and the

remainder is truncated. A witness tree, which we denote by W̃m(h), is a special

truncated history tree of height h (at time j) of a ball in the set [m], and with two

types of leaf nodes: black nodes and bin nodes which represent bins with load of

at least ξ, where ξ is an integer we choose it later on. Bin nodes are at the lowest

level. For any m,h, d ∈ N, and integer z ≥ 0, we write W̃m(h, d, z) to denote the

class of all witness trees W̃m(h) that have d white nodes, and z black nodes. Observe

that a witness tree W̃m(h) exists if and only if the maximum bin load, exactly after

algorithm Nonuniform-GreedyMC performs the j-th request, is at least h + ξ.

Equivalent versions of Lemmas 1.1, 1.2, 2.1, and 2.2 can be obtained by following

the same proofs, because the structure of the new witness tree W̃m(h) is exactly as the

old one, there are m balls residing in the bins, and the bins are chosen independently

with probability of at most λ/n. Subsequently, the upper bounds stated in Theorems

2.5 and 2.6 can be proved also for the dynamic case. Thus, we get the following

theorem. Notice that in the case of uniform densities, the theorem can be combined

with remark 1.1.

Theorem 2.7. Let ω1, ω2, ω3, . . . be a sequence of insertion and deletion requests to

be performed by algorithm Nonuniform-ShortChain in a hash table of size n in

the fixed density model where the hash functions behave according to fixed bounded

densities over [0, 1]. Suppose that the sequence is specified before the algorithm starts,

and it is designed such that at any certain time there are at most m ∈ N keys in the

table. Let Tn,m be the absolute maximum search time. Then Tn,m ≤ 2 log2 log n +

O(m/n), w.h.p. Moreover, there is a constant c > 1 such that if α < 1/c, then

Tn,m ≤ 2 log2 log(1/α) n + Θ(1), w.h.p.

2.4. UPPER BOUNDS 81

2.4.2 Unbounded Densities

Suppose that we have r ∈ N balls numbered 1, . . . , r. Let H :=
{

(X̃t, Ỹt)
∣∣∣ t ∈ [r]

}

be a set of hashing pairs available for the r balls to be inserted by an algorithm,

which we name A, into n ∈ N bins by using the greedy multiple-choice paradigm.

That is, the balls are inserted sequentially where ball t ∈ [r] (i.e., the t-th inserted

ball) is placed into the least loaded bin among the bins X̃t and Ỹt, where ties are

broken randomly. Let J be a proper nonempty subset of [r] of size m < r. Let

F :=
{

(X̃t, Ỹt) ∈ H
∣∣∣ t ∈ J

}
be a set of hashing pairs available for m balls to be

inserted by an algorithm, which we name B, into another set of n bins by following the

greedy multiple-choice paradigm. Algorithm B inserts the balls in the same order

as in algorithm A, that is, if j1, j2 ∈ J , and j1 < j2, then the ball j1 is inserted

before ball j2. Furthermore, assume that for each t ∈ [r], we have a uniform [0, 1]

random variable Rt that is used by both algorithms to break ties: whenever the bins

X̃t and Ỹt have the same number of balls, the algorithm inserts ball t into bin X̃t,

if Rt < 1/2, otherwise the ball is inserted into bin Ỹt. The bins in both algorithms

have the same numbers, and to distinguish between the two sets, let us color the bins

used by algorithm A white, and the bins used by algorithm B blue.

Lemma 2.3. Suppose that algorithms A and B are applied, as described above, for

some n,m, r ∈ N, where m < r. Then the maximum bin load of algorithm B is not

more than the maximum bin load of algorithm A.

Proof. Let j1 < · · · < jm be the elements of J . For i ∈ [n], and t ∈ [m], let LA(i, t)

be the load of the i-th white bin exactly after the insertion of ball jt by algorithm

A. Similarly, let LB(i, t) be the load of the i-th blue bin immediately after the

insertion of ball jt by algorithm B. Let LA(i, 0) and LB(i, 0) be the load of the i-th

white and blue bins, respectively, just before the insertion of ball j1. It is more than

enough to prove that LB(i, t) ≤ LA(i, t), for all i ∈ [n], and t ∈ {0, . . . , m}. We

82 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

use induction on t. Clearly, when t = 0, we have LB(i, 0) = 0 ≤ LA(i, 0), for all

i ∈ [n]. Assume that LB(i, t) ≤ LA(i, t) is true, for all t < T , and i ∈ [n]. We

need to show that LB(i, T) ≤ LA(i, T), for all i ∈ [n]. Without loss of generality,

assume that algorithm B inserts ball jT into the blue bin X̃T . This means that either

LB(X̃T , T − 1) < LB(ỸT , T − 1), or LB(X̃T , T − 1) = LB(ỸT , T − 1) and RjT
< 1/2.

Since only the load of bin X̃T is increased, that is, LB(X̃T , T) = LB(X̃T , T − 1) + 1,

thence, for all i 6= X̃T , we have

LB(i, T) = LB(i, T − 1) ≤ LA(i, T − 1) ≤ LA(i, T) .

So we only need to show that LB(X̃T , T) ≤ LA(X̃T , T). If algorithm A inserts ball

jT into the white bin X̃T , then

LB(X̃T , T) = LB(X̃T , T − 1) + 1 ≤ LA(X̃T , T − 1) + 1 = LA(X̃T , T) .

If algorithm A inserts ball jT into the white bin ỸT , then there are two cases: either

LA(X̃T , T − 1) > LA(ỸT , T − 1), or we have LA(X̃T , T − 1) = LA(ỸT , T − 1), and

RjT
≥ 1/2. In the first case, we get

LB(X̃T , T) = LB(X̃T , T − 1) + 1 ≤ LB(ỸT , T − 1) + 1

≤ LA(ỸT , T − 1) + 1 ≤ LA(X̃T , T − 1)

= LA(X̃T , T) .

If the second case is true, then LB(X̃T , T − 1) < LB(ỸT , T − 1), otherwise there is a

contradiction with RjT
< 1/2. This yields that

LB(X̃T , T) = LB(X̃T , T − 1) + 1 ≤ LB(ỸT , T − 1)

≤ LA(ỸT , T − 1) = LA(X̃T , T − 1)

= LA(X̃T , T) .

2.4. UPPER BOUNDS 83

Next, we need to recall some properties of the rejection method (see, e.g., [42, Sec.

II.3]). It will enable us to make a transition from nonuniform to uniform distributions.

For t ∈ [m], let (Xt, Yt) ∈ [0, 1]2 be the hashing pair available for the t-th ball,

where Xt and Yt are drawn independently from the densities hf and hg, respectively.

Assume, temporarily, that both hf and hg are bounded by some constant λ. Let

r ∈ N. Suppose that we have a uniform sample of points (X̃1, U1), . . . , (X̃r, Ur) and

(Ỹ1, V1), . . . , (Ỹr, Vr), where all the random variables X̃t, Ỹt, Ut and Vt are independent

and uniformly distributed over [0, 1]. Let F be the set of all points (X̃t, Ỹt), where

t ∈ [r], such that Utλ ≤ hf (X̃t), and Vtλ ≤ hg(Ỹt). Notice that for any t ∈ [r], the

random point (X̃t, Utλ) belongs to the rectangular region [0, 1] × [0, λ]. This means

that by definition,

F :=
{

(X̃t, Ỹt) : (X̃t, Utλ) ∈ Reg(hf), and (Ỹt, Vtλ) ∈ Reg(hg)
}

,

where Reg(hf) is the region under the curve hf in the unit square [0, 1]2.

hf (x)

(X1, U1λ)

X1 X2 10 x

λ
(X2, U2λ)

Reg(hf)

Figure 2.4: The point (X̃1, U1λ) ∈ Reg(hf). The area under the curve is equal to

one, because hf is a denisty.

The following lemma highlights some of the probabilistic properties of the set F .

Lemma 2.4. The following are true:

84 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

1. For t ∈ [r], if (X̃t, Ỹt) ∈ F , then (X̃t, Ỹt)
L
=(X1, Y1), i.e., X̃t

L
= X1 and Ỹt

L
= Y1.

2. If r = 2λ2m, then P {|F| ≥ m} m−→ 0.

Proof. Clearly,

P
{

Utλ ≤ hf (X̃t)
}

= P
{

(X̃t, Utλ) ∈ Reg(hf)
}

= 1/λ .

Let A ⊆ [0, 1] be any Borel set. Since X̃t, Ỹt, and Ut are independent and uniform

over [0, 1], then we have

P
{

X̃t ∈ A
∣∣∣ (X̃t, Ỹt) ∈ F

}
= P

{
X̃t ∈ A

∣∣∣ Utλ ≤ f(X̃t)
}

=
P

{[
X̃t ∈ A

]
∩

[
Ut ≤ f(X̃t)/λ

]}

P
{

Utλ ≤ f(X̃t)
}

=

∫
A

hf (x)/λ dx

1/λ
= P {X1 ∈ A} .

Similarly, Ỹt
L
= Y1. It is also evident that |F| L= Bin(r, 1/λ2), because

P
{

(X̃t, Ỹt) ∈ F
}

= 1/λ2 .

Therefore, if r = 2λ2m, then by Chebyshev’s inequality, we get

P {|F| < m} ≤ P {||F| − E [|F|]| ≥ m} ≤ Var [|F|]
m2

=
2m(1− 1/λ2)

m2

m−→ 0 .

We are now ready to prove the last upper bound in Theorem 2.1. Clearly, if

α = O(1), the upper bound is tight up to a multiplicative constant.

Theorem 2.8. Suppose that algorithm Nonuniform-GreedyMC(n,m) , where

n,m ∈ N, is applied in the fixed density model where the hash functions f and g

behave according to fixed densities hf and hg over [0, 1], respectively. Let Ln,m be the

2.4. UPPER BOUNDS 85

maximum bin load upon termination. If there is a sequence λn = O(
√

log log n) such

that ∫

hf >λn

hf (x) dx +

∫

hg>λn

hg(x) dx = o(1/m) , (2.4)

then Ln,m = O((α + 1) log log n), w.h.p.

Proof. Define the sets Sn = {x |hf (x) ≤ λn}, and Tn = {x |hg(x) ≤ λn}. Let n

be large enough such that
∫

Sn
hf (x) dx > 1/2, and

∫
Tn

hg(x) dx > 1/2, which is

obviously possible because of the condition (2.4). Recall that each ball t ∈ [m] has

0 1
x

hf

λn

0 1
x

λn

hg

TnSn

Figure 2.5: The total area of the shaded regions under the curves hf and hg should

be o(1/m).

a pair of hashing values (Xt, Yt) ∈ [0, 1]2, where Xt and Yt are drawn independently

from the densities hf and hg, respectively. Let D be the event that all the hashing

pairs available for the m balls belong to the set Sn × Tn, that is,

D =
m⋂

t=1

[Xt ∈ Sn, Yt ∈ Tn] .

Notice that

P {Dc} ≤ mP {X1 ∈ Sc
n}+ mP {Y1 ∈ T c

n}

= m




∫

f>λn

f(x) dx +

∫

g>λn

g(x) dx


 = o(1) .

86 CHAPTER 2. NONUNIFORM TWO-WAY CHAINING

Now we apply the rejection method. Let r > m be an integer to be picked later. Con-

sider the following uniform sample: (X̃1, U1), . . . , (X̃r, Ur) and (Ỹ1, V1), . . . , (Ỹr, , Vr),

where all the variables X̃t, Ỹt, Ut, Vt ∈ [0, 1] are chosen independently and uniformly at

random. Let H :=
{

(X̃1, Ỹ1), . . . , (X̃r, Ỹr)
}

represent a set of uniform hashing pairs

available for r balls. We refine the set H by accepting only those points that have

the same distribution as the original hashing pairs (Xt, Yt). We do that as follows.

Let F be the set of all points (X̃t, Ỹt) ∈ H such that

(X̃t, Ỹt) ∈ Sn × Tn, (X̃t, Utλ) ∈ Reg(hf), and (Ỹt, Vtλ) ∈ Reg(hg) .

Notice that (X̃t, Utλ) ∈ Reg(hf) if and only if Utλn ≤ hf (X̃t). Thus, it is not

difficult to see, from a generalization of Lemma 2.4, that if the event D is true and

(X̃t, Ỹt) ∈ F , then (X̃t, Ỹt)
L
=(X1, Y1) on Sn × Tn. Since

∫
Sn

hf (x) dx > 1/2, and the

variables X̃t, Ỹt, Ut and Vt are independent and uniformly distributed over [0, 1], then

P
{[

Utλn ≤ hf (X̃t)
]
∩

[
X̃t ∈ Sn

]}
=

1

λn

∫

Sn

f(x) dx >
1

2λn

;

and similarly,

P
{[

Vtλn ≤ hg(Ỹt)
]
∩

[
Ỹt ∈ Tn

]}
>

1

2λn

.

This means that P
{

(X̃t, Ỹt) ∈ F
}

> 1/(4λ2
n). Hence, |F| is stochastically greater

than Bin(r, 1/(4λ2
n)). By putting r := d 8λ2

nm e, one can see—by using Chebyshev’s

inequality as in Lemma 2.4—that P {|F| < m} = o(1). Let E := [|F| ≥ m]. Now

suppose that we have an algorithm A that inserts r balls into n bins by using the

greedy multiple-choice paradigm where the elements of H are used as hashing pairs

for the r balls. That is, each ball t ∈ [r] is inserted into the least full bin among

the two bins X̃t and Ỹt, breaking ties randomly. Let MA be the maximum bin load

upon termination of algorithm A. Similarly, assuming that E is true, let MB be the

maximum bin load of an algorithm B that inserts m balls into another set of n bins

by using the greedy multiple-choice paradigm where the first m elements of F are

2.4. UPPER BOUNDS 87

used as the hashing pairs of the m balls. Furthermore, assume that for each t ∈ [r],

we have a uniform [0, 1] random variable Rt that is used by both algorithms to break

ties: whenever the bins X̃t and Ỹt have the same load, the algorithm inserts ball t

into bin X̃t, if Rt < 1/2, otherwise the ball is inserted into bin Ỹt. Observe that

given E is true, Lemma 2.3 asserts that MB ≤ MA. Since the hashing values of H
are drawn independently from a uniform density over [0, 1], and the number of balls

r = d 8λ2
nm e, then by Theorem 2.5, we have MA ≤ ζn

def
= log2 log2 n + 128λ2

n α + 4,

w.h.p. Recall that if the event D is true, and (X̃t, Ỹt) ∈ F , then (X̃t, Ỹt)
L
=(Xt, Yt).

This means that while D and E are true, Ln,m
L
= MB. Therefore, we conclude that

for n large enough,

P {Ln,m > ζn} = P {[Ln,m > ζn] ∩ E ∩D}+ P {[Ln,m > ζn] ∩ (E ∩D)c}

= P {[MB > ζn] ∩ E ∩D}+ P {[Ln,m > ζn] ∩ (E ∩D)c}

≤ P {[MA > ζn] ∩ E ∩D}+ P {Ec ∪Dc}

≤ P {[MA > ζn]}+ P {Ec}+ P {Dc} = o(1) .

Chapter 3

Orientation and Off-line Two-way

Chaining

In this chapter, we consider the off-line version of Uniform-ShortChain(n,m).

We address the following question. For fixed k ∈ N, what is the largest m ∈ N
such that whenever all hashing pairs (f(x), g(x)), for x ∈ K, are known in advance,

then asymptotically almost surely, each key x ∈ K can be assigned to one of the

chains f(x) or g(x) where the maximum chain length is at most k? We model this

assignment problem by an orientation of a uniform random graph with n vertices and

m edges. We also present some efficient heuristics that find such assignment.

3.1 Motivation

The off-line two-way chaining problem, evidently, provides a useful means for de-

signing efficient static schemes that achieve constant worst-case search time. Such

schemes have been widely studied in the literature. Perfect or almost-perfect hashing

schemes can be designed in linear time and space, but with hidden large constant

factor, not to mention the need for a large number of “good” hash functions. How-

89

90 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

ever, by studying off-line two-way chaining, a static hashing scheme whose worst-case

search time is at most 2k plus 2 (for reading 2 pointers) can easily be designed, once

we have an efficient algorithm for finding an assignment for the keys with maximum

chain length of at most k. By using techniques like rehashing, such schemes can be

modified to support also dynamic data. The off-line analysis of two-way chaining

can be also used to measure how good the on-line algorithm is. This is known as

competitive analysis, which has deep roots in load balancing [14, 12, 13, 39]—another

important application of the greedy multiple-choice allocation process.

Pagh [144, 145] studied the off-line version of the cuckoo hashing algorithm which

is also the off-line version of the nonuniform two-way chaining algorithm Left-

ShortChain. The hash table is partitioned into two disjoint sub-tables T1 and

T2 of size bn/2 c and dn/2 e. The hash functions f and g are chosen independently

and uniformly at random from the sets F(U , T1), and F(U , T2), respectively. Pagh

showed that w.h.p., there is an assignment of the keys, where each key x is inserted

into one of the chains f(x) or g(x), such that maximum chain length is at most 1,

(i.e., without any collision), provided that the hash values (f(x), g(x)), for all x ∈ K,

are known in advance, and the number of input keys m = |K| ≤ (1/2− ε)n, for some

arbitrary constant ε > 0. This is also true if the hash functions are chosen from a

smaller class of functions with O(log n) universality, like the ones in [48]. The result is

proved by applying the König-Hall theorem [46, Theorem 2.1.2] on a bipartite graph

that models the two sub-tables. The assignment of the keys itself can be found by

solving a 2-SAT problem that has the following clauses for each pair of distinct keys

x, y ∈ K:

• if f(x) = f(y), we create the clause (X(x) ∨X(y));

• if g(x) = g(y), we create the clause (X(x) ∨X(y)).

where X(x) is a binary variable which is 1 if x should be inserted into f(x), and 0 if it

3.1. MOTIVATION 91

should be inserted into g(x). Since the hash functions are truly uniform, the number

of collisions (and hence, the number of clauses) is O(n) in expectation. A linear time

algorithm like the one in [64] can be used to find a solution for this instance of the

2-SAT problem. Notice that no polynomial time algorithm is known for solving the

general k-SAT problem, for k ≥ 3.

This chapter, however, is devoted to the off-line version of algorithm Uniform-

ShortChain(n,m). To be precise, the word “uniform” should have been added to

the title of this chapter. Azar et al. [13] proved that in Uniform-ShortChain(n, n),

the input keys can be assigned off-line such that the maximum chain length is at most

10, w.h.p. Their proof is based on modelling the hashing process by an n by n random

bipartite graph where the set of left vertices is the set of input keys K, and the set of

right vertices is the set of chains T . For each left vertex x ∈ K, we make two edges

(x, f(x)) and (x, g(x)). The authors showed that there exists an assignment (i.e., a

mapping from K to T) such that the degree of each vertex in T is at most 10, w.h.p.

Indeed, by breaking the set K into 10 pieces, each of size at most n/10, the König-Hall

theorem can be used to show that each piece has a perfect matching, w.h.p. Czumaj

and Stemann [38] tightened this result and proved that there is an assignment such

that the maximum chain length is at most 2, w.h.p. In [39] (the final version of

[38]), the authors extended the result for any m ≤ cn, where c < 1.67545943... is

any positive constant. The off-line hashing process is viewed, in the proof of Czumaj

and Stemann, as a random graph with n vertices and m multiedges. The assignment

problem, then, is transformed into an orientation problem. The goal is to find an

orientation such the maximum out-degree is as small as possible. This idea is the core

of our study. In the next section, we define this random graph model, we explain in

more detail the result of Czumaj and Stemann, and we state our main contributions.

92 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

3.2 k-orientability

Recall that algorithm Uniform-ShortChain(n,m) inserts a set of keys K of size m

into a hash table T := {0, . . . , n− 1} consisting of n separate chains, where each key

x ∈ K, has two hashing values f(x) and g(x) which are independently and uniformly

distributed over T . Our study is based on the following model.

The Uniform Vertex Model

We represent the off-line process of Uniform-ShortChain(n,m), where n,m ∈ N,

by an undirected random graph denoted by G(n,m). It has n vertices representing

the chains in T , and m multiedges (that may include loops) corresponding to the keys

of K. Each edge connects two vertices chosen—one after another—independently and

uniformly at random, with replacement, from the set of all n vertices. Finding an

assignment of the keys is equivalent to finding an orientation of the graph. Inserting

the key x into the chain f(x) means orienting the edge (f(x), g(x)) towards the

vertex g(x). In the final oriented graph, the out-degree of a vertex is defined to

be the number of incident edges that are oriented outward. Notice that the out-

degree of a vertex u represents the length of chain u. The maximum out-degree of

the random graph G(n,m) is the maximum chain length of the hash table T . For

example, if the m edges are realized sequentially, one after another, and each edge

(u, v) is oriented, upon realization, toward the second vertex v, which means that

the key is always inserted into the first chosen chain u, then the orientation process

is equivalent to the on-line algorithm ClassicChain(n,m), and by Theorem 0.1,

the maximum out-degree is asymptotic to log n/ log log n, in probability, whenever

m = Θ(n). Similarly, if each edge is oriented, upon realization, towards the vertex of

minimum out-degree, then Theorems 0.2 and 0.3 say that the maximum out-degree

is log2 log n + m/n±Θ(1), w.h.p., for m = Ω(n), because this orientation method is

3.2. K-ORIENTABILITY 93

equivalent to the on-line algorithm Uniform-ShortChain(n,m).

Definition 3.1. An orientation of any graph is called a k-orientation, where k ∈ N,

if and only if the maximum out-degree of the graph is at most k. If a k-orientation

exists, we say that the graph is k-orientable.

The k-orientability can be used for other applications such as graph storing and

edge membership queries (see [3] for more details). Observe that k-orientability is a

decreasing property which means that if G(n,m) is k-orientable, w.h.p., then sub-

graphs are also k-orientable w.h.p. For given n,m ∈ N, we would like to find the small-

est integer k such that the random graph G(n,m) is k-orientable, w.h.p., or equiva-

lently, find the maximum integer m ≤ kn, for any fixed k ∈ N, such that G(n,m) is

k-orientable, w.h.p. Throughout, let ck = sup {c : G(n, cn) is k-orientable w.h.p.},
where k ∈ N. Our aim is to estimate ck, the threshold of k-orientability. Obviously,

ck ≤ k, because G(n, kn + 1) is not k-orientable, as each vertex can orient outward

at most k edges.

Known Results

It is known that for any constant c ∈ (0, 1/2], the uniform random graph G(n, cn) of

Erdös and Rényi [61], which has no loops or multiedges, consists of unicyclic connected

components, and isolated trees, and when c ∈ (1/2, 1], there is also a unique giant

connected component of size Θ(n) that has more than one cycle. This classical result

is also true for our random graph G(n,m), see, e.g., [96]. Clearly, any tree or unicyclic

component can be oriented easily such that the maximum out-degree is at most one,

see Figure 3.1. A component that has more than one cycle is not 1-orientable. This

means that c1 = 1/2.

Czumaj and Stemann [38] proved that w.h.p., the random graph G(n, n) is 2-

orientable, by showing that the giant component can be oriented such that the maxi-

94 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

Figure 3.1: Orienting the edges in tree and unicycle components such that the max-

imum out-degree is at most one. In a tree, a root is fixed first and then all the edges

are oriented (in a bfs order) towards the root. In a unicycle, the edges of the cycle

are oriented in any direction, and all other edges are oriented towards the cycle.

mum out-degree is at most 2. In [39], Czumaj and Stemann showed that the random

graph G(n, cn) is 2-orientable, w.h.p., for any positive constant c < 1.67545943....

The proof uses the threshold for the existence of the 3-core in random graphs [150],

where the k-core is the unique maximal subgraph with minimum degree at least k.

The result in its general form says that any undirected graph that does not contain

a (k + 1)-core is k-orientable. The idea follows from an algorithm that finds the

(k + 1)-core. The algorithm can be modified to find a k-orientation as follows. The

degree of a vertex is defined, here, to be the number of unoriented incident edges.

Greedy-Orient(Graph: G, integer: k)

enqueue all vertices of degree at most k in a queue Q

while Q 6= ∅ do

dequeue a vertex from Q and orient all its edges outward

scan the vertices and enqueue any vertex of degree at most k to the queue Q

end while

3.2. K-ORIENTABILITY 95

So if the graph does not contain a (k + 1)-core, all the vertices will be enqueued to

the queue and hence all the edges will be oriented. Otherwise, the remaining vertices

that cannot be enqueued to the queue have degrees of at least k + 1, and hence they

constitute the (k + 1)-core. The natural question now is: what is the time of the

emergence of the (k +1)-core? For k ≥ 3, Pittel, Spencer, and Wormald [150] proved

that the random birth time of the k-core in the uniform random graph G(n,m) of

Erdös and Rényi is sharply concentrated around m ≈ akn/2, where

ak = min
λ>0

λ

πk−1(λ)
, and πk(λ) = P {Poisson(λ) ≥ k} =

∞∑

i=k

e−λλi

i!
.

Indeed, they showed that for any δ ∈ (0, 1/2), if m ≤ akn/2 − n1−δ, then a.a.s.,

G(n,m) does not contain any k-core; and if m ≥ akn/2 + n1−δ, then a.a.s., there

is a k-core that is connected and of size pkn + o(n), where pk = πk(λk), and λk is

the point at which the function λ/πk−1(λ) attains its minimum value. For large k,

it is known that ak = k +
√

k log k + O(log k). This result can be also extended

to our model of random graph G(n,m), where loops and multiedges are allowed.

All this shows that G(n,m) is k-orientable if it does not contain the (k + 1)-core.

However, the converse is not true, i.e., there are graphs that contains the (k+1)-core,

yet they are still k-orientable, see Figure 3.2. The above analysis only implies the

inequality ck ≥ ak+1/2, for k ≥ 2. This means, for instance, that , c2 ≥ 1.67545943...,

c3 ≥ 2.57470137..., and so on, see Table 3.1.

New Results

In Section 3.3, we reprove a result of Frank and Gyárfás [73] that any graph is k-

orientable if and only if the number of edges of any subgraph is at most k times

the number of its vertices. We use this characterization (in Sections 3.4 and 3.5)

to prove that for k sufficiently large, ρk < ck/k < 1 − exp
(−2k

(
1− e−2k

))
, where

96 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

(b)(a) (c)

Figure 3.2: The graphs in (a) and (b) are 5-cores, but, clearly, they are 4-orientable.

The graph in (c) contains a 3-core, but it is still 2-orientable.

k + 1 ak+1 ak+1/2 pk+1

3 3.35091887... 1.67545943... 0.267580655...

4 5.14940274... 2.57470137... 0.438061712...

5 6.79927548... 3.39963774... 0.538433561...

6 8.36534077... 4.18267038... 0.604638183...

7 9.87529072... 4.93764536... 0.651844404...

8 11.3441289... 5.67206445... 0.687379687...

9 12.7810996... 6.39054984... 0.715208554...

10 14.1923894... 7.09619474... 0.737666503...

Table 3.1: Numerical computations showing the thresholds of the newborn (k + 1)-

core and the ratio of its (giant) size. The threshold ck ≥ ak+1/2.

3.3. USEFUL CHARACTERIZATION 97

ρk = 1−2k exp(−k+1+e−k/4). We also show that for small k, the lower bound on ck

can be computed by solving simultaneously two equations related to the estimation of

the upper tail of the binomial distribution. See Tables 3.3 and 3.5 for these computed

bounds, for k ∈ [2, 55], which beat the (k + 1)-core thresholds except for k = 1, 2.

Furthermore, we show that w.h.p., a newborn giant subgraph of size at least ρkn,

whose edges are more than k times its vertices, emerges around the time ckn. In

other words, we prove the following theorem.

Theorem 3.1. Let U be a universe set of keys, and T be a hash table with n ∈ N
separate chains. Let f, g : U → T be independent and truly uniform hash functions.

For constant k ∈ N, let mk be the largest integer such that w.h.p., whenever K ⊆ U is

a set of keys of size mk, and the hashing values f(x) and g(x), for x ∈ K, are known

in advance, then each key x ∈ K can be assigned to one of the chains f(x) or g(x) so

that the maximum chain length is at most k. Then, for k large enough, we have

1− 2k exp
(−k + 1 + e−k/4

)
<

mk

kn
< 1− exp

(−2k
(
1− e−2k

))
.

3.3 Useful Characterization

Throughout this chapter, we use the following notations and definitions. For any

graph G, we write V(G) to denote the set of its vertices. For any set of vertices

S ⊆ V(G), we write E(S) to denote the multiset of all edges whose endpoints belong

to S. The density of any set of vertices S is the ratio |E(S)| / |S|. If the density

of a set S is strictly greater than k, for a positive integer k, we say that S is a

k-overloaded set. The maximum density Ψ(G) of any graph G is defined by

Ψ(G) = max
S⊆V(G)

d |E(S)| / |S| e .

98 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

That is, Ψ(G) is the smallest integer such that |E(S)| ≤ Ψ(G) |S|, for all S ⊆ V(G).

We begin by restating the k-orientability property in terms of the edge distribution

in the graph. Obviously, if a vertex has more than k loops, or if |E(G)| > k |V(G)|,
then the graph G is not k-orientable, as each vertex can orient outward at most k

edges. The following lemma generalizes this idea.

H

G

Figure 3.3: The graph G is not 2-orientable, because H is a 2-overloaded set

Lemma 3.1 (Frank and Gyárfás [73]). Any graph G, possibly containing loops and

multiedges, is k-orientable, where k ∈ N, if and only if its maximum density Ψ(G) ≤
k, that is, |E(S)| ≤ k |S|, for all S ⊆ V(G).

This means that finding the maximum density of any graph is equivalent to finding

the smallest integer k such that the graph is k-orientable. The lemma was originally

proved in a more general form by Frank and Gyárfás [73], see also [71, 72]. We have

also learned that around the same time D. Avis and B. Reed independently proved

the same result in unpublished work. Another proof that uses the König-Hall theorem

[46, Theorem 2.1.2] appeared in [3]. However, we give here a new constructive proof

based on the following algorithm which for any given graph G, and k ∈ N, finds either

a k-orientation, or a k-overloaded set. Recall that the out-degree of any vertex is the

number of incident edges directed outward where a directed loop is counted as one

out-directed edge.

3.3. USEFUL CHARACTERIZATION 99

Orient(graph: G, integer: k)

color all vertices white

for each vertex u ∈ V(G) do

if u has more than k loops, then output {u} “is a k-overloaded set” and stop

orient outward up to k edges (if possible) incident to u, giving priority to loops

if out-degree(u) < k, then color it black

end for

let L be the list of all unoriented edges in G

while L 6= ∅ do

remove an edge (u, v) from the list L, and let S ← ∅

using bfs, find an outward directed path from u (or, if not, then from v) to

one of the closest black vertices, and while doing so let S be the set of all

vertices visited by the two trips of the bfs started from u and v

if such path does not exist, then output S “is a k-overloaded set” and stop

if the out-degree of the black vertex the bfs found is k− 1, then color it white

reorient the path backward toward u (or, respectively, v), and orient the edge

(u, v) toward v (or, respectively, u)

end while

Algorithm Orient is divided into two phases. The objective of phase 1 (the for

loop) is to orient as many edges as possible while keeping the maximum out-degree

at most k. This is done by allowing each vertex to choose up to k unoriented edges

incident to it and orient them outward, where, of course, the loops have to be oriented

first. If there is a vertex with more than k loops, then obviously it is a k-overloaded

set, and hence the graph is not k-orientable. The algorithm also keeps track of all

vertices whose out-degrees are strictly less than k by coloring them black. Unlike the

white vertices whose out-degrees are exactly k, these black vertices have the potential

100 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

v v

uu

(b)(a) (c)

x

y

Figure 3.4: (a) The algorithm finds a directed path from u to a black vertex. (b) The

algorithm reverses the direction of the path and orients the edge (u, v) toward v. (c)

The algorithm cannot find a directed path from x or y to any black vertex, and so it

sets S, the k-overloaded set, to be the set of all vertices visited by the last two bfs.

to orient outward more edges than they already have.

If, by the end of phase 1, there are unoriented edges, the algorithm tries in phase

2 (the while loop) to orient them, if possible, while preserving a proper k-orientation.

Here the black vertices are utilized. Notice that a black vertex exists if and only if

the number of oriented edges is strictly less than kn. However, assuming we have a

k-orientable graph, we know that the number of edges in the graph is at most kn.

Therefore, if there is an unoriented edge, say (u, v), then the number of oriented

edges is strictly less than kn, and hence there must be a black vertex. Notice that

(u, v) cannot be oriented in any direction, because both of the vertices u and v are

white, thus far! The black vertex can be used to reorient some of the edges while

preserving a proper k-orientation, and eventually decrease the out-degree of one the

vertices u or v. The algorithm does that by using a breadth-first search to find a

directed path from either u or v to one of the closest black vertices. Then it reverses

the direction of the path. By doing so, the out-degree of the black vertex is increased

by one, the out-degree of u (or v) is decreased by one, while the out-degrees of all

3.3. USEFUL CHARACTERIZATION 101

other white vertices along the path stay unchanged. This allows us to orient the edge

(u, v) toward v, if the path ends up in u, or toward u, if the path ends up in v. So

after each reorientation of these paths, we decrease the number of unoriented edges

by one, while keeping the maximum out-degree at most k. However, a directed path

from either u or v to any of the black vertices may not exist. In this case the graph

is not k-orientable as we now show.

Proof of Lemma 3.1

Suppose that G is not k-orientable. We shall prove that the algorithm finds a k-

overloaded set. Clearly, if the algorithm does not find a k-overloaded set, then the

graph is k-orientable, because the maximum out-degree is at most k after each step

in both phases of the algorithm. So assume the algorithm outputs a set S that it

claims to be a k-overloaded set. Obviously, a vertex with more than k loops is a

k-overloaded set. So, without loss of generality, assume that the algorithm ends up

with unoriented edge, say (u, v), and that the breadth-first search was not able to

find a directed path from neither u nor v to any black vertex. Thus, S is the set of

all vertices visited by the last two unsuccessful breadth-first searches (which started

from u and v) before the algorithm halted. In other words, S is just the set of

all vertices that can be reached via directed path from u or v, i.e., u, v ∈ S, and

if x ∈ S, and (x, y) is an edge oriented toward y, then y ∈ S. Notice that every

vertex in S is a white vertex whose out-degree is k, and all its k out-directed incident

edges are oriented toward vertices inside S. Hence, the total number of oriented

edges that belong to E(S) is k |S|. But, the unoriented edge (u, v) ∈ E(S). Thus,

|E(S)| ≥ k |S| + 1, i.e., S is a k-overloaded set. The other direction of the lemma is

trivial, because in a k-orientation, each vertex can orient outward at most k edges,

and hence, |E(S)| ≤ k |S|, for all S ⊆ V(G). ¤

102 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

Notice that the worst-case running time of the algorithm Orient is O(n2), if

n = V(G) and the density of G is constant. It is worth mentioning, however, that

Aichholzer, Aurenhammer, and Rote [3] gave an O(n3/2) worst-case running time

algorithm that is based on Hopcroft and Karp’s algorithm [89] for computing a maxi-

mum matching in a bipartite graph. The authors also presented a linear time heuristic

for finding a 2k-orientation which we call AAR-Heuristic.

AAR-Heuristic(graph: G, integer: k)

Let S ← V(G)

while S 6= ∅ do

let u be the vertex with the least degree in S

if degree(u) > 2k, then output S “is a 2k-overloaded set” and stop

orient outward all edges incident to u, and remove it from S

end while

It is not difficult to see that if graph G is k-orientable, then any subgraph of G has

at least one vertex of degree (i.e., the number of its unoriented incident edges) at

most 2k. Thus, algorithm AAR-Heuristic finds a 2k-orientation if the graph is k-

orientable. Of course, to determine the optimal k, one can do an exponential search

in O(log k) steps.

We use Lemma 3.1 to prove the upper and lower bounds on the threshold ck, in

the next sections. Recall that ck = sup {c : G(n, cn) is k-orientable w.h.p.}. Notice

that the existence of a k-overloaded set is an increasing property, i.e., if G(n,m)

contains a k-overloaded set, w.h.p., then for all m′ > m, the random graph G(n,m′)

also contains a k-overloaded set, w.h.p.

3.4. UPPER BOUNDS 103

3.4 Upper Bounds

Notice that the random graph G(n,m) is constructed by choosing 2m vertices inde-

pendently and uniformly at random, with replacement, where each two consecutive

vertices represent an undirected edge. This means that each loop is chosen with

probability 1/n2, and each undirected non-loop edge is chosen with probability 2/n2.

For the remainder of this chapter, we define the degree of a vertex in the random

graph G(n,m) to be the number of its non-loop incident edges plus twice the number

of its loops, i.e., it is the number of times the vertex is chosen during the 2m trials of

drawing the vertices. Clearly, the degree of any vertex is distributed as Bin(2m, 1/n).

The next theorem bounds ck from above.

Theorem 3.2. For any constant integer k ≥ 2, let γk be the unique positive solution

of 1− γ − e−2γk = 0 on (0, 1). Then the threshold ck ≤ γkk <
(
1− e−2k(1−e−2k)

)
k.

Proof. Suppose that m = γkn, for some constant γ ∈ (0, 1). To prove that ck < γk,

it suffices to show that the random graph G(n,m) contains a k-overloaded set, w.h.p.

Let S be the set of all non-isolated vertices, i.e., with degree of at least one, in the

random graph G(n,m). Let X be the number of isolated vertices in the random

graph G(n, m), and observe that

E [X] = nP {Bin(2m, 1/n) = 0} = n

(
1− 1

n

)2m

≥ ne−2γk

(
1− 1

n

)2γk

≥ ne−2γk − 2k ,

where we have used the inequalities

log(1− x) ≥ −x/(1− x) , and (1− x)2k ≥ 1− 2xk , valid for x > 0 .

Notice that |E(S)| = m, and |S| = n − X. Moreover, X can be expressed as a

function of the 2m chosen vertices which are independent, and if one of the vertices

104 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

is changed, X may increase or decrease by at most one. Therefore, by McDiarmid’s

inequality (Lemma 0.3), we see that S is a k-overloaded set when γ is large enough.

Indeed, for sufficiently large n, we have

P {|E(S)| ≤ k |S|} = P {X ≤ (1− γ)n}

≤ P
{
X − E [X] ≤ (

1− γ − e−2γk
)
n + 2k

}

≤ exp
(
− (

1− γ − e−2γk
)2

n/(γk) + 1
)

= o(1) ,

which is true whenever fk(γ)
def
= 1−γ−e−2γk < 0. In particular, if γ = 1−e−2k(1−e−2k),

then

fk(γ) < e−2k
(
e2ke−2k − e2ke−2k

)
= 0 .

This implies that ck ≤ inf {γ ∈ (0, 1) : fk(γ) < 0}. However, fk(0) = 0, fk(1/2) > 0,

fk(1) < 0, and since f ′′k (γ) = −4γ2e−2γk < 0, then f is concave on [0, 1]. This means

that in fact γk = inf {γ ∈ (0, 1) : fk(γ) < 0}.

Remark 3.1. Notice that the upper bound on ck is obtained by estimating the

random time at which the 1-core becomes a k-overloaded subgraph, that is, when the

density of the 1-core exceeds k. One can improve this bound by considering instead

the density of the (k + 1)-core. That is, if Ck is the smallest constant c such that,

w.h.p., the density of the (k + 1)-core of the random graph G(n, cn) is more than k,

then ck ≤ Ck. We know from the work of Pittel, Spencer, and Wormald [150] that

for k ≥ 2, the (k + 1)-core of the uniform random graph G(n,m), where no loops or

multiedges are allowed, emerges around the time m ≈ ak+1n/2, where

ak+1 = min
λ>0

λ

πk(λ)
, and πk(λ) = P {Poisson(λ) ≥ k} .

Moreover, for any given constant c > ak+1/2, the number of vertices in the (k + 1)-

core of the random graph G(n, cn) is πk+1(λk(c))n + o(n), w.h.p., where λk(c) is the

3.5. LOWER BOUNDS 105

largest root of the equation 2c = λ/πk(λ). On the other hand, Fountoulakis [70]

proved that the number of edges in the (k + 1)-core of the random graph G(n, cn) is

λ2
k(c)n/(4c) + o(n), w.h.p. These results are also expected to be true in the model

G(n,m) which is highly unlikely to have more than a constant number of loops or

multiedges. Thus,

Ck = inf

{
c >

ak+1

2

∣∣∣∣
λ2

k(c)

4c πk+1(λk(c))
> k

}
,

The following table shows some of the computed values of Ck compared to the upper

bound of Theorem 3.2.

k Ck γkk

2 1.79402374... 1.960345197...

3 2.87746281... 2.992450613...

4 3.92147910... 3.998654534...

5 4.94775681... 4.999772897...

6 5.96443625... 5.999963132...

7 6.97541865... 6.999994180...

8 7.98282627... 7.999999100...

9 8.98790713... 8.999999863...

10 9.99143452... 9.999999979...

Table 3.2: The threshold ck ≤ Ck ≤ γkk.

3.5 Lower Bounds

We already know that ck is at least the threshold of the (k + 1)-core, which is as-

ymptotic to k/2 [150]. In this section, we improve this lower bound, and show that

106 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

indeed ck ∼ k, as k →∞. Observe that that for any set of vertices S ⊆ V(G(n,m))

of size i ∈ N, the probability that we choose an edge whose both endpoints belong

to S is i2/n2, because each vertex is drawn independently and uniformly at random,

with replacement. Therefore, |E(S)| L= Bin(m, i2/n2). Thence, by Lemma 3.1, the

probability that the random graph G(n,m) is not k-orientable is no more than

bm/k c∑
i=1

∑

S:|S|=i

P {|E(S)| > ki} ≤
bm/k c∑

i=1

(
n

i

)
P

{
Bin(m, i2/n2) > ki

}
.

We would like to find the maximum m such that the above probability tends to

zero as n approaches infinity. The following lemma shows that ck is at least k/
√

e,

asymptotically. However, the approximations used in the proof are not tight enough.

Nonetheless, the lemma is an important step towards the main result. Notice that

for i = 0, . . . , n, we have

(
n

i

)
≤ ni

i!
≤

(en

i

)i

. (3.1)

Lemma 3.2. Let k ≥ 2 be any constant integer. The random graph G(n, kn) does

not contain any k-overloaded set of size less than or equal to ne−(k+1)/(k−1), w.h.p.

Furthermore, the threshold ck is at least ke−(k+1)/(2k−1).

Proof. Let j =
⌊
ne−(k+1)/(k−1)

⌋
. Using (3.1), and inequality (2) in Lemma 0.1, we

see that for n large enough, the probability of existence of a k-overloaded set of size

3.5. LOWER BOUNDS 107

of at most j in the random graph G(n, kn) is not more than

j∑
i=1

∑

|S|=i

P {|E(S)| > ki} ≤
j∑

i=1

(
n

i

)
P

{
Bin(kn, i2/n2) > ki

}

≤
j∑

i=1

(en

i

)i
(

ei

n

)ki

e−ki2/n

≤
j∑

i=1

(
ek+1(i/n)k−1

)i
e−ki2/n

≤
b log n c∑

i=1

ek+1 i

n
+

b j/e c∑

d log n e

(
e2(j/n)k−1

)i
+

j∑

d j/e e
e−ki2/n

≤ ek+1 log2 n

n
+

∞∑

b log n c
e−i + n exp

(−e−2kj2/n
)

≤ o(1) + Θ(1/n) + o(1) = o(1) .

Now if m = b akkn c, where ak = e−(k+1)/(2k−1), then w.h.p., the random graph

G(n,m) is k-orientable, because the probability that there is a k-overloaded set of

size greater than j is less than

dm/k e−1∑
i=j

(en

i

)i
(

emi

kn2

)ki

e−mi2/n2 ≤
b akn c∑

i=j

(
ek+1(i/n)k−1ak

k

)i
e−mi2/n2

≤
b akn c∑

i=j

(
ek+1a2k−1

k

)i
e−mi2/n2

=

b akn c∑
i=j

e−mi2/n2

≤ n exp
(−mj2/n2

)
= o(1) .

Lemma 3.2, clearly, improves the lower bound on ck, for k large enough, but it also

says that the size ratio of the smallest k-overloaded set in G(n,m), where m ≤ kn, is

at least e−(k+1)/(k−1) ≥ e−3, w.h.p. However, we shall further improve the lower bound

108 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

on ck, and see that the size ratio of the newborn k-overloaded set grows exponentially

to 1, as k → ∞. We do that by tightening the estimation of the upper tail of the

binomial distribution: we shall use inequality (1). For that, we need to define the

following positive functions. Fix an integer k ≥ 2. Suppose that m = bαn c, for some

α ∈ (0, k]. For p ∈ (0, α/k), let

f(k, α, p) =

(
α(1− p2)

α− kp

)α−kp (αp

k

)kp

, (3.2)

and define

h(k, α, p) =





1 , if p = 0 ;

p−p(1− p)p−1f(k, α, p) , for p ∈ (0, α/k) ;

(α/k)2α , if p = α/k .

(3.3)

The functions f and h, as we are going to see further on, are strongly related to

the function Υ defined in Lemma 0.1. Notice that h is continuous on [0, α/k], and

smooth on (0, α/k).

3.5.1 Tight Asymptotic Estimations

Our main asymptotic lower bounds are stated in the following theorem. We use the

notation hp(k, α, q) to denote the partial derivative of h with respect to p evaluated

at the point (k, α, q).

Theorem 3.3. For any fixed integer k ≥ 2, define

αk := sup
{
α > 0 : ∃ δ ∈ (0, 1) such that h(k, α, p) ≤ δ, ∀ p ∈ (e−3, α/k)

}
,

and let ρk := 1− (2/e)ke1+e−k/4
. Then the following are true:

1. The threshold ck ≥ αk; and for k large enough, αk > kρk.

3.5. LOWER BOUNDS 109

2. If sk is a point at which the function h(k, αk, p) attains its maximum on the

interval [e−3, αk/k], then h(k, αk, sk) = 1, and hp(k, αk, sk) = 0.

3. For fixed k ≥ 2, and α ∈ (αk, k], the equation h(k, α, p) = 1 has two positive

solutions. Let q1(k, α) and q2(k, α) be the smallest and the largest of these

solutions. The size ratio of the newborn k-overloaded set is between q1(k, ck)

and q2(k, ck), w.h.p. Moreover, q1(k, ck) > rk
def
= q1(k, k) ≥ ρk, for large k.

Theorem 3.3 also provides a heuristic for computing the exact value of αk. Solving

the two equations h(k, α, p) = 1, and hp(k, α, p) = 0, simultaneously, for any given

k ≥ 2, one can obtain the lower bound αk. Unfortunately, solving these two equations

explicitly is somehow impossible. So we used the mathematical software Maple to

solve them numerically. The numerical computations of αk (see Table 3.3) suggest,

indeed, a more tight lower bound on αk than the one mentioned in the theorem. We

conjecture that for all k ≥ 2,

αk

k
≥ 1−

(
2

e

)k+
√

k

.

Note that this lower bound holds for each computed αk in Table 3.3. The reader is

invited to verify that.

Recall that the k-overloaded set emerges around time m = ckn. Theorem 3.3

reveals that one can lower-bound the size ratio of the newborn k-overloaded set by

computing the smallest positive root of h(k, k, p) = 1, which we call rk = q1(k, k).

Obviously, it converges monotonically to one, as k goes to infinity. This is illustrated

in Table 3.4, and Figure 3.5. Notice that the newborn k-overloaded set is giant (i.e.,

of size Θ(n)). This is expected, because it is unlikely that at the beginning of the

evolution, a large number of edges land on a very small set. However, while keeping

the number of vertices fixed, and as the number of edges m increases away from ckn,

the size of the k-overloaded set starts to decrease to one.

110 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

k αk sk

2 1.30343190... 0.323260552...

3 2.48312473... 0.533227221...

4 3.61901095... 0.668655045...

5 4.71902985... 0.761197567...

6 5.79256286... 0.826480988...

7 6.84673418... 0.873351248...

8 7.88671563... 0.907333583...

9 8.91625922... 0.932106804...

10 9.93810345... 0.950220868...

11 10.9542584... 0.963487239...

12 11.9662054... 0.973211591...

13 12.9750390... 0.980342855...

14 13.9815687... 0.985573824...

15 14.9863940... 0.989411495...

16 15.9899586... 0.992227335...

17 16.9925912... 0.994293662...

18 17.9945347... 0.995810163...

19 18.9959692... 0.996923274...

20 19.9970278... 0.997740402...

21 20.9978087... 0.998340329...

22 21.9983847... 0.998780842...

23 22.9988094... 0.999104346...

24 23.9991226... 0.999341946...

25 24.9993535... 0.999516470...

26 25.9995236... 0.999644679...

27 26.9996490... 0.999738877...

28 27.9997414... 0.999808082...

k αk sk

29 28.9998095... 0.999858942...

30 29.9998597... 0.999896314...

31 30.9998967... 0.999923787...

32 31.9999239... 0.999943972...

33 32.9999439... 0.999958807...

34 33.9999587... 0.999969722...

35 34.9999696... 0.999977734...

36 35.9999776... 0.999983633...

37 36.9999835... 0.999987967...

38 37.9999878... 0.999991145...

39 38.9999910... 0.999993491...

40 39.9999934... 0.999995214...

41 40.9999951... 0.999996477...

42 41.9999964... 0.999997413...

43 42.9999973... 0.999998091...

44 43.9999980... 0.999998605...

45 44.9999985... 0.999998966...

46 45.9999989... 0.999999233...

47 46.9999992... 0.999999433...

48 47.9999994... 0.999999583...

49 48.9999995... 0.999999709...

50 49.9999996... 0.999999778...

51 50.9999997... 0.999999844...

52 51.9999998... 0.999999878...

53 52.9999998... 0.999999916...

54 53.9999999... 0.999999939...

55 54.9999999... 0.999999947...

Table 3.3: The numerical solutions αk and sk of the equations h(k, α, p) = 1 and

hp(k, α, p) = 1. The threshold ck ≥ αk which is strictly greater than the threshold of

the (k + 1)-core (in Table 3.1), except for α2 and α3.

3.5. LOWER BOUNDS 111

0.2

0.4

0.6

0.8

1

5 10 15 20 25

k

rk

2
4

6
8

10

0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

1.2

1.4

k

p

h(k, k, p)

Figure 3.5: The lower bound rk on the size ratio of the newborn k-overloaded set

converges exponentially to one. It is where the curve of h(k, k, p) intersects 1.

k rk

2 0.061389845...

3 0.226773619...

4 0.387019206...

5 0.522609724...

6 0.632575890...

7 0.719774099...

8 0.787849394...

9 0.840355794...

10 0.880458374...

k rk

11 0.910842703...

12 0.933714444...

13 0.950841371...

14 0.963613455...

15 0.973107193...

16 0.980146405...

17 0.985355668...

18 0.989205077...

19 0.992046478...

k rk

20 0.994142089...

21 0.995686702...

22 0.996824664...

23 0.997662747...

24 0.998279818...

25 0.998734074...

26 0.999068429...

27 0.999314504...

28 0.999495594...

Table 3.4: The size ratio of the newborn k-overloaded set is at least rk, the solution

of the equation h(k, k, p) = 1.

112 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

p

(a)

h(k, k, p)

k = 2

k = 3

k = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1
p

h(4, α, p)

α = 3.62

α = 3.8

α = 4

(b)

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

p

(c)

h(k, α , p)k

k = 4

k = 5

k = 6

0.5

0.6

0.7

0.8

0.93

1

0 0.1 0.2 0.3 0.4 0.5

p

(d)

h(2, 1, p)

e-3

Figure 3.6: Figure (a) shows the functions h(2, 2, p), h1(3, 3, p), and h(4, 4, p). Figure

(b) shows the functions h(4, 4, p), h(4, 3.8, p), and h(4, 3.62, p). Figure (c) shows the

functions h(4, α4, p), h(5, α5, p), and h(6, α6, p). Figure (d) shows that the function

h(2, 1, p) < 0.93 on [e−3, 1/2). The figures illustrate that the function h is strictly

decreasing on k, and strictly increasing on α. The function h(k, αk, p) ≤ 1, on

(0, αk/k) where the equality holds only at one point. For α ∈ (αk, k], the functions

h(k, α, p) intersects the line y = 1 at two positive points.

3.5. LOWER BOUNDS 113

Comparing the bounds of Table 3.3 with the ones obtained from the (k + 1)-core

analysis in Table 3.1, we see that Theorem 3.3 is a clear improvement, except for

k = 2, 3, where c2 ≥ 1.67545943... > α2 and c3 ≥ 2.57470137... > α3. We deal

with this problem in Section 3.5.2 where we improve the bounds for k = 3, 4, 5, but

unfortunately not for k = 2. Thus, c2 ≥ 1.67545943... seems to be the best bound so

far.

Four Technical Lemmas

Before we start the proof of Theorem 3.3, we need to establish some lemmas. Recall

that for x ∈ (0, 1), we have the following known inequalities:

log(1 + x) < x , or log(x) < x− 1 , (3.4)

and,

(1− x) log(1− x) > −x , or (1− x)1−x > e−x . (3.5)

The following lemma highlights some of the analytical properties of the function h.

Figure 3.6 illustrates some of these properties.

Lemma 3.3. Let k̃ > k ≥ 2 be integers, and α, α̃ ∈ (0, k] be such that α < α̃. The

following are true:

1. For all p ∈ (0, α/k), we have h(k, α, p) < h(k, α̃, p); and if both α, α̃ > k/e,

then h(k, α, α/k) < h(k, α̃, α̃/k).

2. For any constant a ∈ (0, 1], we have h(k, ak, p) > h(k̃, ak̃, p), for all p ∈ (0, a).

3. h(k, α, p) < 1, where 0 < p ≤ min(e−3, α/k).

4. There is an ε ∈ (0, 1), such that h(k, k, p) > 1, for all p ∈ (1− ε, 1).

114 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

Proof. First, by definition of f(k, α, p), we see that for fixed p ∈ (0, α/k),

∂

∂α
(log f) =

∂

∂α

(
(α− kp) log(α− αp2)− (α− kp) log(α− kp) + kp log(αp/k)

)

= log(α− αp2) + 1− kp/α− log(α− kp)− 1 + kp/α

= log

(
1− p2

1− kp/α

)
> 0 ,

which is true because 1− p2 > 1− kp/α. Since f is strictly positive, then

∂

∂α
f(k, α, p) = f(k, α, p)

∂

∂α
log f(k, α, p) > 0 .

This means that f(k, α, p), and hence h(k, α, p), is a strictly increasing function of α,

where p ∈ (0, α/k). If p = α/k, then

h(k, α, α/k) =
(α

k

)2α

<

(
α̃

k

)2α̃

= h(k, α̃, α̃/k) ,

which is true because if t(x) = 2x log(x/k), where x ∈ (k/e, k], then the derivative

t′(x) = 2 log(x/k) + 2 > 0, i.e., t(x) is a strictly increasing function. Secondly, if

α = ak, for some constant a ∈ (0, 1], and p ∈ (0, a), we have

f(k, ak, p) =

(
a(1− p2)

a− p

)k(a−p)

(ap)kp .

Let g(a, p) = (a− p) log(1− p2)− (a− p) log(1− p/a), and notice that

∂g

∂a
= log(1− p2)− log(1− p/a) + 1 > 0 ,

because 1 − p2 > 1 − p/a. This means that for fixed p ∈ (0, a), the function g(a, p)

strictly increases as a function of a. Thus, using the inequalities in (3.4), we see that

∂

∂k
(log f(k, ak, p)) = (a− p) log

1− p2

1− p/a
+ p log(ap)

≤ (1− p) log
1− p2

1− p
+ p log p

< p(1− p) + p(p− 1) ≤ 0 .

3.5. LOWER BOUNDS 115

Therefore, the function f(k, ak, p), and hence h(k, ak, p), strictly decreases on k.

Thirdly, we know thus far that for any integer k ≥ 2, α ∈ (0, k], and p ∈ (0, α/k),

we have h(k, α, p) ≤ h(k, k, p) ≤ h(, 2, 2, p). However, using (3.5), we see that for

p ∈ (0, e−3],

h(2, 2, p) = (1− p)−(1−p)(1 + p)2(1−p)pp

< exp(p + 2p(1− p) + p log e−3)

= exp(−2p2) ≤ 1 .

Fourthly, when α = k,

h(k, k, p) =
(1 + p)k(1−p)pkp

pp(1− p)1−p
,

and hence,

∂

∂p
(log h) =

∂

∂p
(k(1− p) log(1 + p) + kp log p− p log p− (1− p) log(1− p))

= −k log(1 + p) +
k(1− p)

(1 + p)
+ (k − 1) log p + k − 1 + log(1− p) + 1 ,

which converges to −∞ as p goes to 1. Since the derivatives of h and log h have

the same sign, this means that h(k, k, p) is strictly decreasing on (1 − ε, 1) for some

positive ε, i.e., h(k, k, p) > 1, for all p ∈ (1− ε, 1).

Since h is continuous on its domain, h(k, k, e−3) < 1 (Lemma 3.3), and h(k, k, q) >

1 for some q ∈ (e−3, 1), the equation h(k, k, p) = 1 must have a solution in (e−3, q).

The following lemma bounds the smallest such solution from below. The lemma

helps us later on to establish the lower bound on αk, and to prove that the small-

est k-overloaded set in the random graph G(n, kn) has size ratio of at least 1 −
2k exp

(−k + 1 + e−k/4
)
.

Lemma 3.4. For an integer k ≥ 2, let rk be the smallest positive root of the equation

h(k, k, rk) = 1. Then for k large enough,

rk > 1−
(

2

e

)k

e1+e−k/4

.

116 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

Proof. Let ρk = exp((log 2− 1)k + 1 + e−k/4). Since h is continuous, and by Lemma

3.3, we have h(k, k, p) < 1, for all p ∈ (0, e−3], then

rk > 1− ρk ⇐⇒ h(k, k, p) < 1, for all p ∈ (e−3, 1− ρk] .

We shall show that for k large enough, the function g(p) := log h(k, k, p) < 0, for all

p ∈ (e−3, 1− ρk]. First notice that

g(p) = k(1− p) log(1 + p) + (k − 1)p log p− (1− p) log(1− p) ,

g′(p) = −k log(1 + p) +
k(1− p)

1 + p
+ (k − 1) log p + log(1− p) + k .

Thus,

g′′(p) =
−k

1 + p
− 2k

(1 + p)2
+

k − 1

p
− 1

1− p
= 0

⇐⇒ −kp(1− p2)− 2kp(1− p) + (k − 1)(1 + p)2(1− p)− p(1 + p)2 = 0

⇐⇒ (k − 1)p2 − 2(k + 1)p + k − 1 = 0

⇐⇒ p =
k + 1− 2

√
k

k − 1
def
= qk .

Evidently, g′′(p) is strictly positive on (0, qk), and negative on (qk, 1). This yields that

g(p) is strictly convex on (0, qk), and g′(p) is decreasing on [qk, 1). Moreover, using

(3.5), we see that for p ∈ [qk, 1− ρk],

g′(p) ≥ g′(1− ρk)

> k − k log(2− ρk) + (k − 1) log(1− ρk) + log ρk

> (1− log 2)k − (k − 1)ρk

1− ρk

+ (log 2− 1)k + 1

= 1− k2k − 2k

ek−2 − 2k
> 0 ,

when k ≥ 16. This means that g(p) is strictly increasing on [qk, 1−ρk]. Consequently,

g(p) ≤ max(g(e−3), g(1 − ρk)), for all p ∈ [e−3, 1 − ρk]. However, we know that

3.5. LOWER BOUNDS 117

g(e−3) < 0, and for k large enough, (k ≥ 100), we have

g(1− ρk) = kρk log(2− ρk) + (k − 1)(1− ρk) log(1− ρk)− ρk log ρk

< kρk log 2− (k − 1)ρk(1− ρk)− (log 2− 1)kρk − ρk(1 + e−k/4)

= ρk

(
(k − 1)ρk − e−k/4

)
< 0 ,

which completes the proof.

Next, we turn our attention to the definition of αk. Let

A :=
{
α > 0 : ∃ δ ∈ (0, 1) such that h(k, α, p) ≤ δ, ∀ p ∈ (e−3, α/k)

}
,

and recall that αk = supA. Clearly, if β ∈ A, then (0, β) ⊆ A, because h is an

increasing function of α. Also, if γ /∈ A, then αk ≤ γ. This leads to αk ≤ k, because

h(k, k, 1) = 1. The following lemma follows easily.

Lemma 3.5. For any fixed integer k ≥ 2, αk is well-defined and αk ∈ (k/2, k).

Moreover, h(k, αk, p) ≤ 1, for all p ∈ [0, αk/k].

Proof. First, αk is well-defined because A 6= ∅. For instance, by Lemma 3.3, we

have h(k, k/2, p) < h(2, 1, p) < 0.93, for p ∈ (e−3, 1/2) (see Figure 3.6-(d)), and

hence k/2 ∈ A. Thus, trivially, αk ≥ k/2. Now notice that h(k, αk, 0) = 1, and

h(k, αk, αk/k) ≤ 1. So if possible, assume that there is a point q ∈ (0, αk/k) such

that h(k, αk, q) > 1. By the definition of h, we have h(k, qk, q) = q2qk < 1. Therefore,

since h is a continuous increasing function of α, then there is α̃ ∈ (qk, αk) such

that h(k, α̃, q) = 1. That is, α̃ /∈ A, and hence αk ≤ α̃ which is a contradiction.

Thus, h(k, αk, p) ≤ 1, for all p ∈ (0, αk/k). Consequently, Lemma 3.3-(4) leads to

αk < k.

Finally, we have the following lemma.

Lemma 3.6. Let k ≥ 2 be any fixed integer. The following are true:

118 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

1. For α ∈ (αk, k], the equation h(k, α, p) = 1 has at least two positive solutions,

and there exists a point s(k, α) ∈ (e−3, α/k) such that

max
0≤p≤α/k

h(k, α, p) = h(k, α, s) > 1 .

2. The equation h(k, αk, p) = 1 has at least one positive solution.

3. For α, α̃ ∈ [αk, k], if r(k, α) is the smallest positive solution of h(k, α, p) = 1,

then r(k, α̃) > r(k, α), whenever α > α̃.

Proof. First, for α ∈ (αk, k], let s(k, α) be any point at which h(k, α, p) attains its

maximum on [e−3, α/k], and let λ = h(k, α, s), which is positive. If possible, assume

that λ ≤ 1. Let β = (α + αk)/2. Notice that k/2 ≤ αk < β < α. Let q be any point

at which h(k, β, p) attains its maximum on [e−3, β/k]. Then by Lemma 3.3, we see

that for all p ∈ [e−3, β/k],

h(k, β, p) ≤ δ
def
= h(k, β, q) < h(k, α, q) ≤ λ ≤ 1 .

Thus, the definition of αk yields that β ≤ αk which is a contradiction. Consequently,

λ > 1. Since h(k, α, α/k) ≤ 1, and by lemma 3.3, h(k, α, p) ≤ 1, for all p ∈ [0, e−3],

then s ∈ (e−3, α/k), and

max
0≤p≤α/k

h(k, α, p) = h(k, α, s) > 1 .

Since h(k, α, s) > 1, and h(k, α, e−3) < 1, then there is a point q1(k, α) ∈ (e−3, s) such

that h(k, α, q1) = 1, because h is continuous. If α = k, we know that h(k, α, α/k) = 1;

and if α < k, we have h(k, α, α/k) < 1, and hence—for the same reason again—there

is a point q2(k, α) ∈ (s, α/k) such that h(k, α, q2) = 1. That is, h(k, α, p) = 1 has at

least two positive solutions. Next, let

σk := lim
α↘αk

s(k, α) .

3.5. LOWER BOUNDS 119

and notice that

h(k, αk, σk) = lim
α↘αk

h(k, α, s) ≥ 1 ,

because h is continuous on each of its arguments. However, by Lemma 3.5, we have

h(k, αk, p) ≤ 1, for all p ∈ [0, αk/k]. Thus, h(k, αk, σk) = 1. Finally, Lemma 3.3-(3)

yields that h(k, α, p) < h(k, α, r(k, α)) = 1, for p ∈ (0, r(k, α)). Since h(k, α, p) is an

increasing function of α, then for any α̃ ∈ [αk, α), we have h(k, α̃, p) < h(k, α, p) ≤ 1,

for all p ∈ (0, r(k, α)]. This means that r(k, α̃) > r(k, α).

Proof of Theorem 3.3.

First, we prove that ck ≥ αk. Let ε ∈ (0, 1) be any small arbitrary constant. Let

β = αk − ε. By Lemma 3.2 and since ε is arbitrary, it suffices to show that the

random graph G(n, b βn c) does not contain any k-overloaded set of size ≥ e−3n.

For b e−3n c ≤ i ≤ b (βn− 1)/k c, let pi := i/n, and notice that pi ∈ (e−3, β/k).

By the definition of αk, there exists α > β, and a constant δ ∈ (0, 1) such that

h(k, α, p) ≤ δ, for all p ∈ (e−3, α/k). Since h is an increasing function of α, then

h(k, β, p) ≤ h(k, α, p) ≤ δ, for all p ∈ (e−3, β/k). Thus, using inequality (1) of

Lemma 0.1, we see that the probability that G(n, b βn c) contains a k-overloaded set

of size at least e−3n is not more than

b (βn−1)/k c∑

i=b e−3n c

(
n

i

)
P

{
Bin(b βn c , i2/n2) > ki

} ≤
b (βn−1)/k c∑

i=b e−3n c

nn

ii(n− i)(n−i)
Υ(kpi/β, p2

i)
βn

=

b (βn−1)/k c∑

i=b e−3n c
h(k, β, pi)

n

≤ n δn = o(1) .

Secondly, by Lemma 3.5, h(k, αk, p) ≤ 1, for all p ∈ [0, αk/k]. Recall that sk

is a point at which h(k, αk, p) attains its maximum on [e−3, αk/k]. From Lemma

120 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

3.6 we know that h(k, αk, p) = 1 has a solution, and thus, h(k, αk, sk) = 1. Since

αk < k, then by definition, h(k, αk, αk/k) < 1. That is, sk ∈ (0, αk/k) which leads to

hp(k, αk, sk) = 0, because h is smooth on the open interval.

Thirdly, we know, by Lemma 3.6, that for α ∈ (αk, k], the equation h(k, α, p) = 1

has at least two positive solutions. Notice that if ck = αk, there is at least one

solution for h(k, ck, p) = 1, namely sk, and we may have q1(k, ck) = sk = q2(k, ck).

Nevertheless, the following is still true. Since h(k, ck, e
−3) < 1, and h(k, ck, ck/k) < 1,

then the definition of the two points q1(k, ck) and q2(k, ck) implies that h(k, ck, p) < 1,

for all p ∈ (0, q1) ∪ (q2, ck/k). This means that for any arbitrary constant ε ∈ (0, 1)

sufficiently small, there exists a constant δ ∈ (0, 1) such that h(k, ck, p) < δ for all

p ∈ (e−3, q1 − ε] ∪ [q2 + ε, α/k). Therefore, using similar argument as above, we

conclude that the random graph G(n, d ckn e) does not contain any k-overloaded set

of size less than q1(k, ck) nor greater than q2(k, ck), w.h.p. Finally, Lemmas 3.6-(3)

and 3.4 lead to

αk/k > sk ≥ q1(k, αk) ≥ q1(k, ck) > q1(k, k) = rk > 1− e1+e−k/4

(2/e)k ,

for k large enough. ¤

3.5.2 Further Improvements

The lower bounds αk, for k = 2, 3, are smaller than the corresponding ones of the

(k + 1)-core thresholds. In the following, we improve the lower bounds on ck, for

k = 3, 4, 5. However, the technique we use here is not helpful enough to beat the

1.67545943... threshold of the 3-core which stays the best lower bound, thus far, on

c2. We utilize the following lemma to tighten the analysis. Recall that the degree

of any vertex is defined to be the number of its non-loop incident edges plus twice

the number of its loops. For a set of vertices S we write, throughout, min deg(S) to

3.5. LOWER BOUNDS 121

denote the minimum degree—restricted to the subgraph (S, E(S))—of any vertex in

S.

Lemma 3.7. Let k ∈ N. In any graph G, if S ⊆ V(G) is a k-overloaded set such

that |E(A)| ≤ k |A|, for any proper subset A ⊂ S, then min deg(S) ≥ k + 1.

Proof. Let v be any vertex in S, and define A = S − {v}. Since |E(A)| ≤ k |A|, and

|E(S)| ≥ k |S|+ 1, then

deg(v) ≥ |E(S)| − |E(A)| ≥ k(|A|+ 1) + 1− k |A| = k + 1 .

The lemma says that the minimum degree of the smallest k-overloaded set is at

least k + 1, because it does not contain any k-overloaded proper subset. That is, the

smallest k-overloaded set is a connected subgraph where every vertex has degree of at

least k + 1. Otherwise, it consists of two disjoint sets that are not k-overloaded, and

hence their union is also not a k-overloaded set. Thus, if the graph has a k-overloaded

set then it has a (k+1)-core, and its size is at least the size of the smallest k-overloaded

set in the graph. Now we are ready to prove the following improved lower bounds on

ck.

k βk αk

3 2.61845509... 2.48312473...

4 3.65354252... 3.61901095...

5 4.71959504... 4.71902985...

Table 3.5: The threshold ck ≥ βk > αk.

Theorem 3.4. For k = 3, 4, 5, let βk be as specified in Table 3.5. Then the threshold

ck ≥ βk.

122 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

Proof. First, we show how Lemma 3.7 can be used to tighten the analysis. Suppose

we want to prove that the random graph G(n,m) is k-orientable, for given m < kn.

By Lemma 3.2, it suffices to show that G(n,m) does not contain any k-overloaded

set of size greater than i0 := dne−3 e. Let A be the event that the random graph

G(n,m) is not k-orientable. For i = 1, . . . , n, let Ci be the event that G(n,m) does

not contain any k-overloaded set of size ≤ i, and Bi be the event that it contains a

k-overloaded set of size i. Notice that P
{
Cc

i0−1

}
= o(1) (Lemma 3.2), and that

P {A} ≤ P {A ∩ Ci0−1}+ P
{
Cc

i0−1

}
.

Suppose that the vertices in G(n,m) are numbered 1, . . . , n. For 1 ≤ j ≤ i ≤ n,

let Si := {1, . . . , i}, and let Di(j) = [di(j) > k], where di(j) is the degree of the

j-th vertex restricted to the subgraph (Si, E(Si)). Suppose that m = b βn c, where

β ∈ (αk, k) is a constant to be chosen later on to be as large as possible. Let

i∗ = b βn/k c. Using Lemmas 3.1 and 3.7, we see that for n large enough,

P {A ∩ Ci0−1} = P

{(
i∗⋃

i=i0

Bi

)
∩ Ci0−1

}

= P {Bi0 ∩ Ci0−1}+
i∗∑

i=i0+1

P
{
Bi ∩Bc

i−1 ∩ . . . ∩Bc
i0
∩ Ci0−1

}

=
i∗∑

i=i0

P {Bi ∩ Ci−1} ≤
i∗∑

i=i0

(
n

i

)
P { [|E(Si)| > ki] ∩ Ci−1}

≤
i∗∑

i=i0

(
n

i

)
P { [|E(Si)| > ki] ∩ [min deg(Si) > k] }

≤
b bn c∑
i=i0

(
n

i

)
(xi + yi) +

i∗∑

i=d bn e

(
n

i

)
P {|E(Si)| > ki} ,

where b ∈ (e−3, β/k) is a constant to be picked later, and xi and yi are the following

probabilities:

xi = P {[min deg(Si) > k]} ∩ [ki < |E(Si)| ≤ (bn + i)k/2]

yi = P {|E(Si)| > (bn + i)k/2} .

3.5. LOWER BOUNDS 123

We estimate the probability xi as follows. Recall that di(j), the degree of the j-th

vertex in the subgraph (Si, E(Si)), is a binomial random variable with parameters

2 |E(Si)| and 1/n. Using a conditional probability argument, we see that

P
{∩i

j=1Di(j)
∣∣ |E(Si)| = r

}
= P {Di(1) | |E(Si)| = r} ×

P {Di(2) | [|E(Si)| = r] ∩Di(1)} × · · · ×

P {Di(i) | [|E(Si)| = r] ∩Di(1) ∩ . . . ∩Di(i− 1)}

=
i−1∏
j=0

P {Bin(2r − j(k + 1), 1/n) > k} .

Since |E(Si)| L= Bin(m, i2/n2), we have

xi =

b (bn+i)k/2 c∑

r=ki+1

P {|E(Si)| = r}P{∩i
j=1Di(j)

∣∣ |E(Si)| = r
}

≤
b (bn+i)k/2 c∑

r=ki+1

P
{
Bin(m, i2/n2) = r

} i−1∏
j=0

P {Bin(2r − j(k + 1), 1/n) > k}

≤
b (bn+i)k/2 c∑

r=ki+1

P
{
Bin(m, i2/n2) = r

} i−1∏
j=j0

P {Bin(2r − j(k + 1), 1/n) > k} ,

where j0 = max (d (2r − bnk)/(k + 1)− γn e , 0), and γn = o(n)
n−→∞. Notice that

0 ≤ j0 ≤ k(i + bn)

k + 1
− bnk

k + 1
− γn + 1 ≤ ki

k + 1
,

and for all j ≥ j0, we have (2r − j(k + 1))/n < bk < k. Now if i ∈ [i0, bn/2], and

r ∈ (ki, bnk/2], we have j0 = 0; and thence, Angluin-Valiant’s inequality implies

i−1∏
j=j0

P {Bin(2r − j(k + 1), 1/n) > k} ≤ P {Bin (b bnk c , 1/n) > k}i−1

≤ exp

(
−bk(i− 1)

(
1− 1

b
+

1

b
log

1

b

))

≤ exp (−k(i− 1)(b− log b− 1))

≤ exp

(
−ki(b− log b− 1)

k + 1

)
,

124 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

because the constant b − log b − 1 is always positive, by inequality (3.4). On the

other hand, if i ∈ [i0, bn/2], and r ∈ (bnk/2, (bn + i)k/2], or i ∈ (bn/2, bn), we have

j0 = d (2r − bnk)/(k + 1)− γn e. Using the Angluin-Valiant inequality again, we see

that

i−1∏
j=j0

P {Bin(2r − j(k + 1), 1/n) > k} ≤ P {Bin (b bnk + (k + 1)γn c , 1/n) > k}i−j0

≤ exp (−k(i− j0)(b− log b− 1 + o(1)))

≤ exp

(
−ki(b− log b− 1)

k + 1

)
.

Now set pi = i/n, and observe that by inequality (1) of Lemma 0.1, we see that for

all r ∈ (ki, (bn + i)k/2],

P
{
Bin(m, i2/n2) = r

} ≤ P
{
Bin(m, i2/n2) ≥ r

}

≤ P
{
Bin(m, i2/n2) ≥ ki

}

≤ Υ(kpi/β, p2
i)

βn = f(k, β, pi)
n ,

where the function f is as defined in (3.2). For convenience, let

g(k, β, p) := f(k, β, p) exp

(−kp(b− log b− 1)

k + 1

)
,

and notice that g strictly increases as β does, because f does. Thus far, we have

b bn c∑
i=i0

(
n

i

)
xi ≤

b bn/2 c∑
i=i0

(
n

i

)
mg(k, β, pi)

n +

b bn c∑

i=d bn/2 e

(
n

i

)
mg(k, β, pi)

n

≤ m 2bn/2 max
e−3≤ p≤b/2

g(k, β, p)n + m 2bn max
b/2≤ p≤b

g(k, β, p)n . (3.6)

Next, we use inequality (1) to bound the probability yi, so that

b bn c∑
i=i0

(
n

i

)
yi =

b bn c∑
i=i0

(
n

i

)
P

{
Bin(m, i2/n2) > (bn + i)k/2

}

≤
b bn c∑
i=i0

(
n

i

)
t(k, β, pi)

n

≤ 2bn max
e−3≤ p≤b

t(k, β, p)n , (3.7)

3.5. LOWER BOUNDS 125

where

t(k, β, p) := Υ

(
(b + p)k

2β
, p2

)β

=

(
2β(1− p2)

2β − (b + p)k

)β−(b+p)k/2 (
2βp2

(b + p)k

)(b+p)k/2

,

and p ∈ [e−3, b]. Notice that t(k, β, p) is a strictly increasing function of β for the

similar reason mentioned in the proof of the first part of Lemma 3.3. Finally, we use

the function h defined in (3.3), to bound the last part just like before,

i∗∑

i=d bn e

(
n

i

)
P {|E(Si)| > ki} ≤

i∗∑

i=d bn e
h(k, β, pi)

n ≤ n max
b≤ p≤β/k

h(k, β, p)n . (3.8)

Now to make the inequalities (3.6), (3.7) and (3.8) converge to zero, we choose the

constant b such that the following conditions are satisfied with the largest possible

β ∈ (αk, k):

max
e−3≤ p≤b/2

g(k, β, p) < 2−b/2 , max
b/2≤ p≤b

g(k, β, p) < 2−b ,

max
e−3≤ p≤b

t(k, β, p) < 2−b , and max
b≤ p≤β/k

h(k, β, p) < 1 . (3.9)

Since for any β < k, we have h(k, β, β/k) < 1, then clearly, in order to satisfy the

fourth condition, b must be greater than the largest zero of h(k, β, p) = 1. Anal-

ogously, since t is continuous on its domain, the third condition is satisfied only if

b is chosen such that it is strictly less than the smallest zero of t(k, β, p) = 2−b on

(e−3, β/k), and t(k, β, e−3) < 2−b. Thus, we do the following for all k = 3, 4, 5.

First, we solve (numerically) the two equations h(k, β, b) = 1, and t(k, β, b) = 2−b,

simultaneously, where we obtain βk—as specified in Table 3.5—and b. Notice that

t(k, β, b) = f(k, β, b), and

h(k, β, b) =
f(k, β, b)

bb(1− b)1−b
;

and therefore, bb(1− b)1−b = 2−b, which means that b = 0.772907804.... Observe that

b ∈ (e−3, βk/k). Next, we need to prove that βk and b satisfy the first two conditions,

126 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

and for any arbitrary ε ∈ (0, 1), βk− ε and b satisfy the last two conditions. This will

imply that the random graph G(n, b (βk − ε)n c) is k-orientable, for any arbitrary

ε ∈ (0, 1), and hence, ck ≥ βk. The first two conditions can be verified by using

the classical calculus tools like the derivative tests and the Taylor series expansions.

However, instead of burdening the reader with tedious computations, we refer him to

Figures 3.7, 3.8 and 3.9 where these functions are drawn. For those who do not mind

reading such technical details, they may see the appendix at the end of the thesis. It

is not difficult also to prove that t(k, βk, p) is an increasing function in p on [e−3, b],

and h(k, βk, p) is a decreasing function in p on [b, βk/k]. This implies h(k, βk, p) ≤ 1

on [b, βk/k], and t(k, βk, p) ≤ 2−b on [e−3, b]. If q is a point at which t(k, βk − ε, p)

attains its maximum on [e−3, b], then

max
e−3≤ p≤b

t(k, βk − ε, p) = t(k, βk − ε, q) < t(k, βk, q) ≤ 2−b .

Similarly,

max
b≤ p≤β/k

h(k, βk − ε, p) < 1 .

3.5. LOWER BOUNDS 127

0.55

0.6

0.65

0.7

0.75

0.05 0.1 0.15 0.2 0.25 0.3 0.35
p

2-- b / 2

(a)

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
p

2-- b

(b)

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

2-- b

(c)

0.75

0.8

0.85

0.9

0.95

1

0.78 0.8 0.82 0.84 0.86
p

(d)

Figure 3.7: Figure (a) shows g(3, β3, p) < 2−b/2 on [e−3, b/2]. Figure (b) shows

g(3, β3, p) < 2−b on [b/2, b]. Figure (c) shows t(3, β3, p) ≤ 2−b on [e−3, b]. Figure (d)

shows h(3, β3, p) ≤ 1 on [b, β3/3].

128 CHAPTER 3. ORIENTATION AND OFF-LINE TWO-WAY CHAINING

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.05 0.1 0.15 0.2 0.25 0.3 0.35
p

2-- b / 2

(a)

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
p

2-- b

(b)

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

2-- b

(c)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.78 0.8 0.82 0.84 0.86 0.88 0.9
p

(d)

Figure 3.8: Figure (a) shows g(4, β4, p) < 2−b/2 on [e−3, b/2]. Figure (b) shows

g(4, β4, p) < 2−b on [b/2, b]. Figure (c) shows t(4, β4, p) ≤ 2−b on [e−3, b]. Figure (d)

shows h(4, β4, p) ≤ 1 on [b, β4/4].

3.5. LOWER BOUNDS 129

0.4

0.5

0.6

0.7

0.05 0.1 0.15 0.2 0.25 0.3 0.35
p

2-- b / 2

(a)

0.4

0.45

0.5

0.55

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
p

2-- b

(b)

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

2-- b

(c)

0.75

0.8

0.85

0.9

0.95

1

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
p

(d)

Figure 3.9: Figure (a) shows g(5, β5, p) < 2−b/2 on [e−3, b/2]. Figure (b) shows

g(5, β5, p) < 2−b on [b/2, b]. Figure (c) shows t(5, β5, p) ≤ 2−b on [e−3, b]. Figure (d)

shows h(5, β5, p) ≤ 1 on [b, β5/5].

Chapter 4

Speedups and Trade-offs

The performance of the multiple-choice allocation process can be tuned up in many

different ways. In this chapter, we suggest some speedups of algorithm Uniform-

GreedyMC, and we study the trade-offs in terms of maximum bin load, insertion

(allocation) time, and memory size. For convenience, we present some of our results

in terms of balls and bins. Obviously, all of the results, which are summarized in

Table 4.1, can be viewed in the context of hashing with chaining in general, and can

be applied to algorithm Uniform-ShortChain in particular.

One of the main factors that affects the performance of some of the heuristics

we study in this chapter is the number of balls above a certain level, where we say

that a ball is at level i if it is inserted into a bin that contains exactly i− 1 balls just

before insertion. Obviously, if m = n, then upon termination of algorithm Uniform-

GreedyMC(n,m), the number of bins of load at least Ln = o(log log n) is at most

n/Ln. Thus, the probability that any ball chooses two bins whose loads are at least

Ln is at most 1/L2
n. Using a binomial tail inequality, we see that the number of balls

above the level Ln is O(n/L2
n), w.h.p. However, we can do better. Recalling the

waiting time argument (Theorems 1.3 and 2.2), we notice that at the k-th stage we

131

132 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

wait until there are at least nk bins of load at least k, where

nk =





b an/2 c , if k = 0 ;
⌊

an2k+κ−1
/

22k+κ
⌋

, for k ≥ 1 ,

for some constant a ∈ (0, 1), and an integer κ > 1 which is a function of α :=

m/n. This means that upon termination of algorithm Uniform-GreedyMC(n,m),

and for k large enough, there are more than n · 2−2k+κ
= n exp(−2k+κ+log2 log 2) bins

of load at least k, w.h.p. Along the same line, Berenbrink et al. [18] showed this

stronger result which, indeed, implies Theorem 0.3. Recall that we write Uniform-

GreedyMC(n,m, d), where d ≥ 2 is an integer, which could be a function of n,

to denote the algorithm that inserts m balls into n bins where each ball is placed

into the least full bin among d bins chosen independently and uniformly at random,

with replacement, breaking ties randomly. If d = 2, we often just write Uniform-

GreedyMC(n,m).

Theorem 4.1 (Berenbrink et al. [18]). Let n, m, k, d ∈ N such that m ≥ n, and

d ≥ 2. Let Xk denote the number of bins of load at least b k + m/n c upon termi-

nation of algorithm Uniform-GreedyMC(n,m, d). Then there are some positive

constants b and c such that exp(−dk+b) ≤ Xk/n ≤ exp(−dk−c), w.h.p., for all k > c.

Furthermore,

P
{
Xk > n exp(−dk−c)

}
= O(1/n2) .

Now we have the following corollary.

Corollary 4.1. For n,m, k, d ∈ N, where m ≥ n and d ≥ 2, let Yk be the num-

ber of balls above the level b k + m/n c upon termination of algorithm Uniform-

GreedyMC(n,m, d). Then exp(−dk+b+1) ≤ Yk/n ≤ exp(−dk−c), w.h.p., for all

k > c, where b and c are the same constants in Theorem 4.1. Moreover,

P
{
Yk > n exp(−dk−c)

}
= o(1/n) .

4.1. INCREASING THE CHOICES 133

Proof. For i ∈ [m], let Xi be the number of bins of load at least b i + m/n c. First,

Theorem 4.1 implies that Yk ≥ Xk+1 ≥ n exp(−dk+b+1), w.h.p. Now for the upper

bound, let Ai = [Xi ≤ n exp(−di−c)]. Let K = d logd log n + c + 1 e. Notice that if

AK is true, then for all i ≥ K, the event Ai is also true. Let k̃ := exp(dk−c), and

observe that k̃ ≥ 2, because k > c. Thus, if all the events Ai, for i = k + 1, . . . , K,

are true, we see that

Yk =
m∑

i=k+1

Xi ≤
m∑

i=1

n exp
(−dk−c+i

)
=

n

k̃

m∑
i=1

exp
(−(di − 1)dk−c

) ≤ n

k̃

∞∑
i=1

k̃−i ≤ n

k̃
.

This means that

P
{
Yk > n exp(−dk−c)

} ≤ P
{

K⋃

i=k+1

Ac
i

}
≤

K∑

i=k+1

P {Ac
i} = O(K/n2) = o(1/n) ,

because, by Theorem 4.1, P {Ac
i} = O(1/n2).

Throughout this thesis, we have ignored the time needed to compute the hashing

values which is basically because we often deal with only two hash functions. However,

since in this chapter we are going to consider the case of increasing the choices for

any d ≥ 2, we change our assumption temporarily. Throughout this chapter only, we

assume that any hashing value can be computed in one unit of time; and any ball can

be accessed and examined in one time unit. Furthermore, we assume that α := m/n

is constant, and d = o(log n).

4.1 Increasing the Choices

We have seen in the aftermath of Theorem 2.6 that one can dramatically decrease

the maximum bin load by slightly increasing the number of bins. More precisely,

Theorem 2.6 states that for any integer r ∈ [2, log2 n/4], the maximum bin load of

Uniform-GreedyMC(
⌊
n1+1/r

⌋
, n), which inserts n balls into

⌊
n1+1/r

⌋
bins, is at

134 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

most log2 r + Θ(1), w.h.p. Therefore, if we take r = log log n, the maximum search

time of Uniform-ShortChain(
⌊
n1+1/r

⌋
, n) is at most 2 log2 log log n+Θ(1), w.h.p.

On the other hand, one might also think about increasing the number of choices

available for each ball or key. Recall that upon termination of algorithm Uniform-

GreedyMC(n,m, d), Theorem 0.2 asserts that the maximum bin load is logd log n±
Θ(1), asymptotically almost surely. These bounds are true for any integer d ≥ 2,

even if it is a function on n. In particular, if we choose d = Θ(log log n/ log log log n),

then the maximum bin load is Θ(log log n/ log log log n), w.h.p. This is a useful im-

provement for many applications such as on-line load balancing and dynamic resource

allocation. The trade-off, however, is that the total allocation (insertion) time per

ball increases to Θ(log log n/ log log log n) as opposed to Θ(1) when d is a constant.

On the other hand, increasing the number of choices does not provide a big help for

applications like hashing.

Three-way Chaining

In hashing with chaining, the emphasis is on the average and the worst-case search

times. The worst-case search time is related to the time needed to search the d longest

chains in the hash table, (plus d, for computing the d hash functions). The next

theorem shows that the worst-case search time of Uniform-ShortChain(n,m, d)

is d logd log n ± Θ(d), w.h.p. Therefore, allowing three choices for each element—

because the minimum of d/ log d occurs when d = 3—suffices to obtain the optimal

worst-case search time of Uniform-ShortChain(n,m, d).

Theorem 4.2. Let n,m, d ∈ N such that 2 ≤ d = o(log n) and m = Θ(n). Upon ter-

mination of algorithm Uniform-ShortChain(n,m, d), the worst-case search time

is d logd log n±Θ(d), w.h.p.

Proof. It is easy to see that the maximum search time is d logd log n + O(d), because

4.1. INCREASING THE CHOICES 135

the longest linked list in the hash table is at most logd log n + O(1), w.h.p., and in

the worst-case we have to search d distinct lists. For the lower bound, we know that

w.h.p., the longest linked list is at least ξn := logd log n−c, for some positive constant

c. This means that w.h.p., there is a key b at level ξn; that is, the d choices of b are

chains of length at least ξn − 1. However, since d = o(log n), then by the birthday

paradox, the d choices of b are distinct, w.h.p. Thence, the maximum search time is

at least d + d(ξn − 1) = dξn, w.h.p.

This means that w.h.p., the maximum search time is 2.885390...× log log n±Θ(1),

when d = 2, and it is 2.730717...× log log n± Θ(1), when d = 3. However, we know

that by Theorem 1.1, the average search time of Uniform-ShortChain, when

d = 2, is at most twice the average search time of the uniform classical algorithm

ClassicChain. Using three hash functions, however, increases the average search

time to three times of the classical one. This is because we have to search three

chains, and we know that the expected chain length cannot be less than the load

factor α. Therefore, one has to compromise between decreasing the maximum search

time by a small constant factor versus tripling the average search time. This is the

main reason why we opted to limit our study to two-way chaining.

Analogously, the same speedups and trade-offs can be applied for Vöcking’s algo-

rithm LeftMC(n,m, d). Theorem 0.5 states that the maximum bin load upon ter-

mination of LeftMC(n,m, d) is log log n/(d log φd)+Θ(1), w.h.p. That is, if we use

d = Θ(
√

log log n) hash functions, the maximum bin load reduces to Θ(
√

log log n),

because d log φd > (d − 1) log 2. The benefits of this reduction can be seen in load

balancing, resource allocation problems and even in hashing. However, the insertion

time increases to O(d). The following theorem follows trivially.

Theorem 4.3. Let n,m, d ∈ N such that 2 ≤ d = o(log n) and m = Θ(n). Upon

termination of algorithm Left-ShortChain(n, m, d), the worst-case search time is

136 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

log log n/ log φd±Θ(d), w.h.p. So if d = o(log log n), then the worst-case search time

is asymptotic to log log n/ log φd, in probability.

Notice that this is an improvement on the wosrt-case performance of Uniform-

ShortChain, because for any d ≥ 2,

3

log 3
= 2.730717... > 2.0998... =

1

log 1.61
>

1

log φd

>
1

log 2
= 1.44269... ,

because 1.61... = φ2 < φ3 < φ4 < · · · < 2, and limd→∞ φd = 2.

4.2 Hashing with Balanced Trees

One can speedup two-way chaining algorithm by inserting the data within each cell in

a balanced binary search tree such as AVL tree, a red-black tree, or a B-tree. Instead

of a linked list, suppose, for instance, that each cell in the hash table points to a

separate AVL tree, and with each cell, we save the size of the tree it points to. As

usual, two independent truly uniform hash functions are used, then, to choose two

AVL trees for each element, and we insert the element into the smallest one, breaking

ties arbitrarily. As a shortcut, we write AVL-Hash(n,m) to refer to this method of

hashing.

Figure 4.1: Hashing with AVL binary search trees

It is known [103, §6.2.3] that the height of an AVL binary search tree of size n is

at most logφ n+Θ(1), where φ is the golden ratio (1+
√

5)/2 = 1.61803398..., and the

4.2. HASHING WITH BALANCED TREES 137

insertion and deletion time is O(log n). This implies that the maximum search time

in AVL-Hash(n,m) is 2 logφ log log n + Θ(1), w.h.p.; and the worst-case insertion

time is O(log log log n), w.h.p. Nonetheless, the following theorem asserts that the

average expected insertion time in AVL-Hash(n,m) is constant.

Theorem 4.4. Let m, n ∈ N such that m/n ≥ 1 is constant. The average inser-

tion time in AVL-Hash(n,m) is constant, w.h.p., and hence, the average expected

insertion time is constant.

Proof. Let T be the total insertion time in AVL-Hash(n,m). It is obvious that

m ≤ T < m2. For k ∈ [m], let Nk be the number of AVL trees in AVL-Hash(n,m)

of size exactly b k + m/n c, which is less than the number of bins in Uniform-

GreedyMC(n,m) of load at least b k + m/n c. Let A denote the event that Nk ≤
n exp(−2k−c), for all k ∈ (c, m], where c is the same constant in Theorem 4.1. Let

N0 be the number of AVL trees of size at most m/n + c. For any AVL tree of size k,

we bound the total insertion time of its elements by k2. Now notice that if A is true,

then

T ≤ (m/n + c)2N0 +
m∑

k=d c e
(m/n + k)2Nk

≤ (m/n + c)2n +
m∑

k=d c e
(m/n + k)2 n exp(−2k−c) ≤ γn ,

for some constant γ. In other words, the event [T > γn] implies Ac. Theorem 4.1

says that P
{
Nk > n exp(−2k−c)

}
= O(1/n2), for all k ∈ (c, m], and thus, the union

bound leads to P {T > γn} ≤ P {Ac} = O(1/n). Hence,

E [T] =
n2∑
i=1

P {T ≥ i} ≤ γn + n2P {T > γn} = O(n) .

Thus, E [T] /m is constant, and T/m is constant, w.h.p.

138 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

4.3 Partially Off-line Processes

The memory algorithm Uniform-GreedyMC(n, n) uses during the insertion of any

ball is O(1), as upon the arrival of each ball it only needs to choose two bins, compare

their loads, and then insert the ball into the least loaded bin. On the other hand, the

off-line version of Uniform-GreedyMC(n, n) uses Θ(n) memory, because it waits

for the n balls to arrive, and finds an assignment after knowing all the 2n choices

of the balls. The off-line process has more knowledge, and hence more freedom and

power, because it is not obliged to follow the greedy paradigm of inserting each ball

into the least full bin. The on-line process achieves log2 log n + Θ(1) maximum bin

load, w.h.p.; while in the off-line version, one can find an assignment that decreases

the maximum bin load to two, w.h.p. So at the cost of larger memory and longer

waiting time, one can decrease the maximum bin load.

This promotes the idea of partially off-line Uniform-GreedyMC with memory

of size k = o(n). Keeping in mind that each ball chooses two bins independently and

uniformly at random, with replacement, suppose we divide the allocation process

into stages. At each stage we wait for k = o(n) balls to arrive—except possibly

the last stage—and then we assign them off-line to the bins (via algorithm Assign,

described below) such that w.h.p., each k balls are inserted into k distinct bins. We

write StagesMC(n, n, k) to refer to this partially off-line multiple -choice allocation

process with memory of size k. We would like to study the maximum bin load of

StagesMC(n, n, k) for different ranges of k.

The off-line algorithm Assign inserts each group of k balls into the bins so that

w.h.p., each ball ends up in a distinct bin. The input of the algorithm is the k balls

and their choices of bins, where each ball has two bins. For each bin u, let ψ(u) be

the number of times the bin is chosen, and suppose that ψ(u) is saved with each bin

and is kept updated, and that ψ(u) can be accessed in one time unit. We also assume

4.3. PARTIALLY OFF-LINE PROCESSES 139

that there are two-way links between each ball and its two chosen bins.

Assign:

Let L be the list of all bins u such that ψ(u) = 1.

for each bin u ∈ L do

Let b be the ball that has chosen u, and let v be the second bin chosen by b.

Insert b into u, remove it from L, and let ψ(v) ← ψ(v)− 1.

If ψ(v) = 1, then add v to the list L.

If ψ(v) = 0, then remove v from the list L.

end for

Insert all balls that are not inserted yet into their first-choice bins.

Figure 4.2: An illustration of the algorithm Assign.

To understand the algorithm, recall the random graph G(n, k) which is based on

the off-line version of Uniform-GreedyMC(n, k). The k edges in G(n, k), which

may contain loops and multiedges, are constructed from the 2k random choices of the

k balls. Notice that for any k = o(n), the random graph G(n, k) is asymptotically

equivalent to the classical Erdös and Rényi’s random graph G(n, k) which is known

to be a forest, w.h.p.; indeed, the probability that the random graph G(n, k) contains

a cycle is not more than

k∑
i=1

(
n

i

)
P

{
Bin(k, i2/n2) ≥ i

} ≤
k∑

i=1

(en

i

)i
(

eki

n2

)i

≤
k∑

i=1

(
e2k

n

)i

≤ 2e2k

n
= o(1) ,

140 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

for n large enough, where we have used the binomial inequality (3) of Lemma 0.1.

This means that the G(n, k) can be oriented such that the maximum out-degree is

one, i.e., a 1-orientation can be found. In fact, a 1-orientation can be achieved even

if each tree has at most one loop. This can be done as follows. For each vertex

of degree one (a leaf) in any tree, orient its incident edge outward, i.e., toward the

parent. Now ignore the oriented edges and repeat the same step for the remaining

undirected trees. The last edge to be oriented in any tree is the loop, if the tree

has one. This is what the algorithm Assign is in essence doing, equivalently. The

running time of the algorithm is O(k).

Now let us see how the maximum bin load changes with k. First of all, by the

birthday paradox, we know that if k = o(
√

n), then w.h.p., the 2k choices of the

balls do not overlap, and hence each ball ends up in a distinct bin [105]. That is,

stochastically, there is no difference between the off-line and on-line insertion of the

k balls. Thus, in this case, StagesMC(n, n, k) is not better than the on-line version,

as it is confirmed by the second part of Theorem 0.2.

To study the maximum bin load for general k, we need to consider the analo-

gous problem in the classical allocation process Classical(n, n). Recall that the

maximum bin load of Classical(n, n), where each ball is inserted into a bin cho-

sen independently and uniformly at random with replacement, is asymptotic to

ξn := log n/ log log n, in probability. For simplicity, assume that n = kr, for some

positive integers k = o(n) and r. Now consider the following adaptive process which

is divided into r stages. At each stage we wait for k balls to arrive, and then we as-

sign them to k distinct bins chosen at random, where any k distinct bins are equally

likely to be chosen, i.e., the probability that we choose any k distinct bins is 1/
(

n
k

)
.

Let us refer to this process by ClassicStages(n, n, k). The question now is: does

this yield a better maximum bin load than ξn? Evidently, the answer depends on k.

4.3. PARTIALLY OFF-LINE PROCESSES 141

Again, if k = o(
√

n), then by the birthday paradox, the modified process is equivalent

to the classical allocation process, and so the maximum bin load does not improve.

Indeed, the following theorem asserts that if k ≥ cn/ξn, for some constant c > 1, the

maximum bin load w.h.p., decreases to n/k which is strictly less than ξn; otherwise,

the maximum bin load does not change, i.e., it is asymptotic to ξn, in probability.

Before we prove this result we need a brief introduction to it.

Recall that in the classical allocation process Classical(n, n), the distribution

of the bin loads (X1, . . . , Xn) is a multinomial with parameters n and (1/n, . . . , 1/n),

where the random variable Xi
L
= Bin(n, 1/n) is the load of the i-th bin. Notice that

the Xi are dependent, because the
∑n

i=1 Xi = n; but more importantly, they are

negatively associated (or negatively correlated). This, plainly, means that

P {X1 < x1 |X2 < x2} ≤ P {X1 < x1} ,

because if the number of balls decreases in one bin, it is more likely to increase in

the other. Therefore, Mallows’ inequality, which is a useful tool for proving the lower

bound on the maximum bin load, holds here.

Returning back to ClassicStages(n, n = kr, k), let Ni, for i ∈ [n], denote the

load of the i-th bin. Notice that during any stage, the probability that a ball falls

into a certain bin is k
(

n−1
k−1

)
/
(

n
k

)
= k/n = 1/r. Hence, the load of the i-th bin

Ni
L
= Bin(r, 1/r). It is evident, however, that the bin load vector (N1, . . . , Nn) is not

multinomial. So, we cannot conclude directly that the Ni are negatively associated,

and use the Mallows inequality. Nonetheless, the inequality

P {N1 < t1 |N2 < t2} ≤ P {N1 < t1}

still holds for the same reason mentioned above, roughly speaking. In fact, Dubhashi

et al. [56, Sec. 5.2] and [57], in the context of the Fermi-Dirac model, proved that

the Ni are negatively associated. Hence, we can still use Mallow’s inequality.

142 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

Theorem 4.5. Assume that n = rk, for some positive integers r and k. Suppose we

insert n balls into n bins via ClassicStages(n, n, k). Let Y be the maximum bin

load upon termination. If r ≤ (1 − ε) log n/ log log n, for some constant ε ∈ (0, 1),

then Y = r, w.h.p.; otherwise, Y ∼ log n/ log log n, in probability.

Proof. Recall that Ni
L
= Bin(r, 1/r), for i ∈ [n]. Let λ ∈ [0, r) be any integer. Observe

that (1− 1/r)λ ≥ 1− λ/r. Thus,
(

r

λ

)
1

rλ
=

r(r − 1)λ

(r − λ)rλ

(
r − 1

λ

)
1

(r − 1)λ
≥

(
r − 1

λ

)
1

(r − 1)λ
.

Thence, if r ≥ t := b (1− o(1)) log n/ log log n c, we have
(

r
λ

)
/rλ ≥ (

t
λ

)
/tλ. Notice

that the sequence (1− 1/r)r increases to 1/e, monotonically. Thus, for all i ∈ [n], we

have

P {Ni = λ} ≥
(

r

λ

)
1

rλ
(1− 1/r)r ≥

(
t

λ

)
1

tλ
1

3
≥ 1

3tλ
,

for n large enough. Since the Ni are negatively associated, we have

P {Y < λ} = P {N1 < λ, . . . , Nn < λ} ≤
n∏

i=1

P {Ni < λ}

=
n∏

i=1

(1− P {Ni ≥ λ}) ≤
n∏

i=1

(1− P {Ni = λ})

= exp
(−n/(3tλ)

)
= exp (−nε) = o(1) ,

if λ = (1 − ε) log n/ log log n, for any constant ε ∈ (0, 1). For the upper bound, the

union bound and inequality (3) of Lemma 0.1 yield that

P {Y > λ} ≤
n∑

i=1

P {Ni > λ} ≤ n
(e

λ

)λ

= n−ε+o(1) = o(1) ,

if λ = (1 + ε) log n/ log log n, for any constant ε ∈ (0, 1). On the other hand, if

r ≤ (1−ε) log n/ log log n, for some constant ε ∈ (0, 1), then P {Ni = r} = r−r ≥ n1−ε;

and so again

P {Y < r} ≤
n∏

i=1

(1− P {Ni = r}) = exp (−nε) = o(1) .

Therefore, Y = r, w.h.p.

4.3. PARTIALLY OFF-LINE PROCESSES 143

Now recall that at each stage of StagesMC(n, n, k), where k = o(n), the balls

are inserted into k distinct bins, w.h.p. The maximum bin load is at most dn/k e,
deterministically. However, the important point here is that the k distinct bins

may not be uniformly distributed as in ClassicStages(n, n, k). Intuitively, this

means that StagesMC(n, n, k) is at most as good as ClassicStages(n, n, k). That

is, the maximum bin load of StagesMC(n, n, k) is not better than the maximum

bin load of ClassicStages(n, n, k). Thus, if we want the maximum bin load of

StagesMC(n, n, k) to be less than log2 log n, then, by Theorem 4.5, k must be at

least n/ log2 log n. Thus, if we take k = bn/ log log log n c, then the worst-case search

time of StagesMC(n, n, k) is 2 log log log n+2, w.h.p., and the amortized allocation

time is O(1). However, the trade-off is that the allocation time per ball is O(k) which

might be an expensive cost.

Corollary 4.2. Let n, k ∈ N. If n/ log2 log n ≤ k ¿ n, then the maximum bin load

of StagesMC(n, n, k) is dn/k e, w.h.p.

Clearly, this is an improvement for hashing, if the concentration is on the worst-

case search time and not the worst-case insertion time. However, this is certainly

not helpful for an application where the maximum search time is not an important

measure such as on-line load balancing and dynamic resource allocations. Remember

that for such applications, we can decrease the maximum bin load of Uniform-

GreedyMC(n, n) by using d = o(log log n) hash functions instead of only two, where

the allocation time for each ball (and the amortized allocation time) is O(d). The

worst-case search time resulting from this speedup, however, is not plausible.

144 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

4.4 Processes with Load Thresholds

One can improve the maximum bin load of Uniform-GreedyMC(n,m) by reas-

signing the balls that are above certain level, say bLn + m/n c, assuming that the

reassignment can be done efficiently in some sense. This depends, trivially, on the

number of balls we have to reassign. Given that Ln = o(log log n), and Ln
n−→∞,

Corollary 4.1 says that w.h.p., the number of “bad balls” that exceed the bLn + m/n c
load threshold in Uniform-GreedyMC(n,m) is at most n exp(−2Ln−c) = o(n). For

instance, if Ln = log2 log log n + c, the number of balls above the level bLn + m/n c
is at most n/ log n = o(n). Now since the number of bad balls is “small”, one can

rearrange these balls off-line in a special way so that each ball ends up in a distinct

bin. This has been demonstrated above by the off-line algorithm Assign, which is

based on the fact that the random graph generated from the ball choices is a forest,

w.h.p.

This leads to the following partially off-line Uniform-GreedyMC. First we

choose our load threshold Ln so that Ln = o(log log n), and Ln
n−→∞. We divide

the allocation process into two mini-processes. The first one follows the same greedy

strategy of the on-line algorithm Uniform-GreedyMC (assigning the balls upon

arrival to the least full bin among two bins chosen independently and uniformly at

random, breaking ties at random), but with only one exception. Any ball that chooses

two bins with loads more than bLn + m/n c is not inserted, and put aside for the

second mini-process to deal with. Notice that the number of balls that are put aside

is at most o(n), w.h.p. Hence, once all the m balls arrive, the second mini-process

uses the off-line algorithm Assign to insert the remaining balls. Let us refer to this

partially off-line process by PO-Threshold(n,m, Ln).

The maximum bin load of PO-Threshold(n,m, Ln) is bLn + m/n c+1, w.h.p.,

and hence the worst-case search time is 2 bLn + m/n c + 4, w.h.p. The allocation

4.4. PROCESSES WITH LOAD THRESHOLDS 145

Ln

Figure 4.3: An illustration of the process PO-Threshold(n,m,Ln).

time is deterministically constant for each ball inserted during the first phase, and

it is tn := Θ(n exp(−2Ln±Θ(1))), w.h.p., for all the balls inserted during the second

phase. Thus, the amortized allocation time is still O(1); and, obviously, the worst-

case allocation time is tn, w.h.p. But what about the expected allocation time?

Unfortunately, even the expected allocation time is at least tn, as it shown in this

lemma.

Lemma 4.1. Let n,m, Ln ∈ N such that m/n ≥ 1 is constant, and 1 ¿ Ln ¿
log log n. In algorithm PO-Threshold(n,m, Ln), the expected allocation time of a

certain ball picked uniformly at random is tn.

Proof. Let T be the allocation time of a certain ball picked uniformly at random.

Let A be the event that the number of balls inserted during the second phase is at

least ζn := n exp(−2Ln+b+1), where b is the same constant in Theorem 4.1. We know

that A occurs w.h.p. Let B be the event of being inserted during the second phase.

Recall that the running time of the algorithm Assign is O(k) for assigning k balls.

By Markov’s inequality, and for n large enough, we have

E [T] ≥ ζn P {T ≥ ζn} ≥ ζn P {A ∩B} ≥ ζn P {A}P {B |A}

≥ ζn

2

n

m
exp

(−2Ln+b+1
)

= Ω
(
n exp

(−2Ln+b+2
))

.

Next, let C be the event that the number of balls inserted during the second phase

is at most ξn := n exp(−2Ln−c), where c is the same constant in Theorem 4.1. Notice

146 CHAPTER 4. SPEEDUPS AND TRADE-OFFS

that

T ≤ T I[B∩C] + T I[Bc] + T I[Cc]

≤ O(ξn) + O(1) + m I[Cc] ,

However, Corollary 4.1 says that P {Cc} = o(1/n), and so E [T] = O(ξn) + o(1).

Once again, because of the high cost of the allocation time during the second

off-line mini-process, the process PO-Threshold may not be the best choice for

on-line load balancing and dynamic resource allocation.

4.4. PROCESSES WITH LOAD THRESHOLDS 147

Uniform-GreedyMC(n,m, d) where d ≥ 2

maximum bin load = logd log n + O(1), w.h.p.

maximum search time = d logd log n + O(d), w.h.p.

maximum allocation time = Θ(d)

amortized allocation time = Θ(d)

avg. exp. allocation time = Θ(d)

Uniform-GreedyMC(
⌊
n1+1/r

⌋
,m), where 2 ≤ r ≤ log2 n/4

maximum bin load ≤ log2 r + Θ(1), w.h.p.

maximum search time ≤ 2 log2 r + Θ(1), w.h.p.

maximum allocation time = Θ(1)

amortized allocation time = Θ(1)

avg. exp. allocation time = Θ(1)

AVL-Hash(n,m), where φ is the golden ratio.

maximum bin load = logφ log log n + Θ(1), w.h.p.

maximum search time = 2 logφ log log n + Θ(1), w.h.p.

maximum allocation time = Θ(log log log n), w.h.p.

amortized allocation time = O(log log log n) (worst-case)

avg. exp. allocation time = Θ(1)

StagesMC(n,m, kn), where n/ log2 log n ≤ kn ¿ n

maximum bin load (=) dm/kn e, w.h.p.

maximum search time (=) 2 dm/kn e+ 2, w.h.p.

maximum allocation time = Θ(kn)

amortized allocation time = Θ(1)

avg. exp. allocation time = Θ(kn)

PO-Threshold(n,m, Ln), where 1 ¿ Ln ¿ log log n

maximum bin load = bLn + m/n c+ 1, w.h.p.

maximum search time = 2 bLn + m/n c+ 4, w.h.p.

maximum allocation time = Θ
(
n exp

(−2Ln±Θ(1)
))

, w.h.p.

amortized allocation time = Θ(1)

avg. exp. allocation time = Θ
(
n exp

(−2Ln±Θ(1)
))

Table 4.1: The performances of the above processes, where m/n is constant.

Part II

Hashing with Open Addressing

149

150

Open addressing is a collision resolution method that does not use chains or

pointers. The idea of hashing with open addressing appears to have been suggested,

first, around 1953 by G. M. Amdahl, E. M. Boehme, N. Rochester, and A. L. Samuel

who also used, for the first time, linear probing [103, p. 547]. The first published

article about open addressing with linear probing is the Russian monograph written

by Ershov [62]. About the same time, Peterson [147] wrote the first major paper

that analyzes the average performance of uniform probing. Statistical data about the

behavior of linear probing were also given. Knuth [102, 103] reported that he analyzed

the average performance of linear probing in unpublished notes in 1963. The first

published analysis is done by Konheim and Weiss [106]. Morris [136] introduced

random probing.

In this part of the thesis, we focus on some open addressing ideas inspired by the

two-way chaining paradigm. In particular, we study the concept of two-way linear

probing. In Chapter 5, we recall some of the related history, and we analyze the

basic idea of two-way linear probing demonstrating that it is not always fruitful.

Subsequently, we introduce, in Chapter 6, some successful two-way linear probing

algorithms that improve the performance.

Chapter 5

Two-way Linear Probing: the

Naked Idea

We study on-line open addressing schemes that use two linear probe sequences to find

possible hashing cells for the keys as follows. Each key chooses two initial cells (from

a hash table with n cells) independently and uniformly ar random, with replacement.

From each initial cell, we probe linearly, and cyclically whenever the last cell in the

table is reached, to find two empty cells which we call terminal cells. The key then

is inserted into one of these terminal cells according to a fixed strategy. We consider

strategies that utilize the greedy multiple-choice paradigm. For example, one of the

trivial strategies inserts each key into the terminal cell found by the shortest probe

sequence. Another simple strategy inserts each key into the terminal cell that is

adjacent to the smallest cluster, where a cluster is an isolated set of consecutively

occupied cells. Unfortunately, the performances of these two strategies are not as

good as we might expect. We prove that the maximum unsuccessful search time is

Ω(log n/ log log n), w.h.p., when any of these two strategies is used to construct a

hash table with constant load factor. We also show that an Ω(log log n) universal

151

152 THE NAKED IDEA

lower bound holds for any strategy that uses two linear probe sequences, even if the

initial cells are chosen according to arbitrary probability distributions.

5.1 History and Motivation

In classical open addressing hashing [147], m keys are hashed sequentially and on-

line into a table of size n > m, (that is, a one-dimensional array with n cells which

we denote by the set T = {0, . . . , n− 1}), where each cell can harbor at most one

key. Each key x has only one infinite probe sequence fi(x) ∈ T , for i ∈ N, where

fi(x) is the i-th probe available for the key x. During the insertion process, if a

key is mapped to a cell that is already occupied by another key, a collision occurs,

and another probe is required. The probing continues until an empty cell is reached

where a key is placed. For further details see [103, 80, 169]. This method of hashing

is pointer-free, unlike hashing with separate chaining which we studied in the first

part of the thesis.

Probing and Replacement

Open addressing schemes are determined by the type of probe sequence, and the

replacement strategy for resolving collisions. Some of the commonly used probe

sequences are:

1. Random Probing [136]: For every key x, the infinite sequence fi(x) is as-

sumed to be independent and uniformly distributed over T . That is, we require

to have an infinite sequence fi of truly uniform and independent hash functions.

If for each key x, the first n probes of the sequence fi(x) are distinct, i.e., it is

a random permutation, then it is called uniform probing [147].

2. Linear Probing [147]: For every key x, the first probe f1(x) is assumed to be

5.1. HISTORY AND MOTIVATION 153

uniform on T , and the next probes are defined by fi+1(x) = fi(x) + 1 mod n,

for i ∈ [n]. So we only require f1 to be a truly uniform hash function.

3. Double Probing [15]: For every key x, the first probe is f1(x), and the next

probes are defined by fi+1(x) = fi(x) + g(x) mod n, for i ∈ N, where f1 and g

are truly uniform and independent hash functions.

Random and uniform probings are, in some sense, the idealized models [164, 178],

and their plausible performances are among the easiest to analyze; but obviously they

are unrealistic. Linear probing is perhaps the simplest to implement, but it behaves

badly when the table is almost full. Double probing can be seen as a compromise.

During the insertion process of a key x, suppose that we arrive at the cell fi(x)

which is already occupied by another previously inserted key y, that is, fi(x) = fj(y),

for some j ∈ N. Then a replacement strategy for resolving the collision is needed.

Three strategies have been suggested in the literature (see [138] for other methods):

1. first come first served (fcfs) [147]: The key y is kept in its cell, and

the key x is referred to the next cell fi+1(x).

2. last come first served (lcfs) [151]: The key x is inserted into the cell

fi(x), and the key y is pushed along to the next cell in its probe sequence,

fj+1(y).

3. robin hood [29, 28]: The key which travelled the furthest is inserted into

the cell. That is, if i > j, then the key x is inserted into the cell fi(x), and the

key y is pushed along to the next cell fj+1(y); otherwise, y is kept in its cell,

and the key x tries its next cell fi+1(x).

154 THE NAKED IDEA

Average Performance

Evidently, the performance of any open addressing scheme deteriorates when the load

factor α := m/n of the hash table approaches 1, as the cluster sizes increase, where

a cluster is an isolated set of consecutively occupied cells (cyclically defined) that

are bounded by empty cells. Therefore, we shall assume, throughout this chapter,

that α ∈ (0, 1) is a constant. The asymptotic average-case performance has been

extensively analyzed for random and uniform probing [147, 136, 164, 109, 178, 21],

linear probing [102, 103, 106, 125], and double probing [15, 84, 115, 162, 158]. The

expected search times were proven to be constants, more or less, depending on α only.

Recent results about the average-case performance of linear probing, and the limit

distribution of the construction time have appeared in [166, 67, 104]. See also [78,

148, 4] for the average-case analysis of linear probing for nonuniform hash functions.

It is worth noting that the average search time of linear probing is independent of

the replacement strategy; see [147, 103]. This is because the insertion of any order of

the keys results in the same set of occupied cells, i.e., the cluster sizes are the same;

and hence, the total displacement of the keys—from their initial hashing locations—

remains unchanged. It is not difficult to see that this independence is also true for

random and double probings. That is, the replacement strategy does not have any

effect on the average successful search time in any of the above probings. In addition,

since in linear probing the maximal unsuccessful search time is related to the cluster

sizes (unlike random and double probings), the maximum unsuccessful search times

in linear probing is invariant to the replacement strategy.

It is known that lcfs [151, 152] and robin hood [29, 28, 138, 166] strategies

minimize the variance of displacement. Recently, Janson [95] and Viola [165] studied

the effect of these replacement strategies on the individual search times in linear

probing hashing.

5.1. HISTORY AND MOTIVATION 155

Worst-case Performance

The focal point of this chapter is the worst-case search time which is proportional to

the length of the longest probe sequence over all keys (llps, for short).

The worst-case performance of linear probing with fcfs policy was analyzed by

Pittel [149]. He showed that the maximum cluster size, and hence the llps needed

to insert (or search for) a key, is asymptotic to (α− 1− log α)−1 log n, in probability.

This bound holds for linear probing with any replacement strategy. Chassaing and

Louchard [30] studied the threshold of emergence of a giant cluster in linear probing.

They showed that when the number of keys m = n − ω(
√

n), the size of the largest

cluster is o(n), w.h.p.; however, when m = n − o(
√

n), a giant cluster of size Θ(n)

emerges, w.h.p.

Gonnet [79] proved that with uniform probing and fcfs replacement strategy, the

expected llps is asymptotic to log1/α n−log1/α log1/α n+O(1). However, Poblete and

Munro [151, 152] showed that if random probing is combined with the lcfs policy,

then the expected llps is at most (1 + o(1))Γ−1(αn) = O(log n/ log log n), where Γ

is the gamma function.

On the other hand, the robin hood strategy with random probing leads to a

more striking performance. Celis [28] first proved that the expected llps is O(log n).

However, Devroye, Morin and Viola [45] tightened the bounds and revealed that the

llps is indeed log2 log n ± Θ(1), w.h.p., thus achieving a double logarithmic worst-

case insertion and search times for the first time in open addressing without using

rehashing techniques. Unfortunately, one cannot ignore the unrealistic assumption

in random probing about the availability of an infinite collection of independent and

truly uniform hash functions. On the other side of the coin, we already know that

robin hood policy does not affect the maximum unsuccessful search time in linear

probing. However, robin hood may be promising with other probing methods.

156 THE NAKED IDEA

Other Initiatives

Open addressing methods that rely on rearrangements of keys have been studied

in [22, 119, 154, 81, 118, 138]. Most importantly is cuckoo hashing, introduced by

Pagh and Rodler [146]. The scheme exploits the lcfs replacement policy in a hash

table partitioned into two parts. The worst-case search time is at most two, and the

amortized expected insertion time is constant. However, the pitfall of this scheme

is that it depends on a rehashing process which uses a wealthy source of provably

good independent hash functions. See also [44, 69, 53, 141]. Broder and Karlin

[23] suggested a multilevel hashing scheme with O(log log n) worst-case search time,

but it uses O(log log n) hash functions and a rehashing technique. Many real-time

static and dynamic perfect hashing schemes achieving constant worst-case search

time, and linear (in the table size) construction time and space were designed in

[74, 23, 48, 52, 51, 50, 142, 144]. Usually such schemes employ more than a constant

number of perfect hash functions chosen from an efficient universal class. Some of

them even use O(n) functions. For a more detailed account on these schemes see

Section 1.1.

5.2 Two-way Linear Probing

Inspired by the two-way chaining paradigm and its powerful performance, we promote

the concept of open addressing hashing with two-way linear probing. The essence

of the proposed concept is based on the idea of allowing each key to generate two

independent linear probe sequences and making the algorithm decide, according to

some strategy, at the end of which sequence the key should be inserted. Formally,

each input key x chooses two cells independently and uniformly at random, with

replacement. We call these cells the initial hashing cells available for x. From each

5.2. TWO-WAY LINEAR PROBING 157

initial hashing cell, we start a linear probe sequence (with fcfs policy) to find an

empty cell where we stop. Thus, we end up with two unoccupied cells. We call these

cells the terminal hashing cells.

Definition 5.1. An on-line two-way linear probing algorithm is an open addressing

hashing algorithm that inserts keys sequentially into cells using a certain strategy

and does the following upon the arrival of each key:

1. It chooses two initial hashing cells independently and uniformly at random,

with replacement.

2. Two terminal (empty) cells are then found by linear probe sequences starting

from the initial cells.

3. The key is inserted into one of these terminal cells.

The question now is: into which terminal cell should we insert the key x? A two-

way linear probing algorithm could follow one of the strategies we mentioned earlier:

it may insert the key at the end of the shortest probe sequence, or into the terminal

cell that is adjacent to the smallest cluster. Others may make a decision even before

linear probing starts. In any of these algorithms, the searching process for any key

is basically the same: just start probing in both sequences alternately, until the key

is found, or the two empty cells at the end of the sequences are reached in the case

of an unsuccessful search. Thus, the maximum unsuccessful search time is at most

twice the size of the largest cluster plus two.

In the next section, we prove that the maximum unsuccessful search time of any

two-way linear probing algorithm, that satisfies the above definition, is Ω(log log n).

Unfortunately, not every two-way linear probing algorithm has a matching upper

bound on its worst-case performance. In Section 5.4, we prove that there are classes

of two-way linear probing algorithms that behave poorly; in particular, we analyze

158 THE NAKED IDEA

the two algorithms, described above, and show that the hash table, asymptotically

and almost surely, contains a cluster of size Ω(log n/ log log n). However, we present,

in Chapter 6, two-way linear probing algorithms that achieve Θ(log log n) worst-case

search time.

Two-way linear probing hashing—if used successfully as we are going to see in

the next chapter—has several advantages over other proposed hashing methods: it

reduces the worst-case behavior of hashing, it requires only two hash functions, it is

easy to parallelize, it is pointer-free and easy to implement, and it does not require

any rearrangement of keys or rehashing. Its average-case performance can be at most

twice the classical linear probing, and its maximum cluster size is O(log log n), unlike

all other methods. Furthermore, it is not necessary to employ perfectly random hash

functions. We believe that hash functions with smaller degree of universality, (e.g.,

O(log n)-universal), such as the ones in [48, 101, 162, 161, 158, 146] will be sufficient.

Before we embark on the analysis, we should remind the reader that the hashing

assumptions stated in Section 0.4 are also applied in this part of the thesis. In

particular, we assume the following. We have a set of input keys K ⊆ U of size m to

be hashed into a hash table T = {0, . . . , n− 1} such that each cell contains at most

one key. The process of hashing is sequential and on-line, unless otherwise stated.

Furthermore, we assume that the linear probe sequences always move cyclically from

left to right of the hash table. The replacement strategy of all of the introduced

algorithms is fcfs. The insertion time is defined to be the number of probes the

algorithm performs to insert a key. Similarly, the search time is defined to be the

number of probes needed to find a key, or two empty cells in the case of unsuccessful

search. Observe that unlike classical linear probing, the insertion time of two-way

linear probing is not equal to the successful search time.

5.3. UNIVERSAL LOWER BOUND 159

5.3 Universal Lower Bound

The following lower bound holds for any two-way linear probing hashing scheme, in

particular, the ones that are presented here and in the next chapter.

Theorem 5.1. Let n,m ∈ N, and assume that α := m/n ∈ (0, 1) is a constant. Let

A be any on-line two-way linear probing algorithm that inserts m keys into a hash

table of size n. Then upon termination of A, w.h.p., the table contains a cluster of

size at least log2 log n−Θ(1).

Proof. Imagine that we have a bin associated with each cell in the hash table. Recall

that for each key x, algorithm A chooses two initial hashing cells, and hence two

bins, independently and uniformly at random, with replacement. Algorithm A, then,

probes linearly to find two (possibly identical) terminal cells, and inserts the key x

into one of them. Suppose that after the insertion of each key x, we also insert a ball

into the bin associated with the initial cell from which the algorithm started probing

to reach the terminal cell into which the key x was placed. If both of the initial cells

lead to the same terminal cell, then we break the tie randomly. Clearly, if there is

a bin with k balls, then there is a cluster of size of at least k, because the k balls

represent k distinct keys that belong to the same cluster. This means that we have

an algorithm that inserts m balls into n bins where each ball is placed into a bin

among two bins chosen independently and uniformly at random, with replacement.

Thus, by the second part of Theorem 0.2, the maximum bin load upon termination

of algorithm A is at least log2 log n−Θ(1), w.h.p.

The above lower bound is valid for all algorithms that satisfy Definition 5.1. A

more general lower bound can be established on all open addressing schemes that

use two linear probe sequences where the initial hashing cells are chosen according

to some (not necessarily uniform or independent) probability distributions defined

160 THE NAKED IDEA

on the cells. We still assume that the probe sequences are used to find two (empty)

terminal hashing cells, and the key is inserted into one of them according to some

strategy. We call such schemes nonuniform two-way linear probing. The proof of

the following theorem is similar to Theorem 5.1, but uses Vöcking’s lower bound

(Theorem 0.5).

Theorem 5.2. Let n,m ∈ N, and assume that α := m/n ∈ (0, 1) is a constant. Let A

be any nonuniform two-way linear probing algorithm that inserts m keys into a hash

table of size n where the initial hashing cells are chosen according to some probability

distributions. Then the maximum cluster size produced by A, upon termination, is

at least 0.72...× log2 log n−Θ(1), w.h.p.

5.4 Life is not Always Good!

The idea of two-way linear probing alone is not always sufficient to pull off a plausi-

ble hashing performance. Indeed, a large group of two-way linear probing algorithms

have an Ω(log n/ log log n) lower bound on their worst-case search time. In this sec-

tion, we characterize some of the two-way linear probing algorithms that behave

disappointingly.

Ignorant Algorithms

A two-way linear probing algorithm is not expected to have O(log log n) worst-case

search time, if its decisions of where to place the keys are made solely from the

information obtained by only one linear probing sequence. For instance, consider the

following strategy: each key is inserted into the first terminal cell, if it is reached

by not more than k probes; otherwise, the key is placed into the second terminal

cell. Information about the second terminal cell is basically ignored. Indeed, we may

5.4. LIFE IS NOT ALWAYS GOOD! 161

as well postpone selecting the second initial hashing cell, if needed, until after the

algorithm makes its decision. We prove next that such algorithms are doomed to have

poor performance. Notice that we still use both probe sequences to search for any

key by probing linearly and alternatingly, until the key is found, or two empty cells

are reached in the case of an unsuccessful search. Thus, the maximum unsuccessful

search time is at most twice the size of the largest cluster plus two.

Theorem 5.3. Let n,m ∈ N such that α := m/n ∈ (0, 1) is a constant. Suppose that

we have a two-way linear probing algorithm that inserts m keys into n cells such that

the decision of where to insert any key is made before its second initial hashing cell

is chosen. In other words, the decisions are made without knowing any information

about the second choices. Then the hash table must have a giant cluster of size at

least λ(n) :=
⌈ √

(2− ε) log n/ log log n
⌉
, w.h.p., for any constant ε ∈ (0, 1).

Proof. Fix ε ∈ (0, 1). Without loss of generality, we assume that during the insertion

process, the second initial cell for any key is chosen if and only if the algorithm decides

to insert the key into its second terminal cell. Let S be the set of all keys for which

second initial hashing cells are chosen. That is, a key belongs to S if and only if it

is inserted into its second terminal cell. For i ∈ T = {0, . . . , n− 1}, let Ci be the

number of keys that have chosen the cell i as its second initial hashing cell. Notice

that every key that has chosen the cell i as its second initial cell is inserted into the

empty cell at the end of the cluster containing cell i. This means that the size of the

cluster that contains the cell i is at least Ci. Thus, if maxi Ci ≥ λ, then the maximum

cluster size is at least λ. For i ∈ T , let Fi be the set of all keys that have chosen

the cell i as its first initial hashing cell, and notice that |Fi| L= Bin(m, 1/n). Define

the set H := {i : |Fi| ≥ λ}. Let A be the event that there is a cell i ∈ H such that

every key in Fi is inserted into its first terminal hashing cell. For the same reason

stated above, if A is true, the maximum cluster size is at least λ. We will show that

162 THE NAKED IDEA

P {[maxi Ci < λ] ∩ Ac} = o(1). Notice that

P
{[

max
i

Ci < λ
]
∩ Ac

}
≤ P

{
max

i
Ci < λ

∣∣∣ Ac ∩ [|H| ≥ N]
}

+ P {|H| < N} ,

where N is defined below. The binomial tail inequality of Lemma 0.2 yields that for

n large enough,

E [|H|] =
n−1∑
i=0

P {|Fi| ≥ λ} = nP {Bin(m, 1/n) ≥ λ} ≥ n

2eα

(α

2λ

)λ

.

Let

N :=

⌊
n

4eα

(α

2λ

)λ
⌋

.

Clearly, |H| can be written as a function of m independent random variables, namely,

the first initial cells available for the m keys. If one of these initial cells is changed, the

random variable |H| may decrease or increase by at most one. Thus, by McDiarmid’s

inequality (Lemma 0.3), we see that for n large enough,

P {|H| < N} ≤ P {|H| − E [|H|] < −N} ≤ exp

(−2N2

m

)
= o(1) .

Let n be large enough such that

(
1− λ

N

)λ

≥ 1− λ2

N
≥ 1

2
, and

(
1− 1

n

)n

≥ 1

3
,

which can be done because (1− 1/n)n n−→ 1/e. Then we have

P {Bin(N, 1/n) ≥ λ} ≥
(

N

λ

)
1

nλ

(
1− 1

n

)n

≥ Nλ(1− λ/N)λ

6λ!nλ
≥ cλ2

λλ2+λ
,

for some constant c ∈ (0, 1). Observe that |S| = ∑n−1
i=0 Ci, and the second initial cells

available for all keys in S are independently and uniformly distributed over the hash

table. Thus, knowing |S|, the vector (C1, . . . , Cn) is a multinomial random variable.

Also, if A is not true, then the |S| ≥ |H|. Consequently, using Mallows’ inequality,

5.4. LIFE IS NOT ALWAYS GOOD! 163

we obtain

P
{

max
i

Ci < λ
∣∣∣ Ac ∩ [|H| ≥ N]

}
≤

n−1∏
i=0

P {Ci < λ | Ac ∩ [|H| ≥ N]}

≤ (1− P {Bin(N, 1/n) ≥ λ})n

≤ exp

(
− ncλ2

λλ2+λ

)
= o(1) .

Algorithms that Behave Poorly

We consider here the two examples of two-way linear probing algorithms we men-

tioned earlier. The first algorithm places each key into the terminal cell discovered

by the shortest probe sequence. More precisely, once the key chooses its initial hash-

ing cells, we start two linear probe sequences. We proceed, sequentially and alter-

nately, one probe from each sequence until we find an empty (terminal) cell where

we insert the key. Formally, let f, g : U → {0, . . . , n− 1} be independent and truly

uniform hash functions. For x ∈ U , define the linear sequence f1(x) = f(x), and

fi+1(x) = fi(x) + 1 mod n, for i ∈ [n]; and similarly define the sequence gi(x). The

algorithm, then, inserts each key x into the first unoccupied cell in the following probe

sequence: f1(x), g1(x), f2(x), g2(x), f3(x), g3(x), We denote this algorithm that

hashes m keys into n cells by ShortSeq(n,m), for the shortest sequence.

The second algorithm inserts each key into the empty (terminal) cell that is the

right neighbor of the smallest cluster among the two clusters containing the initial

hashing cells, breaking ties randomly. If one of the initial cells is empty, then the key

is inserted into it, and if both of the initial cells are empty, we break ties evenly. Recall

that a cluster is a group of consecutively occupied cells whose left and right neighbors

are empty cells. This means that one can compute the size of the cluster that contains

an initial hashing cell by running two linear probe sequences in opposite directions

164 THE NAKED IDEA

x

x

Figure 5.1: An illustration of algorithm ShortSeq(n,m) in terms of balls (keys)

and bins (cells). Each ball is inserted into the empty bin founded by the shortest

sequence.

starting from the initial cell and going to the empty cells at the boundaries. So

practically, the algorithm uses four linear probe sequences. We refer to this algorithm

by SmallCluster(n,m) for inserting m keys into n cells.

x

x

Figure 5.2: Algorithm SmallCluster(n, m) inserts each key into the empty cell

adjacent to the smallest cluster, breaking ties randomly. The size of the clusters is

determined by probing linearly in both directions.

The performances of algorithms ShortSeq and SmallCluster, as we are going

to see, is unexpectedly disappointing. The main mistake in these two algorithms is

that the keys are allowed to be inserted into empty cells even if these cells are very

close to some big clusters.

5.4. LIFE IS NOT ALWAYS GOOD! 165

Theorem 5.4. Let ε ∈ (0, 1) be an arbitrary constant, and n,m ∈ N be such that

α := m/n ∈ (0, 1) is a constant. Let A be a two-way linear probing algorithm that

inserts m keys into n cells such that whenever a key chooses an empty and an occupied

initial cells, the algorithm inserts the key into the empty one. Then algorithm A

produces a cluster of size at least (1− ε) log n/ log log n, w.h.p.

Proof. Set ξ(n) := d (1− ε) log n/ log log n e. Let β = b log n c, and assume, with-

out loss of generality, that N := n/β is an integer. We say “at time t” to mean

immediately after the insertion of t keys. For t ∈ [m], and i ∈ [N], let Xi(t) be

the number of consecutively occupied cells at time t that occur between the cell

number βi and the first empty cell that comes after it. More precisely, Xi(t) = j

if and only if at time t, all the cells βi + 1, . . . , βi + j are occupied, and the cell

βi + j + 1 is empty, where we consider the cell numbers in a circular fashion. Let

χi(t) := βi+Xi(t)+1, and notice that the cell χi(t) is always empty, because m < n.

Clearly, if all clusters are smaller than ξ, then maxi Xi(m) < ξ. So we only need to

show that P {maxi Xi(m) < ξ} = o(1). Setting Xi(0) = 0, we can write

Xi(m) =
m∑

t=1

I[Xi(t)=Xi(t−1)+1] .

For i ∈ [N], and t ∈ [m], let Yi(t) be the indicator that the first initial cell of the

t-th key is the empty cell χi(t− 1), and the second initial cell is an occupied cell. By

assumption, if Yi(t) = 1, then Xi(t) = Xi(t − 1) + 1, because the algorithm inserts

the t-th key into the cell χi(t− 1). Therefore, for all i ∈ [N], we have

Xi(m) ≥
m∑

t=dm/2 e
Yi(t)

def
= Zi .

Notice that the random variables Z1, . . . , ZN are negatively associated when condi-

tioned on the event A := [maxi Xi(m) < β], which can been seen as follows. For

t ∈ [m], let Y0(t) := 1 − ∑N
i=1 Yi(t), and notice that given A, the random variable

166 THE NAKED IDEA

Y0(t) is binary. Lemma 0.4 says that the binary random variables Y0(t), . . . , YN(t)

are negatively associated when conditioned on A. However, since the keys choose

their initial cells independently, the random variables Y0(t), . . . , YN(t) are mutually

independent from the random variables Y0(t
′), . . . , YN(t′), for any distinct t, t′ ∈ [m].

Thus, by Lemma 0.5, the union ∪m
t=1 {Y0(t), . . . , YN(t)} is a set of negatively associ-

ated random variables under the same conditioning. Now the conditional negative

association of the Zi is assured by Lemma 0.6. Consequently, we have

P
{

max
i

Xi(m) < ξ
}

= P
{[

max
i

Xi(m) < ξ
]
∩ A

}
≤ P

{
max

i
Zi < ξ

∣∣∣ A
}

≤ P {Z1 < ξ, . . . , ZN < ξ | A}

≤
N∏

i=1

(1− P {Zi ≥ ξ |A})

≤ exp

(
−

N∑
i=1

P {Zi ≥ ξ |A}
)

,

which goes to zero if
∑N

i=1 P {Zi ≥ ξ |A} n−→∞. Since the keys choose their initial

cells independently and uniformly at random, we see that for all t ≥ dm/2 e, and n

large enough,

P {Yi(t) = 1 |A} ≥ t− 1

n2
≥ α

4n
.

Thus, by the independence of Yi(1), . . . , Yi(m), for each i ∈ [N], and the binomial

tail inequality of Lemma 0.2, we see that

N∑
i=1

P {Zi ≥ ξ |A} ≥
N∑

i=1

P {Bin (dm/2 e , α/(4n)) ≥ ξ} ≥ cN

(
α2

16 ξ

)ξ

= ω(1) ,

for some constant c > 0.

Clearly, algorithms ShortSeq(n,m) and SmallCluster(n,m) satisfy the con-

dition of Theorem 5.4. So this corollary follows.

Corollary 5.1. Let n,m ∈ N, and assume that α := m/n ∈ (0, 1) is a constant.

The size of the largest cluster generated by algorithm ShortSeq(n,m) is at least

5.4. LIFE IS NOT ALWAYS GOOD! 167

(1 − ε) log n/ log log n, w.h.p., for any constant ε ∈ (0, 1). The same result holds for

algorithm SmallCluster(n, m).

It is worth mentioning that simulation results of algorithms ShortSeq and

SmallCluster shows that the worst-case performance of SmallCluster is bet-

ter than ShortSeq. This is somehow expected as the algorithm considers more

information before it makes its decision of where to insert the keys.

Chapter 6

New Paradigms for Two-way

Linear Probing

We propose new efficient two-way linear probing algorithms with remarkable worst-

case performances. The common idea of these algorithms is the marriage between the

concept of two-way linear probing and a technique we call blocking where the hash

table is partitioned into equal-sized blocks of cells. Whenever a key has two terminal

cells, the algorithm considers the information provided by the blocks, e.g., the number

of keys it harbors, to make a decision. Thus, the blocking technique enables the

algorithm to avoid some of the bad decisions the previous algorithms, described in

the last chapter, make. This leads to a more controlled allocation process, and hence,

to a more even distribution of the keys. We use the blocking technique to design, in

Sections 6.2 and 6.3, two two-way linear probing algorithms. In Section 6.1, we give a

simple algorithm that uses linear probing locally within each block. The algorithms,

which are implemented with fcfs replacement strategy, are characterized by the way

the keys pick their blocks to land in.

The maximum unsuccessful search times of these algorithms are analyzed and

169

170 NEW PARADIGMS

proven to be O(log log n), asymptotically almost surely, which can be viewed in con-

junction with the universal lower bound we proved in Section 5.3. Simulation results,

provided in Section 6.5, supports our theoretical analyses of all algorithms discussed

here, in addition to the ones in Chapter 5. Furthermore, the memory space con-

sumption is still linear. Although we assume throughout that these algorithms keep

a counter with each block, the extra space consumed by these counters is asymptoti-

cally sublinear. In fact, we will see that the extra space is O(n/ log log n) in a model

in which integers take O(1) space, and at worst O(n log log log n/ log log n) = o(n),

w.h.p., in a bit model.

Since the block size for each of the following algorithms is different, we assume

throughout and without loss of generality, that whenever we use a block of size β,

then n/β is an integer. Recall that the hash table T = {0, . . . , n− 1}, and hence, for

i ∈ [n/β], the i-th block consists of the cells (i− 1)β, . . . , iβ − 1. In other words, the

cell k ∈ T belongs to block number λ(k) := b k/β c+ 1.

6.1 Two-way Locally-linear Probing

As a simple example of the blocking technique, we present the following algorithm

which is a trivial application of the two-way chaining scheme we study in Chapters

1 and 2. The algorithm does not satisfy the conditions of two-way linear probing as

explained in Definition 5.1, because the linear probes are performed within each block

and not along the hash table; so they are locally linear within the blocks. That is,

whenever the linear probe sequence reaches the right boundary of a block, it continues

probing starting from the left boundary of the same block.

The algorithm is described as follows. We partition the hash table into disjoint

blocks each of size β1(n), where β1(n) is an integer to be defined later. The load of a

block is defined to be the number of keys residing in its cells. We save with each block

6.1. TWO-WAY LOCALLY-LINEAR PROBING 171

its load, and keep it updated whenever a key is inserted in the block. For each key we

choose two initial hashing cells, and hence two blocks, independently and uniformly

at random, with replacement. From the initial cell that belongs to the least loaded

block, breaking ties randomly, we probe linearly and cyclically within the block until

we find an empty cell where we insert the key. If the load of the block is β1, i.e., it is

full, then we check its right neighbor block and so on, until we find a block that is not

completely full. We insert the key into the first empty cell there. Notice that only

one probe sequence is used to insert any key. The search operation, however, uses two

probe sequences as follows. First, we compute the two initial hashing cells. We start

probing linearly, cyclically and alternately within the two (possibly identical) blocks

that contain these initial cells. If both probe sequences reach empty cells, or if one of

them reaches an empty cell and the other one finishes the block without finding the

key, we declare that it is unsuccessful search. If both blocks are full and the probe

sequences completely search them without finding the key, then the right neighbors

of these blocks (cyclically speaking) are searched sequentially, and so on, until the

key is found or two empty cells in the case of unsuccessful search. We will refer to

this algorithm as LocallyLinear(n,m), where there are m keys and n cells. We

show next that β1 can be defined such that none of the blocks are completely full,

w.h.p. This means that whenever we search for any key, most of the time, we only

need to search linearly and cyclically the two blocks the key chooses initially.

Theorem 6.1. Let n,m ∈ N, where α = m/n ∈ (0, 1) is a constant. Let C be the

constant defined in Theorem 0.3, and define

β1(n) :=

⌊
log2 log n + C

1− α
+ 1

⌋
.

Then, w.h.p., the maximum unsuccessful search time of LocallyLinear(n,m) with

blocks of size β1 is at most 2β1, and the maximum insertion time is at most β1 − 1.

The bounds are tight up to additive constants.

172 NEW PARADIGMS

Proof. Notice the equivalence between algorithm LocallyLinear(n, m) and the

allocation process Uniform-GreedyMC(n/β1,m) where m balls (keys) are inserted

into n/β1 bins (blocks) by placing each ball into the least loaded bin among two bins

chosen independently and uniformly at random, with replacement, where ties are

broken randomly. It suffices, therefore, to study the maximum bin load of Uniform-

GreedyMC(n/β1, m) which we denote by Ln. However, Theorem 0.3 says that

w.h.p.,

Ln ≤ log2 log n + C + αβ1 < (1− α)β1 + αβ1 = β1 .

and similarly,

Ln ≥ log2 log n + αβ1 − C >
log2 log n + C

1− α
− 2C ≥ β1 − 2C − 1 .

6.2 Two-way Pre-linear Probing

In the two-way linear probing algorithms of Chapter 5, each input key initiates two

linear probe sequences that reach two terminal cells, and then the algorithms decide

in which terminal cell the key should be inserted. The following algorithm, however,

allows each key to choose two initial hashing cells, and then decides, according to some

strategy, which initial cell should start a linear probe sequence to find a terminal cell

to harbor the key. So, technically, the insertion process of any key uses only one

linear probe sequence, but we still use two sequences for any search. The following

algorithm is similar to algorithm LocallyLinear.

Let α ∈ (0, 1) be the load factor. Partition the hash table into blocks of size β2(n),

where β2(n) is an integer to be defined later. Each key x still chooses, independently

and uniformly at random, two initial hashing cells, say Ix and Jx, and hence, two

blocks which we denote by λ(Ix) and λ(Jx). For convenience, we say that the key

6.2. TWO-WAY PRE-LINEAR PROBING 173

x has landed in block i, if the linear probe sequence used to insert the key x has

started (from the initial hashing cell available for x) in block i. Define the weight of

a block to be the number of keys that have landed in it. We save with each block its

weight, and keep it updated whenever a key lands in it. Now, upon the arrival of key

x, the algorithm allows x to land into the block, among λ(Ix) and λ(Jx), of smallest

weight, breaking ties randomly. Whence, it starts probing linearly from the initial

cell contained in the block until it finds a terminal cell into which the key x is placed.

If, for example, both Ix and Jx belong to the same block, then x lands in λ(Ix), and

the linear sequence starts from an arbitrarily chosen cell among Ix and Jx. We will

write DecideFirst(n, m) to refer to this algorithm for inserting m keys into n cells.

34 2 2 6 3 1

x

x

Figure 6.1: An illustration of algorithm DecideFirst(n,m). The hash table is

divided into blocks of size β2. The number under each block is its weight. Each key

decides first to land into the block of smallest weight, breaking ties randomly, then

probes linearly to find its terminal cell.

In short, the strategy of DecideFirst(n,m) is: land in the block of smallest

weight, walk linearly, and insert into the first empty cell reached. The size of the

largest cluster produced by the algorithm is Θ(log log n). The performance of this

hashing technique is described in the following theorem.

Theorem 6.2. Let α = m/n ∈ (0, 1) be constant, where n,m ∈ N. There is a

174 NEW PARADIGMS

constant η > 0 such that if

β2(n) :=

⌈
(1 +

√
2− α)√

2− α(1− α)
(log2 log n + η)

⌉
,

then, w.h.p., the maximum unsuccessful search time of algorithm DecideFirst(n,m)

with blocks of size β2 is at most ξn := 12(1− α)−2(log2 log n + η), and the maximum

insertion time is at most ξn/2.

Proof. Assume first that DecideFirst(n,m) is applied to a hash table with blocks

of size β = d b(log2 log n + η) e, and that n/β is an integer, where b = (1+ ε)/(1−α),

for some arbitrary constant ε > 0. Consider the resulting hash table after termination

of the algorithm. Let M ≥ 0 be the maximum number of consecutive blocks that are

fully occupied. Without loss of generality, suppose that these blocks start at block

i + 1, and let S = {i, . . . , i + M} represent these full blocks in addition to the left

adjacent block that is not fully occupied (Figure 6.2).

S

i i + 1 i + M

Figure 6.2: A portion of the hash table showing the largest cluster, and the set S

which consists of the full consecutive blocks and their left neighbor.

Notice that each key chooses two cells (and hence, two possibly identical blocks)

independently and uniformly at random. Also, any key always lands in the block of

smallest weight. Since there are n/β blocks, and m = αn keys, then by Theorem

0.3, there is a constant C > 0 such that the maximum block weight is not more

than λn := (αb + 1) log2 log n + αbη + α + C, w.h.p. Let An denote the event that

the maximum block weight is at most λn. Let W be the number of keys that have

landed in S, i.e., the total weight of blocks contained in S. Plainly, since block i is

6.3. TWO-WAY POST-LINEAR PROBING 175

not full, then all the keys that belong to the M full blocks have landed in S. Thus,

W ≥ Mb(log2 log n + η), deterministically. If we choose η = C + α, then the event

An implies that (M + 1)(αb + 1) ≥ Mb, because otherwise, we have

W ≤ (M + 1)(αb + 1)

(
log2 log n +

αbη + α + C

αb + 1

)
< Mb(log2 log n + η) ,

which is a contradiction. Therefore, An yields that

M ≤ αb + 1

(1− α)b− 1
≤ 1 + εα

ε(1− α)
.

Recall that (αb + 1) < b = (1 + ε)/(1−α). Again, since block i is not full, the size of

the largest cluster is not more than the total weight of the M + 2 blocks that cover

it. Consequently, the maximum cluster size is, w.h.p., not more than

(M + 2)(αb + 1)(log2 log n + η) ≤ ψ(ε)

(1− α)2
(log2 log n + η) ,

where ψ(ε) := 3 − α + (2 − α)ε + 1/ε. Since ε is arbitrary, we choose it such that

ψ(ε) is minimum, i.e., ε = 1/
√

2− α; in other words, ψ(ε) = 3 − α + 2
√

2− α < 6.

Since the maximum unsuccessful search time is at most twice the maximum cluster

size plus two, the result follows for n large enough.

Remark 6.1. We have shown that w.h.p. the maximum cluster size produced by

DecideFirst(n,m) is in fact not more than

3− α + 2
√

2− α

(1− α)2
log2 log n + O(1) <

6

(1− α)2
log2 log n + O(1) .

6.3 Two-way Post-linear Probing

We introduce yet another hashing algorithm that achieves Θ(log log n) worst-case

search time, a.a.s. Suppose that the hash table is divided into blocks of size β3(n),

where β3(n) is an integer to be picked later. Recall that the load of a block is the

176 NEW PARADIGMS

number of keys (or occupied cells) it contains. Suppose that we save with each block

its load, and keep it updated whenever a key is inserted into one of its cells. Now

the algorithm works as follows. Each key x gets two initial hashing cells. From these

initial cells the algorithm probes linearly and cyclically until it finds two empty cells

Ux and Vx, which we call terminal cells. Let λ(Ux) and λ(Vx) be the blocks that

contain these cells. The algorithm, then, inserts the key x into the terminal cell

(among Ux and Vx) that belongs to the least loaded block among λ(Ux) and λ(Vx),

breaking ties randomly. We refer to this algorithm for inserting m keys into n cells

as WalkFirst(n,m). Notice that since the algorithm uses both linear sequences

to insert any key, the construction time here is, roughly speaking, twice the one in

DecideFirst(n,m).

x

x

Figure 6.3: Algorithm WalkFirst(n,m) inserts each key into the terminal cell the

belongs to the least crowded block, breaking ties arbitrarily.

In the remainder of this section, we analyze the worst-case performance of al-

gorithm WalkFirst(n,m). Recall that the maximum unsuccessful search time is

bounded from above by twice the maximum cluster size plus two. The following

theorem asserts that upon termination of the algorithm, it is most likely that every

block has at least one empty cell. This implies that the length of the largest cluster

is at most 2β3 − 2.

Theorem 6.3. Let n,m ∈ N such that α = m/n ∈ (0, 1/2) is a constant. Let

6.3. TWO-WAY POST-LINEAR PROBING 177

δ ∈ (2α, 1) be an arbitrary constant, and define

β3(n) :=

⌈
log2 log n + 8

1− δ

⌉
.

Upon termination of algorithm WalkFirst(n,m) with blocks of size β3, the probabil-

ity that there is a fully loaded block goes to zero as n tends to infinity. That is, w.h.p.,

the maximum unsuccessful search time of WalkFirst(n,m) is at most 4β3− 2, and

the maximum insertion time is at most 4β3 − 4.

For k ∈ [m], let us denote by Ak the event that after the insertion of k keys (i.e.,

at time k), none of the blocks is fully loaded. To prove Theorem 6.3, we need to show

that P {Ac
m} = o(1). We do that by using a witness tree argument just like the one

we used to prove Theorems 1.4 and 2.5. We show that if a fully-loaded block exists,

then there is a witness binary tree of height β3 that describes the history of that

block. But first, we explain how to construct a witness tree. Detailed description of

the witness tree, and illustrated figures can be found in Section 1.4. The witness tree

has been used also in [170, 134, 33, 34, 127].

Recall that we have m keys which are inserted into n/β3 blocks. The witness tree

we defined in Section 1.4 is in terms of balls and bins, but one can easily translate

it to keys and blocks. Observe that the definition, as we are going to see next,

is independent of the number of bins or blocks. Let us number the keys 1, . . . , m

according to their insertion time. Recall that each key t ∈ [m] has two initial cells

which lead to two terminal empty cells belonging to two blocks. Let us denote these

two blocks available for the t-th key by Xt and Yt. Notice that all the initial cells

are independent and uniformly distributed. However, all terminal cells—and so their

blocks—are not. Nonetheless, for each fixed t, the two random values Xt and Yt are

independent.

178 NEW PARADIGMS

The History Tree

We define for each key t a full history tree Tt in the same way as we did in the balls-

and-bins model. Each key is identified with the block that contains it, and the full

history tree Tt describes the history of the block that contains the t-th key up to its

insertion time. The root of Tt is labelled t, and is colored white. The root has two

children, a left child corresponding to the block Xt, and a right child corresponding

to the block Yt. The left child is labelled and colored according to the following rules:

(a) If the block Xt contains some keys at the time of insertion of key t, and the

last key inserted in that block, say τ , has not been encountered thus far in the

(bfs) order of Tt, then the node is labelled τ and colored white.

(b) As in case (a), except that τ has already been encountered in the bfs order.

The node is labelled τ , but colored black.

(c) If the block Xt is empty at the time of insertion of key t, then the left child is

unlabelled gray node.

Similarly, the right child of t is labelled and colored by following the same rules but

with the block Yt. We continue recursively constructing the tree until all the leaves

are black or gray. A black or gray node in the tree is a leaf and is not processed any

further. A white node with label τ is processed in the same way we processed the

key t, but with its two blocks Xτ and Yτ .

Since we are using the same definition of the full history tree, all the properties we

mentioned in Section 1.4 are also valid here. In particular, the tree Tt has at least one

gray leaf, every internal (white) node has two children, and the length of the shortest

path from the root t to any gray node is equal to the load of the block that contains

the key t at the time of its insertion. Thus, if the block’s load is more than h, then all

gray nodes must be at distance more than h from the root. Subsequently, we define

6.3. TWO-WAY POST-LINEAR PROBING 179

the truncated history tree of height h, that is, with h+1 levels of nodes, to be the top

part of the full history tree that includes all nodes at the first h + 1 levels only, and

the remainder is truncated. Most importantly, we are interested in truncated history

trees of height h where the nodes at the lowest level are either black nodes, or white

nodes that represent blocks of loads at least ξ > 0, where ξ is an integer to be chosen

later. We call every white node at the lowest level a “block” node. Evidently, these

special truncated history trees describe blocks of load at least h + ξ.

The Witness Tree

Similarly, we define the witness tree. Let ξ ∈ N be a fixed integer to be decided later.

For h, k ∈ N, where h + ξ ≤ k ≤ m, a witness tree Wk(h) is a truncated history tree

of a key in the set [k], with h + 1 levels of nodes (thus, of height h) and with two

types of leaf nodes, black nodes and unlabelled block nodes which represent blocks

with load of at least ξ. The node labels belong to the set [k]. Each black leaf has

a label of an internal (white) node that precedes it in bfs. Block nodes must all be

at the furthest level from the root, and there is at least one such node in a witness

tree. For any k, h, d ∈ N, and nonnegative integer z, we write Wk(h, d, z) to denote

the class of all witness trees Wk(h) of height h that have d white nodes, and z black

nodes (and thus d− z +1 block nodes). Notice that d ∈ [h, 2h) and z ∈ [0, d]. We say

that a witness tree Wk(h) occurs, if upon execution of algorithm WalkFirst, the

random choices available for the keys represented by the witness tree are actually as

indicated in the witness tree itself. Thus, a witness tree of height h exists if and only

if there is a key that is inserted by algorithm WalkFirst(n,m) into a block whose

load is at least h + ξ − 1, just before the insertion of the key.

Thus far, we have only translated the original definition of the witness tree to a

one that deals with keys and blocks. Therefore, we can safely use here Lemmas 1.1

180 NEW PARADIGMS

and 1.2. We only need now to bound the probability that a valid witness tree occurs.

Lemma 6.1. Let D denote the event that the number of blocks in WalkFirst(n,m)

with load of at least ξ, after termination, is at most n/(aβ3ξ), for some constant a > 0.

For k ∈ [m], let Ak be the event that after the insertion of k keys, none of the blocks

is fully loaded. Then for any positive integers h, d and k ≥ h + ξ, and a non-negative

integer z ≤ d, we have

sup
Wk(h)∈Wk(h,d,z)

P {Wk(h) occurs | Ak−1 ∩D} ≤ 4dβd+z−1
3

(aξ)d−z+1nd+z−1
.

Proof. Let Xt and Yt be the blocks available for key t ∈ [k]. Recall that we have

ν := n/β3 blocks. Given that we know the history up to time t − 1, and the events

Ak−1 and D are true, the probability that Xt is the i-th block is at most 2/ν, because

the initial hashing cell (which is chosen independently and uniformly at random) has

to be in the (i−1)-th or the i-th blocks; and hence, the probability that Xt is a block

of load at least ξ is at most 2/(aξ), as there are at most ν/(aξ) such blocks. The

result now follows by the conditional probability method, just like as we did in the

proof of Lemma 2.1.

The next step is to show that the event D in Lemma 6.1 is most likely to be

true, for sufficiently large ξ < β3. Define the function ϕ(x) = x−1e1−1/x, for x > 1.

Notice that ϕ is decreasing on (1,∞), and for any x > 1, we have ϕ(x) < 1, because

1/x = (1− z) < e−z = e1/x−1, for some z ∈ (0, 1). Thus, by inequality (2) of Lemma

0.1, we see that for p ∈ (0, 1), and any positive integers r, and t ≥ ηrp, for some

η > 1, we have

P {Bin(r, p) ≥ t} ≤
(

ϕ

(
t

rp

))t

≤ (ϕ(η))t . (6.1)

Lemma 6.2. Let α, δ, and β3 be as defined in Theorem 6.3. Let N be the number

of blocks with load of at least ξ upon termination of algorithm WalkFirst(n,m). If

ξ ≥ δβ3, then P {N ≥ n/(aβ3ξ)} = o(1), for any constant a > 0.

6.3. TWO-WAY POST-LINEAR PROBING 181

Proof. Fix ξ ≥ δβ3. Let B denote the last block in the hash table, i.e., B consists of

the cells n− β3, . . . , n− 1. Let L be the load of B after termination. Since the loads

of the blocks are identically distributed, we have

E [N] =
n

β3

P {L ≥ ξ} .

Let S be the set of the consecutively occupied cells, after termination, that occur

between the first empty cell to the left of the block B and the cell n− β3.

S

B

Figure 6.4: The last part of the hash table showing clusters, the last block B, and

the set S.

We say that a key is born in a set of cells A if at least one of its two initial hashing

cells belong to A. For convenient, we write Φ(A) to denote the number of keys that

are born in A. Obviously, Φ(A)
L
= Bin(m, 2 |A| /n). Since the cell adjacent to the left

boundary of S is empty, all the keys that are inserted in S are actually born in S.

That is, if |S| = i, then Φ(S) ≥ i. So, by inequality (6.1), we see that

P {|S| = i} = P {[Φ(S) ≥ i] ∩ [|S| = i]} ≤ P {Bin(m, 2i/n) ≥ i} ≤ ci , (6.2)

where the constant c := ϕ(1/(2α)) = 2αe1−2α < 1, because α < 1/2. Let

k := logc

1− c

ξ2
= O(log β3) .

and notice that for n large enough,

ξ ≥ δβ3 =
δ2m(k + β3)

(1 + k/β3)2αn
≥ y

2m(k + β3)

n
,

where y = 1/2 + δ/(4α) > 1, because δ ∈ (2α, 1). Clearly, by the same property of

S stated above, L ≤ Φ(S ∪ B); and hence, using inequality (6.1) again, we conclude

182 NEW PARADIGMS

that for n sufficiently large,

P {L ≥ ξ} ≤ P {[Φ(S ∪B) ≥ ξ] ∩ [|S| ≤ k]}+
m∑

i=k

P {|S| = i}

≤ P {Bin(m, 2(k + β3)/n) ≥ ξ}+
ck

1− c

≤ (ϕ(y))ξ +
ck

1− c
≤ 1

ξ2
+

1

ξ2
=

2

ξ2
.

Thence, E [N] ≤ 2n/(β3ξ
2) which implies by Markov’s inequality that

P
{

N ≥ n

aβ3ξ

}
≤ 2a

ξ
= o(1) .

Proof of Theorem 6.3.

Recall that Ak, for k ∈ [m], is the event that after the insertion of k keys (i.e., at

time k), none of the blocks is fully loaded. Notice that Am ⊆ Am−1 ⊆ · · · ⊆ A1, and

the event Aβ3−1 is deterministically true. We shall show that P {Ac
m} = o(1). Let D

denote the event that the number of blocks with load of at least ξ, after termination,

is at most n/(aβ3ξ), for some constant a > 1 to be decided later. Observe that

P {Ac
m} ≤ P {Dc}+ P {Ac

m |D}

≤ P {Dc}+ P {Ac
m |Am−1 ∩D}+ P

{
Ac

m−1 |D
}

...

≤ P {Dc}+
m∑

k=β3

P {Ac
k |Ak−1 ∩D} .

Lemma 6.2 reveals that P {Dc} = o(1), and hence, we only need to demonstrate

that pk := P {Ac
k |Ak−1 ∩D} = o(1/n), for k = β3, . . . , m. We do that by using the

witness tree argument. The proof is basically similar to the one of Theorem 2.5. Let

h, ξ, η ∈ [2,∞) be some integers to be picked later such that h + ξ ≤ β3. If after

6.3. TWO-WAY POST-LINEAR PROBING 183

the insertion of k keys, there is a block with load of at least h + ξ, then a witness

tree Wk(h) (with block nodes representing blocks with load of at least ξ) must have

occurred. Recall that d ∈ [2, 2h) and z ∈ [0, d]. Using Lemmas 1.1, 1.2, and 6.1, we

see that

pk ≤
2h−1∑

d=2

d∑
z=0

∑

Wk(h)∈Wk(h,d,z)

P {Wk(h) occurs |Ak−1 ∩D}

≤
2h−1∑

d=2

d∑
z=0

|Wk(h, d, z)| sup
Wk(h)∈Wk(h,d,z)

P {Wk(h) occurs |Ak−1 ∩D}

≤
2h∑

d=2

d∑
z=0

2d+142ddzkdβd+z−1
3

(aξ)d−z+1 nd+z−1
I[[z≥η]∪[d>2h−η]]

≤ 2n

aξβ3

2h∑

d=2

(
32αβ3

aξ

)d d∑
z=0

(
adξβ3

n

)z

I[[z≥η]∪[d>2h−η]] .

We split the sum over d ≤ 2h−η, and d > 2h−η. For d ≤ 2h−η, we have z ≥ η, and

thus

d∑
z=0

(
adξβ3

n

)z

I[[z≥η]∪[d>2h−η]] =
d∑

z=η

(
adξβ3

n

)z

≤
(

adξβ3

n

)η ∞∑
z=0

(
adξβ3

n

)z

< 2

(
adξβ3

n

)η

,

provided that n is so large that a2h+1ξβ3 ≤ n, (this insures that adξβ3/n < 1/2). For

d ∈ (2h−η, 2h], we bound trivially, assuming the same large n condition:

d∑
z=0

(
adξβ3

n

)z

≤ 2 .

In summary, we see that

pk ≤ 4n
∑

d>2h−η

(
32αβ3

aξ

)d

+ 4

(
aξβ3

n

)η−1 2h−η∑

d=2

(
32αβ3

aξ

)d

dη .

184 NEW PARADIGMS

We set a = 32, and ξ = d δβ3 e, so that 32αβ3/(aξ) ≤ 1/2, because δ ∈ (2α, 1). With

this choice, we have

pk ≤ 4n

22h−η + 4c

(
32β2

3

n

)η−1

,

where c =
∑

d≥2 dη/2d. Clearly, if we put h = η + d log2 log2 nη e, and η = 3, then

we see that h + ξ ≤ β3, and pk = o(1/n). Notice that h and ξ satisfy the technical

condition a2h+1ξβ3 ≤ n, asymptotically. ¤

Remark 6.2. The restriction on α is needed only to prove Lemma 6.2 where the bino-

mial tail inequality is valid only when α < 1/2. Simulation results suggest that Theo-

rem 6.3 is, indeed, true for any α ∈ (0, 1) with block size b (1− α)−1(log2 log n + c) c,
for some constant c.

6.4 Other Variants

Speedups and Trade-offs

We have seen that by using two linear probe sequences instead of just one, the maxi-

mum unsuccessful search time decreases exponentially from O(log n) to O(log log n).

The average search time, however, could at worst double. Most of the results pre-

sented in this chapter or the previous one can be improved by a constant factor by

increasing the number of hashing choices per key. For example, Theorems 5.1 and 5.2

can be easily generalized for open addressing hashing schemes that use d ≥ 2 linear

probe sequences. Similarly, all the two-way linear probing algorithms we proposed

here can be generalized to d-way linear probing schemes. The maximum unsuccess-

ful search time will, then, be at most dC logd log n + O(d), where C is a constant

depending on α. This means that the best worst-case performance is when d = 3

where the minimum of d/ log d is attained. The average search time, on the other

hand, could triple.

6.4. OTHER VARIANTS 185

The performance of these algorithms can be further improved by using Vöcking’s

scheme LeftMC(n,m, d) with d ≥ 2 hashing choices. The maximum unsuccessful

search time, in this case, is at most C log log n/ log φd + O(d), for some constant C

depending on α. This is minimized when d = o(log log n), but we know that it cannot

get better than C log2 log n + O(d), because limd→∞ φd = 2.

Off-Line Open Addressing

One can also improve the performance by considering off-line two-way open addressing

schemes. We suggest here an off-line scheme for inserting keys into cells by open

addressing where each key has two initial hashing cells chosen independently and

uniformly at random, with replacement. We assume that all the initial hashing cells

available for the keys are known in advance, i.e., before the algorithm starts. The

algorithm is useful, therefore, for static open addressing hashing. We recall first some

of the results about off-line two-way chaining obtained in Chapter 3, in particular,

the bounds on the k-orientability threshold ck, for k ≥ 2. We have recorded that

ck/k converges exponentially to 1; indeed, for k large enough, we have

1− 2k exp
(−k + 1 + e−k/4

)
< ck/k < 1− exp

(−2k
(
1− e−2k

))
.

We also bounded ck for small k, for example, we know that c2 ≥ 1.67545943...,

c3 ≥ 2.61845509..., and c4 ≥ 3.65354252.... See Tables 3.3 and 3.5 for more of these

bounds. Furthermore, algorithm Orient finds a k-orientation in O(n2) worst-case

time, which can be improved to O(n3/2) worst-case running time if we use Hopcroft

and Karp’s algorithm [89] for computing maximum matching in bipartite graphs. A

2k-orientation can be found in linear time by algorithm AAR-Heuristic designed

by Aichholzer et al. [3]. In the context of two-way chaining where each key chooses

two chains independently and uniformly at random, with replacement, this means

that if µ < ckν, where µ, ν ∈ N, then one can hash off-line µ keys into a table with

186 NEW PARADIGMS

ν chains by using one of these algorithms such that the longest chain has at most k

elements, w.h.p.

Back to two-way open addressing hashing. Suppose that we would like to insert

m ∈ N keys off-line into a hash table with n ∈ N cells where each key has two

cells chosen independently and uniformly at random, with replacement. Each cell in

the hash table can harbor at most one key. Moreover, suppose that the load factor

α = m/n ∈ (0, ck/k), for some fixed constant integer k ≥ 2. Then one can assign

the keys such that the maximum search time is at most 2k, w.h.p. This can be

done as follows. Divide the hash able into blocks of size k, assuming without loss of

generality, that ν := n/k is an integer. So each key will have two blocks, and since

the cells are chosen independently and uniformly at random, then so are the blocks.

Since m < ckn/k = ckν, we can apply Hopcroft and Karp’s algorithm to assign the

keys to the ν blocks such that no block receives more than k keys, w.h.p. Within

each block we are free to insert the keys in any fashion we like. Of course, there is

a small probability that we may have more than k keys in a certain block but when

this occurs, we try to insert these keys into the neighbor blocks.

Nonetheless, it is safe to say that w.h.p., the algorithm succeeds to place the keys

such that the maximum load among all blocks is at most k. In other words, w.h.p.,

every key is inserted into a cell that belongs to one of its chosen blocks. Thus, the

maximum search time is at most 2k as we have to search two blocks for each key.

That is, if k = 2, for example, and α ∈ (0, 0.83772971...), then the maximum search

time is at most 4, w.h.p. The only drawback is that the amortized insertion time is

O(
√

n). This can be avoided, if we widen the blocks to be of size 2k, and use the linear

time algorithm AAR-Heuristic to find a 2k-assignment, assuming of course that

α ∈ (0, ck/(2k)). With this modification, the amortized insertion time is constant.

The trade-off, however, is that α has to be small enough, and the maximum search

6.5. SIMULATION RESULTS 187

time increases to 4k. That is, if k = 2, and α ∈ (0, 0.41886485...), then the maximum

search time is at most 8, w.h.p. Nevertheless, we know that ck/k approaches one as k

increases, and hence the performance of this scheme is still plausible. Thus, we have

the following theorem.

Theorem 6.4. Let k ≥ 2 be a constant integer, and α ∈ (0, ck/(2k)). Suppose that

we have m = αn keys to be inserted into a hash table of size n by open addressing,

where each key has two initial cells chosen independently and uniformly at random,

with replacement. Suppose also that all the initial hashing cells are known in advance.

Then there is a linear time algorithm for inserting the keys such that maximum search

time is 4k, w.h.p.

6.5 Simulation Results

We simulated the following linear probing algorithms we discussed in this chapter and

Chapter 5 with the fcfs replacement strategy: the two-way linear probing algorithms

ShortSeq, SmallCluster, WalkFirst, and DecideFirst, the locally linear al-

gorithm LocallyLinear, and ClassicLinear (the classical linear probing algo-

rithm which uses only one linear probe sequence). For each n ∈ {28, 212, 216, 220, 224},
and constant α ∈ {0.4, 0.9}, we ran 100 simulations of each algorithm where we in-

serted bαn c keys into a hash table with n cells. We computed the average maximum

cluster size, i.e.,

1

100

100∑
i=1

size of the largest cluster in the i-th trial ,

and the average cluster size averaged over the 100 trials, that is,

1

100

100∑
i=1

m

number of clusters in the i-th trial
.

188 NEW PARADIGMS

The results are recorded in Tables 6.1 and 6.2 where the best worst-case performances

are drawn in boldface, and the average cluster sizes are in italic.

Table 6.1 contains the simulation results of algorithms ClassicLinear, Short-

Seq, and SmallCluster. It is evident that the average and the worst-case per-

formances of SmallCluster and ShortSeq are better than ClassicLinear. Al-

gorithm SmallCluster seems to have the best worst-case performance among the

three algorithms. This is not a total surprise to us, because the algorithm considers

more information (relative to the other two) before it makes its decision of where to

insert the keys. It is also clear that there is a nonlinear increase, as a function of

n, in the difference between the performances of these algorithms. This may suggest

that the size of the largest cluster produced by algorithms ShortSeq and Small-

Cluster is roughly of the order of log n.

n α ClassicLinear ShortSeq SmallCluster

28
0.4 2.02 8.32 1.76 6.05 1.76 5.90

0.9 15.10 87.63 12.27 50.19 12.26 43.84

212
0.4 2.03 14.95 1.75 9.48 1.75 9.05

0.9 15.17 337.22 12.35 106.24 12.34 78.75

216
0.4 2.02 22.54 1.75 12.76 1.75 12.08

0.9 15.16 678.12 12.36 155.26 12.36 107.18

220
0.4 2.02 29.92 1.75 16.05 1.75 15.22

0.9 15.17 1091.03 12.35 203.16 12.35 136.19

224
0.4 2.02 38.00 1.75 19.54 1.75 18.09

0.9 15.17 1514.80 12.35 253.93 12.35 164.06

Table 6.1: The average maximum cluster size and the average cluster size (in italic)

over 100 simulations of the algorithms. The best performances are drawn in boldface.

The simulation data of algorithms LocallyLinear, WalkFirst, and Decide-

First are presented in Table 6.2. These algorithm are simulated with blocks of

6.5. SIMULATION RESULTS 189

size b (1− α)−1(log2 log n + c) c for constant c ∈ {−1, 0, 1}. The purpose of this is

to show that, practically, the additive and the multiplicative constants appearing in

the definitions of the block sizes stated in Theorems 6.1, 6.2 and 6.3 can be chosen

to be small. The hash table is partitioned into equal-sized blocks, except possibly

the last one. The results show that algorithms LocallyLinear and WalkFirst

have their best performances when c = 0. This is not really apparent in the perfor-

mance of algorithm DecideFirst, and we are not sure of the actual reason. The

performance of WalkFirst appears to be very close to that of LocallyLinear.

This supports the conjecture that Theorem 6.3 is, in fact, true for any constant load

factor α ∈ (0, 1), and the maximum unsuccessful search time of WalkFirst is at

most 4(1 − α)−1 log2 log n + O(1), w.h.p. The worst-case performance of algorithm

DecideFirst seems to be close to the other ones when α is small; but it almost

doubles when α is large. This may suggest that the multiplicative constant in the

maximum unsuccessful search time established in Theorem 6.2 could be improved.

Comparing the simulation data from both tables, one can see that WalkFirst

and LocallyLinear are superior to the others in worst-case performance. Surpris-

ingly, the worst-case performances of algorithms SmallCluster and DecideFirst

are very close, although, it appears that the difference becomes larger, as n increases.

190 NEW PARADIGMS

LocallyLinear WalkFirst DecideFirst

n α c = 0 c = 1 c = −1 c = 0 c = 1 c = −1 c = 0 c = 1

28

0.4
1.57 1.62 1.61 1.65 1.69 1.60 1.63 1.67

4.34 4.43 5.89 4.70 4.86 5.21 4.81 5.02

0.9
12.18 12.78 11.55 12.54 13.14 12.72 13.48 14.07

33.35 40.18 35.90 34.40 41.15 43.06 47.76 63.53

212

0.4
1.62 1.66 1.62 1.68 1.71 1.61 1.68 1.71

6.06 6.26 7.10 6.32 7.74 7.32 6.82 6.97

0.9
12.42 13.10 12.05 12.78 13.19 13.01 13.45 13.67

48.76 60.68 53.29 51.80 64.07 75.20 94.98 126.82

216

0.4
1.62 1.68 1.65 1.68 1.73 1.64 1.68 1.73

7.14 8.02 8.21 7.31 8.30 9.05 8.92 8.78

0.9
12.66 13.13 12.38 12.98 13.38 13.18 13.53 13.79

59.61 73.43 66.20 62.24 76.94 105.61 125.40 156.84

220

0.4
1.65 1.68 1.65 1.71 1.73 1.64 1.71 1.73

8.25 8.95 9.85 8.50 9.17 11.10 10.76 10.38

0.9
12.83 13.26 12.58 13.11 13.45 13.30 13.62 13.83

67.23 83.02 76.82 69.45 85.37 133.37 145.30 157.07

224

0.4
1.65 1.71 1.68 1.71 1.75 1.68 1.71 1.75

9.05 10.08 9.94 9.08 10.34 12.22 12.05 12.20

0.9
12.98 13.35 12.77 13.23 13.54 13.41 13.69 13.89

74.02 90.31 85.16 75.59 92.20 159.95 177.52 190.92

Table 6.2: The average maximum cluster size and the average cluster size (in italic)

over 100 simulations of the algorithms with blocks of size b (1− α)−1(log2 log n + c) c.
The best performances are drawn in boldface.

Conclusion and Future Work

The worst-case performance of two-way hashing schemes with chaining and open ad-

dressing is studied and analyzed under different assumptions. The study, in short,

demonstrates that two-way hashing is certainly worth considering in implementing

dictionaries for the amazing worst-case performance it guarantees. One, on the other

hand, should also consider the trade-offs that we have seen in this thesis, between

space consumption (of chaining and open addressing), the expected and worst-case

times of any operation, the number of hash functions, the randomness assumptions,

and the simplicity of the algorithms. In the end, it remains in the hands of the prac-

titioners who will judge which hashing scheme is best adapted to their application.

These schemes, as well as other ones suggested by many researchers we mentioned in

the thesis, should be put into hard applications.

On-line Two-way Chaining: The waiting time and the witness tree methods are

used to reprove that worst-case search time of on-line uniform two-way chaining algo-

rithm is log2 log n± O(1), asymptotically almost surely, for a hash table of constant

load factor. The bounds are, then, extended to the fixed density model where the

two independent hash functions behave according to fixed densities defined on the

unit interval. The lower bound is shown to be true for any arbitrary fixed densities,

while the matching upper only holds for bounded ones. Bounds for other cases such

as the heavily- and lightly-loaded cases, or the dynamic case are also given. There

191

192 CONCLUSION AND FUTURE WORK

are many directions that one can follow to extend this research. Most interestingly,

are the following questions.

1. Is it possible to prove the lower bound uniformly over all densities for every

n ∈ N, while the two hash functions are still independent?

2. Can the upper bound for unbounded densities be improved?

3. In the classical uniform hashing with chaining, the chain length has the binomial

distribution Bin(m, 1/n), and when the load factor α = m/n is constant, its

limit distribution is Poisson(α). What is the distribution of the chain length of

on-line uniform two-way chaining, and does it have a limit distribution?

4. Theorem 0.2 states that on-line uniform two-way chaining is optimal among all

on-line algorithms that use two independent truly uniform hash functions and

do not reallocate the keys. Is it possible to improve the performance of on-line

two-way chaining by using efficient adaptive reallocation techniques?

Off-line Two-way Chaining: A relationship between the off-line version of uni-

form two-way chaining and the k-orientability of random graphs is established. The

k-orientability threshold ck is tightly estimated and proved to be asymptotic to k.

Algorithms for finding k-orientations are presented. This area of research can be

broadened as follows.

1. Is there an elegant short proof for bounding ck from below?

2. The best known lower bound on c2 is 1.67545943.... Is it tight?

3. Is there a linear time algorithm for finding a k-orientation for k ≥ 2?

CONCLUSION AND FUTURE WORK 193

4. Can one put the threshold bounds into an effective use to design efficient realistic

hashing schemes with reasonable worst-case insertion time and plausible worst-

case search time?

5. Is it possible to generalize the k-orientability study for nonuniform random

graphs where the vertices are chosen according to different probabilities? This

is related to off-line nonuniform two-way chaining.

Two-way Linear Probing: The concept of two-way linear probing is suggested

as a translation of two-way chaining paradigm to open addressing hashing. An

Ω(log log n) universal lower bound is proved on the worst-case performance of any

two-way linear probing algorithm. Unfortunately, two simple two-way linear prob-

ing algorithms are proved to yield unsatisfactory performances. Alternatively, two

other efficient algorithms that have matching upper bounds on their worst-case per-

formances are proposed. Simulation outputs that confirm the theoretical results are

also provided. Some of the possible future works in this area can be summarized as

follows.

1. The worst-case performance of algorithm WalkFirst is proved only for load

factor α < 1/2, although, the simulation results suggest that it may be true for

any α ∈ (0, 1). Can the proof of Theorem 6.3 be extended for α ∈ (0, 1)?

2. Is it possible to improve the multiplicative constant factors appearing in the

upper bounds on the performances of algorithms WalkFirst and Decide-

First?

3. How does (increasing or decreasing) the block size affect the performances of

the algorithms designed in Chapter 6?

194 CONCLUSION AND FUTURE WORK

4. Is there a two-way linear probing algorithm whose worst-case search time is

at most c log log n + ξ(α), for some function ξ, and constant c that is not an

increasing function of α?

5. What is the upper bound on the worst-case performance of any algorithm that

satisfies the conditions of Theorem 5.3? The same question can be applied to

Theorem 5.4.

6. Is there an algorithm that satisfies the conditions of Theorem 5.3, and has an

O(
√

log n/ log log n) upper bound on its worst-case performance?

And do not say of anything: I am doing that

tomorrow. Unless Allah pleases; and remember

your Lord when you forget, and say: maybe my

Lord will guide me to a nearer course of truth

than this.

The Noble Qur’an, (18: 23–24)

Appendix: Finishing the Proof of

Theorem 3.4

Recall that b = 0.772907804..., and

β3 = 2.61845509... , β4 = 3.65354252... , β5 = 4.71959504... .

We need to prove that t(k, βk, p) is an increasing function in p on [e−3, b], and

h(k, βk, p) is a decreasing function in p on [b, βk/k]. Moreover, we shall prove that

the following two conditions are satisfied:

max
e−3≤ p≤b/2

g(k, β, p) < 2−b/2 , max
b/2≤ p≤b

g(k, β, p) < 2−b , (6.3)

where

t(k, β, p) =

(
2β(1− p2)

2β − (b + p)k

)β−(b+p)k/2 (
2βp2

(b + p)k

)(b+p)k/2

,

g(k, β, p) = f(k, β, p) exp

(−kp(b− log b− 1)

k + 1

)
,

f(k, α, p) =

(
α(1− p2)

α− kp

)α−kp (αp

k

)kp

,

and

h(k, α, p) =





1 , if p = 0 ;

p−p(1− p)p−1f(k, α, p) , for p ∈ (0, α/k) ;

(α/k)2α , if p = α/k .

We first prove the monotonicity of the function t.

195

196 APPENDIX: FINISHING THE PROOF OF THEOREM 3.4

Lemma 6.3. For all k = 3, 4, 5, the function t(k, βk, p) is a strictly increasing func-

tion in p on [e−3, b].

Proof. Notice that for p ∈ [e−3, b],

log t(k, βk, p) =

(
βk − (b + p)k

2

)(
log(1− p2)− log

(
1− (b + p)k

2βk

))

+
(b + p)k

2

(
2 log p− log(b + p) + log

2βk

k

)
.

We shall prove that the derivative of log t(k, βk, p) is positive, for all p ∈ [e−3, b],

which will imply that t is an increasing function. So, consider the following:

d

dp
(log t) = −k

2
log(1− p2)− (2βk − bk)p− kp2

1− p2
+

k

2
log

(
1− (b + p)k

2βk

)

+k log p− k

2
log(b + p) +

k

2
log

2βk

k
+

bk

p
+ k

>
k

2
log

(
1− (b + p)k

2βk

)
− (2βk − bk)p− kp2

1− b2
+ k log p +

bk

p

+
k

2
log

βk

bk
+ k

def
= ϕk(p) ,

because p < b < βk/k. Hence,

ϕ′k(p) = − k2

4βk − 2(b + p)k
− 2βk − bk − 2kp

1− b2
+

k

p
− bk

p2

< − k2

4βk − 2(b + p)k
− 2βk − bk − 2kp

1− b2

<
−k2(1 + b2)− 8βk(βk − bk) + 6kp(2βk − bk)− 4k2p2

(4βk − 2(b + p)k)(1− b2)

def
=

ξk(p)

(4βk − 2(b + p)k)(1− b2)
,

which is negative if and only if the numerator ξk(p) is. Now if k = 4 or 5, the

numerator attains its maximum on [0, b] at b, because

ξ′k(p) = 6k(2βk − bk)− 8k2p = 0 ⇐⇒ p =
3

4k
(2βk − bk) > 0.79 > b ,

APPENDIX: FINISHING THE PROOF OF THEOREM 3.4 197

and ξk(b) = ξk(0) + 2bk(6βk − 5bk) > ξk(0). However, ξ4(b) = −2.0188808..., and

ξ5(b) = −2.6967152.... On the other hand, if k = 3, the numerator ξ3(p) has a maxima

at p̂ = (2β3 − 3b)/4 = 0.729546692...; and ξ3(0) < ξ3(b) < ξ3(p̂) = −1.4945682....

Consequently, ϕ′k(p) < 0, for all k = 3, 4, 5, and thence, ϕk(p) is a decreasing function

on [e−3, b]. Thus, ϕk(p) > ϕk(b) > 0, for all k = 3, 4, 5, because ϕ3(b) = 1.00758127...,

ϕ4(b) = 1.40196584..., and ϕ5(b) = 1.65799854.... This completes the proof.

Next we prove the monotonicity of the function h.

Lemma 6.4. For all k = 3, 4, 5, the function h(k, βk, p) is a strictly decreasing func-

tion in p on [b, βk/k].

Proof. For p ∈ [b, βk/k], let

ϕk(p) := log h(k, βk, p)

= (βk − kp) log(1− p2)− (βk − kp) log(βk − pk) + (k − 1)p log p

−(1− p) log(1− p)− kp log k + βk log βk .

It suffices to prove that ϕ′k(p) < 0. Notice that

ϕ′k(p) = −k log(1− p2)− 2p(βk − kp)

1− p2
+ k log(βk − kp) + (k − 1) log p

+ log(1− p) + 2k − k log k .

We shall prove that ϕ′k(p) is a decreasing function on [b, βk/k], for all k = 3, 4, 5, so

that ϕ′k(p) < ϕ′k(b) < 0, because ϕ′3(b) = −1.32950101..., ϕ′4(b) = −0.62432743...,

and ϕ′5(b) = −0.07696858.... For that we show ϕ′′k(p) < 0, as follows:

ϕ′′k(p) =
2kp

1− p2
− 2βk − 4kp + 2βkp

2

(1− p2)2
− k2

βk − pk
+

k − 1

p
− 1

1− p

=
ξk(p)

p(βk − pk)(1− p2)2
,

198 APPENDIX: FINISHING THE PROOF OF THEOREM 3.4

where

ξk(p) = βkk − βk − (2k2 − k + 2β2
k + βk)p + (6kβk + k + βk)p

2

−(2k2 + k + 2β2
k − βk)p

3 + k(βk − 1)p4 .

So we need to prove that ξk(p) < 0, on [b, βk/k]. Consider the following:

ξ′k(p) = −2k2 + k − 2β2
k − βk + 2(6kβk + k + βk)p− 3(2k2 + k + 2β2

k − βk)p
2

+4k(βk − 1)p3 ;

ξ′′k(p) = 2(6kβk + k + βk)− 6(2k2 + k + 2β2
k − βk)p + 12k(βk − 1)p2 ,

and hence,

ξ′′′k (p) = −6(2k2 + k + 2β2
k − βk) + 24k(βk − 1)p

< −12k2 − 6k − 12β2
k + 6βk + 24β2

k − 24βk

= −12(k2 − β2
k)− 6k − 18βk < 0 ,

for all k = 3, 4, 5. This means that ξ′k(p) is a concave function on [b, βk/k]. Computing

the values of ξ′k at both of the endpoints of the interval [b, βk/k], for all k = 3, 4, 5,

we get

ξ′3(b) = 1.66122202... , ξ′4(b) = 2.8140136... , ξ′5(b) = 4.0235492... ,

ξ′3(β3/3) = 0.3170448... , ξ′4(β4/4) = 0.3895055... , ξ′5(β5/5) = 0.4653657... .

Since they are all positive, then ξ′k(p) > 0 on [b, βk/k]. Consequently, ξk(p) is an

increasing function on the interval [b, βk/k]. Therefore, ξk(p) ≤ ξk(βk/k) < 0, for

all k = 3, 4, 5, because ξ3(β3/3) = −0.44566294..., ξ4(β4/4) = −0.40138310..., and

ξ5(β5/5) = −0.2804545....

The next lemma proves that first condition in (6.3) is satisfied.

APPENDIX: FINISHING THE PROOF OF THEOREM 3.4 199

Lemma 6.5. For k = 3, 4, 5, the following condition is satisfied:

max
e−3≤ p≤b/2

g(k, βk, p) < 2−b/2 .

Proof. By inequalities (3.4) and (3.5), we have

log g(k, βk, p) = (βk − kp) log(1− p2)− (βk − kp) log(1− kp/βk)

+ kp log
βkp

k
− kp (b− log b− 1)

k + 1

< kp− βkp
2 + kp3 + kp log

βkp

k
− kp (b− log b− 1)

k + 1
def
= ϕk(p) .

However,

ϕ′k(p) = 2k − 2βkp + 3kp2 + k log
βkp

k
− k(b− log b− 1)

k + 1
;

ϕ′′k(p) = −2βk + 6kp + k/p .

One can see that ϕ′′k(p) attains its minimum value on [e−3, b/2] at the point p =

βk/(6k), that is, ϕ′′k(p) ≥ −βk +6k2/βk > −k+6k > 0, for all k = 3, 4, 5. This means

that ϕk(p) is a convex function on [e−3, b/2]. Evaluating ϕk(p) at the endpoints

p = e−3 and p = b/2, for all k = 3, 4, 5, we get

ϕ3(e
−3) = −0.32629896... , ϕ4(e

−3) = −0.42611632... , ϕ5(e
−3) = −0.52458518... ,

ϕ3(b/2) = −0.32735014... , ϕ4(b/2) = −0.38811609... , ϕ5(b/2) = −0.44244344... .

Thus, we conclude that ϕk(p) < −(b/2) log 2 = −0.267869432..., for all p ∈ [e−3, b/2],

and k = 3, 4, 5, which ends the proof.

Before we verify the second condition in (6.3) we need to establish two lemmas.

The following bounds can be proved easily by finding the maximum of the polynomials

using the first derivative test.

Lemma 6.6. The following bounds hold for all p ∈ [0.38, 0.78]:

200 APPENDIX: FINISHING THE PROOF OF THEOREM 3.4

1. 1.674− 10.66p + 22.093p2 − 15p3 < 0.

2. −9.62 + 47.84p− 77.571p2 + 40.66p3 < 0.

3. 3− 19.2p + 37.93p2 − 24p3 < 0.

4. −20.77 + 92.92p− 137.53p2 + 67.2p3 < 0.

5. 4.84− 30.4p + 58.0372p2 − 35p3 < 0.

6. −36.5119 + 153.784p− 215.4634p2 + 100.4p3 < 0.

Lemma 6.7. For k = 3, 4, 5, and p ∈ [e−3, βk/k], define the function

ϕk(p) := (βk − kp) log
βk(1− p2)

βk − kp
.

Then ϕ′′k(p) ≤ −k − 2, for all p ∈ [0.38, 0.78].

Proof. Notice that

ϕ′′k(p) =
−k2 − 2β2

k + 8βkkp− (4k2 + 2β2
k)p

2 + k2p4

(1− p2)2 (βk − kp)
.

Thus, ϕ′′k(p) ≤ −k − 2 if and only if

0 ≥ −k2 − 2β2
k + 8βkkp− (4k2 + 2β2

k)p
2 + k2p4 + (k + 2)(1− p2)2 (βk − kp)

= −k2 − 2β2
k + (k + 2)βk + k(8βk − k − 2)p− 2(2k2 + β2

k + (k + 2)βk)p
2

+2k(k + 2)p3 + (k2 + (k + 2)βk)p
4 − k(k + 2)p5

def
= ψk(p) .

We prove that ψk ≤ 0, for k = 3, 4, 5, by bounding ψk from above by a polynomial

of degree 3 for which we can easily find its maximum values. For k = 3, we get

ψ3(p) < −9.62 + 47.84p− 75.897p2 + 30p3 + 22.093p4 − 15p5

< −9.62 + 47.84p− 75.897p2 + 30p3 + 10.66p3 − 1.674p2

= −9.62 + 47.84p− 77.571p2 + 40.66p3 < 0 ,

APPENDIX: FINISHING THE PROOF OF THEOREM 3.4 201

where we have used bounds (1) and (2) of Lemma 6.6. Similarly, for k = 4, we get

ψ4(p) < −20.77 + 92.92p− 134.53p2 + 48p3 + 37.93p4 − 24p5

< −20.77 + 92.92p− 134.53p2 + 48p3 + 19.2p3 − 3p2

= −20.77 + 92.92p− 137.53p2 + 67.2p3 < 0 ,

where we have used the bounds (2) and (3) of Lemma 6.6. Finally, for k = 5, and

using the last two bounds in Lemma 6.6, we obtain

ψ5(p) < −36.5119 + 153.784p− 210.6234p2 + 70p3 + 58.0372p4 − 35p5

< −36.5119 + 153.784p− 210.6234p2 + 70p3 + 30.4p3 − 4.84p2

< −36.5119 + 153.784p− 215.4634p2 + 100.4p3 < 0 .

Now we are ready to verify the second condition in (6.3).

Lemma 6.8. For k = 3, 4, 5, the following condition is satisfied:

max
b/2≤ p≤b

g(k, βk, p) < 2−b .

Proof. Recall that

log g(k, βk, p) = (βk − kp) log
1− p2

1− kp/βk

+ kp log
βkp

k
− kp (b− log b− 1)

k + 1
.

For convenience, let

ϕk(p) := (βk − kp) log
1− p2

1− kp/βk

.

By Taylor’s theorem, we know that for p ∈ [b/2, b], there exists a point x ∈ [b/2, b]

such that

ϕ3(p) = ϕ3(0.7) + ϕ′3(0.7)(p− 0.7) + ϕ′′3(x)(p− 0.7)2/2

< 0.491− 1.26(p− 0.7)− 2.5(p− 0.7)2 < 0.15 + 2.24p− 2.5p2 ,

202 APPENDIX: FINISHING THE PROOF OF THEOREM 3.4

where we have used Lemma 6.7. Similarly, we expand ϕ4, and ϕ5 about the point

p = 0.6 to obtain the following estimations:

ϕ4(p) < 0.782− 0.84(p− 0.6)− 3(p− 0.6)2 < 0.21 + 2.76p− 3p2 ,

ϕ5(p) < 0.97− (p− 0.6)− 3.5(p− 0.6)2 − 3.5(p− 0.6)2 < 0.31 + 3.2p− 3.5p2 .

Also, by Taylor’s theorem, there exists a point y ∈ [b/2, b] such that

log p = log(0.75) +
1

0.75
(p− 0.75)− 1

2y2
(p− 0.75)2

< −0.287 + 1.34(p− 0.75)− 0.83(p− 0.75)2

= −1.758 + 2.585p− 0.83p2 .

Therefore, putting these bounds together, we see that for p ∈ [b/2, b],

log g(3, β3, p) < 0.15− 3.464p + 5.255p2 − 2.49p3 < −0.536

log g(4, β4, p) < 0.21− 4.658p + 7.34p2 − 3.32p3 < −0.536

log g(5, β5, p) < 0.31− 5.903p + 9.425p2 − 4.15p3 < −0.536 .

The last inequalities can be proved by finding the maximum value using the first

derivative test. Notice that −0.536 < −b log 2 = −0.535738865..., and this ends the

proof.

List of Algorithms

AAR-Heuristic 102

Assign 139

AVL-Hash 136

Classical 20

ClassicChain 28

ClassicStages 140

Greedy-Orient 94

LeftMC 24

Left-ShortChain 40

Nonuniform-ShortChain 38

Orient 100

PO-Threshold 145

StagesMC 138

Uniform-GreedyMC 22

Uniform-ShortChain 38

203

Index of Notation

SETS AND NUMBERS

e base of natural logarithm

log natural logarithm

dx e ceiling

bx c floor

∅ empty set

R real numbers, 11

N positive integers, 11

[n] {1, . . . , n}, 11

ASYMPTOTICS

O(bn) big O, 11

Ω(an) inverse of big O, 11

Θ(an) same order of

magnitude, 11

o(an) small o , 11

ω(an) inverse of small o, 11

∼ asymptotic equality, 11

¿ same as o, 11

À same as ω, 11

n−→ convergence as n

goes to infinity, 11

PROBABILITY

P {·} probability, 12

P {· | ·} conditional probability, 12

E [·] expectation, 12

Var [·] variance, 12

Cov [· , ·] covariance, 12

I[·] indicator function, 12

L
= equality in law, 12

w.h.p. with high probability, 12

a.a.s. asymptotically almost

surely, 12

Bin(n, p) binomial distribution,12

HASHING

U universe set of keys, 27

K input set of keys, 27

T hash table, 27

205

206 INDEX OF NOTATION

F(U , T) all hash functions

f : U → T , 27

α load factor, 27

f, g hash functions, 39

hf density of hash

function f , 57

Reg(h) region under the

curve of h, 83

Graphs

G(n,m) random graph with

loops and multiedges, 92

E(G) multiset of edges in G, 97

V(G) set of vertices in G, 97

Ψ(G) maximum density of G, 97

ck threshold of

k-orientability, 93

Bibliography

[1] M. Adler, P. Berenbrink, and K. Schroeder, “Analyzing an infinite parallel job

allocation process,” in: Proceedings of the European Symposium on Algorithms,

pp.417–428, 1998.

[2] M. Adler, S. Chakrabarti, M. D. Mitzenmacher, and L. Rasmussen, “Parallel

randomized load balancing,” in: Proceedings of the 27th ACM Symposium on

Theory of Computing (STOC), pp. 238–247, 1995.

[3] O. Aichholzer, F. Aurenhammer, and G. Rote, “Optimal graph orientation with

storage applications,” SFB-Report F003-51, SFB ‘Optimierung und Kontrolle’,

TU-Graz, Austria, 1995.

[4] D. Aldous, “Hashing with linear probing, under non-uniform probabilities,”

Probability in the Engineering and Informational Sciences, vol. 2, pp. 1–14,

1988.

[5] N. Alon, L. Babai and A. Itai, “A fast and simple randomized parallel algorithm

for the maximal independent set problem,” Journal of Algorithms, vol. 7 (4),

pp. 567–583, 1986.

[6] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and G. Tardos, “Lin-

ear hash functions,” Journal of the ACM, vol. 46 (5), pp. 667–683, 1999. A

207

208 BIBLIOGRAPHY

preliminary version appeared in: Proceedings of the 29th ACM Symposium on

Theory of Computing (STOC), pp. 465–474, 1997.

[7] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., John Wiley, New

York, 2000.

[8] A. Anagnostopoulos, I. Kontoyiannis, and E. Upfal, “Steady state analysis of

balanced-allocation routing,” submitted, 2002. A preliminary version available

at http://www.dam.brown.edu/people/yiannis/PAPERS/balanced.ps.

[9] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman, “Sorting in linear time?,”

in: Proceedings of the 27th ACM Symposium on Theory of Computing (STOC),

pp. 427–436, 1995.

[10] A. Andersson, “Faster deterministic sorting and searching in linear space,” in:

Proceedings of the 37th IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 135–141, 1996.

[11] D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for hamiltonian

paths and matchings,” Journal of Computer and Systems Science, vol. 18, pp.

155–193, 1979.

[12] Y. Azar, A. Z. Broder, and A. R. Karlin, “On-line load balancing,” in: Pro-

ceedings of the 33rd IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 218–225, 1992.

[13] Y. Azar, A. Z. Broder, A. R. Karlin and E. Upfal, “Balanced allocations,”

SIAM Journal on Computing, vol. 29 (1), pp. 180–200, 2000. A preliminary

version of this paper appeared in Proceedings of the 26th ACM Symposium on

Theory of Computing (STOC), pp. 593–602, 1994.

BIBLIOGRAPHY 209

[14] Y. Azar, J. Noar, and R. Rom, “The competitiveness of on-line assignments,” in:

Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms (SODA),

pp. 203–210, 1992.

[15] G. de Balbine, Computational Analysis of the Random Components Induced by

Binary Equivalence Relations, Ph.D. thesis, California Institute of Technology,

1969.

[16] G. Bennett, “Probability inequalities for the sum of independent random vari-

ables,” Journal of the American Statistical Association, vol. 57, pp. 33–45, 1962.

[17] P. Berenbrink, A. Czumaj, T. Friedetzky, and N. D. Vvedenskaya, “Infinite

parallel job allocations,” in: Proceedings of the 11th ACM Symposium on Par-

allel Algorithms and Architectures, pp. 99–108, Bar Harbor, Maine, July 9–13,

2000.

[18] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, “Balanced allocations:

the heavily loaded case,” in: Proceedings of the 32nd ACM Symposium on

Theory of Computing (STOC), pp. 745–754, 2000.

[19] P. Berenbrink , F. Meyer auf der Heide, K. Schröder, “Allocating weighted jobs

in parallel,” Theory of Computing Systems, pp. 281–300, 1999.

[20] S. Boucheron, F. Gamboa, and C. Léonard, “Bins and balls: large deviations

of the empirical occupancy process,” Rapport de recherche du LRI No. 1255,

Université Paris-Sud, 2000.

[21] B. Bollobás, A. Z. Broder, and I. Simon, “The cost distribution of clustering in

random probing,” Journal of the ACM, vol. 37 (2), pp. 224–237, 1990.

[22] R. P. Brent, “Reducing the retrieval time of scatter storage techniques,” Com-

munications of the ACM, vol. 16 (2), pp. 105–109, 1973.

210 BIBLIOGRAPHY

[23] A. Z. Broder and A. Karlin, “Multilevel adaptive hashing,” in: Proceedings of

the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 43–53,

2000.

[24] A. Broder and M. D. Mitzenmacher, “Using multiple hash functions to im-

prove IP lookups,” in: Proceedings of the IEEE INFOCOM 2001 Conference,

Anchorage, Alaska USA , April 2001. Full version available as Technical Report

TR–03–00, Department of Computer Science, Harvard University, Cambridge,

MA, 2000.

[25] J. Buhler, “Efficient large-scale sequence comparison by locality-sensitive hash-

ing,” Bioinformatics, vol. 17 (5), pp. 419–428, 2001.

[26] J. Byers, J. Considine, and M. D. Mitzenmacher, “Simple load balancing for

distributed hash tables,” in: Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems, pp. 80–87, 2003.

[27] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal

of Computer and System Science, vol. 18, pp. 143–154, 1979.

[28] P. Celis, Robin Hood Hashing, Ph.D. thesis, Computer Science Department,

University of Waterloo, 1986. Available also as Technical Report CS-86-14.

[29] P. Celis, P. Larson, and J. I. Munro, “Robin Hood hashing (preliminary re-

port),” in: Proceedings of the 26th Symposium on Foundations of Computer

Science (FOCS), pp. 281–288, 1985.

[30] P. Chassaing and G. Louchard, “Phase transition for parking blocks, Brownian

excursion and coalescence,” Random Structures Algorithms, vol. 21 (1), pp.

76–119, 2002.

BIBLIOGRAPHY 211

[31] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based

on the sums of observations,” Annals of Mathematical Statistics, vol. 23, pp.

493–507, 1952.

[32] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky,

“The bit extraction problem or t-resilient functions (preliminary version),” in:

Proceedings of the 26th IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 396–407, 1985.

[33] R. Cole, A. Frieze, B. M. Maggs, M. D. Mitzenmacher, A. W. Richa, R. K.

Sitaraman, and E. Upfal, “On balls and bins with deletions,” in: Proceedings of

the 2nd International Workshop on Randomization and Approximation Tech-

niques in Computer Science, LNCS 1518, Springer-Verlag, pp. 145–158, 1998.

[34] R. Cole, B. M. Maggs, F. Meyer auf der Heide, M. D. Mitzenmacher, A. W.

Richa, K. Schroeder, R. K. Sitaraman, and B. Voecking, “Randomized protocols

for low-congestion circuit routing in multistage interconnection networks,” in:

Proceedings of the 29th ACM Symposium on the Theory of Computing, pp.

378–388, 1998.

[35] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, MA, 1990.

[36] Z. J. Czech, G. Havas, and B. S. Majewski, “Perfect hashing,” Theoretical

Computer Science, vol. 182 (1-2), pp. 1–143, 1997.

[37] A. Czumaj, F. Meyer auf der Heide, and V. Stemann, “Contention resolution

in hashing based shared memory simulations,” SIAM Journal on Computing,

vol. 29, No. 5, pp. 1703–1739, 2000.

212 BIBLIOGRAPHY

[38] A. Czumaj and V. Stemann, “Randomized allocation processes,” in: Proceed-

ings of the 38th Symposium on Foundations of Computer Science (FOCS), pp.

194–203, 1997.

[39] A. Czumaj and V. Stemann, “Randomized allocation processes,” Random

Structures and Algorithms, vol. 18, Issue 4, pp. 297–331, June 2001.

[40] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-Sensitive Hash-

ing Scheme Based on p-Stable Distributions,” abstract appeared in: DIMACS

Workshop on Streaming Data Analysis, 2003.

[41] L. Devroye, “The expected length of the longest probe sequence for bucket

searching when the distribution is not uniform,” Journal of Algorithms, vol. 6,

pp. 1–9, 1985.

[42] L. Devroye, Lecture Notes on Bucket Algorithms, Birkhäuser Verlag, Boston,

1986.

[43] L. Devroye and L. Györfi, Nonparametric Density Estimation: The L1 View,

John Wiley, New York, 1985.

[44] L. Devroye and P. Morin, “Cuckoo hashing: further analysis,” Information

Processing Letters, vol. 86, pp. 215–219, 2004.

[45] L. Devroye, P. Morin, and A. Viola, “On worst-case Robin Hood hashing,” to

appear in: SIAM Journal on Computing, 2003.

[46] R. Diestel, Graph Theory, Springer-Verlag, Graduate Texts in Mathematics,

vol. 173, New York, 1997.

[47] M. Dietzfelbinger, “Universal hashing and k-wise independent random variables

via integer arithmetic without primes,” in: Proceedings of the 13th Symposium

BIBLIOGRAPHY 213

on Theoretical Aspects of Computer Science, LNCS 1046, Springer-Verlag, pp.

569–580, 1996.

[48] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, “Polynomial hash func-

tions are reliable (extended abstract),” in: Proceedings of the 19th International

Colloquium on Automata Languages and Programming, LNCS 623, Springer-

Verlag, pp. 235–246, 1992.

[49] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen, “A reliable

randomized algorithm for the closest-pair problem,” Journal of Algorithms, vol.

25, pp. 19–51, 1997.

[50] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-

ert, and R. Tarjan, “Dynamic perfect hashing: upper and lower bounds,” SIAM

Journal on Computing, vol. 23 (4), pp. 738–761, 1994. A preliminary version

appeared in: Proceedings of the 29th IEEE Symposium on Foundations of Com-

puter Science (FOCS), pp. 524–531, 1988.

[51] M. Dietzfelbinger and F. Meyer auf der Heide, “A new universal class of hash

functions and dynamic hashing in real time,” in: Proceedings of the 17th In-

ternational Colloquium on Automata Languages and Programming, LNCS 443,

Springer-Verlag, pp. 6–19, 1990.

[52] M. Dietzfelbinger and F. Meyer auf der Heide, “High performance universal

hashing, with applications to shared memory simulations,” in: Data Structures

and Efficient Algorithms, LNCS 594, Springer-Verlag, pp. 250–269, 1992.

[53] M. Dietzfelbinger and P. Wolfel, “Almost random graphs with simple hash func-

tions,” in: Proceedings of the 35th ACM Symposium on Theory of Computing

(STOC), pp. 629–638, 2003.

214 BIBLIOGRAPHY

[54] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas, “Neighborhood pre-

serving hashing and approximate queries,” in: Proceedings of the 5th ACM-

SIAM Symposium on Discrete Algorithms (SODA), pp. 251–259, 1994.

[55] E. Drinea, A. Frieze, and M. D. Mitzenmacher, “Balls and nins models with

feedback,” in: Proceedings of the 11th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pp. 308–315, 2002.

[56] D. Dubhashi, V. Priebe, and D. Ranjan, “Negative dependence through the

FKG inequality,” BRICS Report Series, RS–96–27, 1996.

[57] D. Dubhashi, and D. Ranjan, “Balls and bins: a study in negative dependence,”

Random Structures and Algorithms, vol. 13 (2), pp. 99–124, 1998.

[58] A. I. Dumey, “Indexing for rapid random access memory systems,” Computers

and Automation, vol. 5 (12), pp. 6–9, 1956.

[59] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing in ho-

mogeneous distributed systems,” IEEE Transactions on Software Engineering,

vol. 12, pp. 662–675, 1986.

[60] C. Engelmann and J. Keller, “Simulation-based comparison of hash functions

for emulated shared memory,” in: Proceedings of the 5th International Con-

ference on Parallel Architectures and Languages Europe, LNCS 694, Springer-

Verlag, pp. 1–11, 1993.

[61] P. Erdös and A. Rényi, “On the evolution of random graphs,” Publ. Math. Ins.

Hunger. Acad. Sci., vol. 5, PP. 17–61, 1960.

[62] A. P. Ershov, “On programming of arithmetic statements,” (in Russian), Dok-

lady Akademii Nauk SSSR, vol. 118 (3), pp.427–430, 1958.

BIBLIOGRAPHY 215

[63] J. D. Esary, F. Proschan, and D. W. Walkup, “Association of random variables,

with applications,” Annals of Mathematical Statistics, vol. 38, pp. 1466–1474,

1967.

[64] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and multicom-

modity flow problem,” SIAM Journal on Computing, vol. 5 (4), pp. 691–703,

1976.

[65] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible hashing–a

fast access method for dynamic files,” ACM Transactions on Database Systems,

vol. 4 (3), pp. 315–344, 1979.

[66] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1,

John Wiley, New York, 1968.

[67] P. Flajolet, P. V. Poblete, and A. Viola, “On the analysis of linear probing

hashing,” Algorithmica, vol. 22, pp. 490–515, 1998.

[68] C. M. Fortuin, P. N. Kasteleyn, and J. Ginibre, “Correlation inequalities on

some partially ordered sets.” Communications in Mathematical Physics, vol.

22, pp. 89–103, 1971.

[69] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis, “Space efficient hash tables

with worst case constant access time,” in: Proceedings of the 20th Symposium

on Theoretical Aspects of Computer Science, LNCS 2607, Springer-Verlag, pp.

271–282, 2003.

[70] N. Fountoulakis, Thresholds and the Structure of Sparse Random Graphs, Ph.D.

thesis, University of Oxford, 2003.

[71] A. Frank, “On the orientation of graphs,” Journal of Combinatorial Theory,

Series B, vol. 28 (3), pp. 251–261, 1980.

216 BIBLIOGRAPHY

[72] A. Frank, “Orientations of graphs and submodular flows,” Congressus Numer-

antium, (A. J. W. Hilton, ed.), vol. 113, pp. 111–142, 1996.

[73] A. Frank and A. Gyárfás, “How to orient the edges of a graph,” in: Combi-

natorics, Colloquia Mathematica Societatis János Bolyai, vol. 18, pp. 353–364,

1976.

[74] M. Fredman, J. Komlós, E. Szemerédi, “Storing a sparse table with O(1) worst

case access time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

[75] D. Gardy , “Occupancy urn models in analysis of algorithms,” Journal of Sta-

tistical Planning and Inference, vol. 101 (1–2), pp. 95–105, 2002.

[76] A. K. Garg and C. C. Gotlieb, “Order-preserving key transformations,” ACM

Transactions on Database Systems, vol. 11 (2), pp. 213–234, 1986.

[77] A. Gionis, P. Indyk, and R. Motwani, “Similarity searching in high dimensions

via hashing,” in: Proceedings of the International Conference on Very Large

Data Bases, pp. 518–529, 1999.

[78] G. H. Gonnet, “Open addressing hashing with unequal-probability keys,” Jour-

nal of Computer and System Sciences, vol. 20, pp. 354–367, 1980.

[79] G. H. Gonnet, “Expected length of the longest probe sequence in hash code

searching,” Journal of the ACM, vol. 28, pp. 289–304, 1981.

[80] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Struc-

tures, Addison-Wesley, Workingham, 1991.

[81] G. H. Gonnet and J. I. Munro, ‘’Efficient ordering of hash tables,” SIAM Jour-

nal on Computing, vol. 8 (3), pp. 463–478, 1979.

BIBLIOGRAPHY 217

[82] G. H. Gonnet, L. D. Rogers, J. A. George, “An algorithmic and complexity

analysis of interpolation search,” Acta Informatica, vol. 39, pp. 39–52, 1980.

[83] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford

University Press, Oxford, 2001.

[84] L. J. Guibas, “The analysis of hashing techniques that exhibit k-ary clustering,”

Journal of the ACM, vol. 25 (4), pp. 544–555, 1978.

[85] M. De Guzman, Real Variable Methods in Fourier Analysis, North-Holland,

Amsterdam, 1981.

[86] T. Hagerup, P. B. Miltersen, and R. Pagh, “Deterministic dictionaries,” Journal

of Algorithms, vol. 41, pp. 69–85, 2001.

[87] J. C. Hart, W. O. Cochran, P. J. Flynn, “Similarity hashing: a computer vision

solution to the inverse problem of linear fractals,” Fractals, vol. 5, pp. 39–50,

1997.

[88] W. Hoeffding, “Probability inequalities for sums of bounded random variables,”

Journal of the American Statistical Association, vol. 58, pp. 13–30, 1963.

[89] J. E. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matchings in

bipartite graphs,” SIAM Journal on Computing, vol. 2, pp. 225–231, 1973.

[90] P. Indyk, “Dimensionality reduction techniques for proximity problems,”

in: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pp. 371–378, 2000.

[91] P. Indyk, R. Motwani, P. Raghavan and S. Vempala, “Locality-preserving hash-

ing in multidimensional spaces,” in: Proceedings of the 29th ACM Symposium

on Theory of Computing (STOC), pp. 618–625, 1997.

218 BIBLIOGRAPHY

[92] P. Indyk and N. Thaper, “Fast image retrieval via embeddings,” in: Proceedings

of the 3rd International Workshop on Statistical and Computational Theories

of Vision, 2003.

[93] S. Janson, “Large deviation inequalities for sums of indicator variables,” Tech-

nical Report No. 34, Department of Mathematics, Uppsala University, 1994.

[94] S. Janson, “Asymptotic distribution for the cost of linear probing hashing,”

Random Structures and Algorithms, vol. 19 (3–4), pp. 438–471, 2001.

[95] S. Janson, “Individual displacements for linear probing hashing with differ-

ent insertion policies,” Technical Report No. 35, Department of Mathematics,

Uppsala University, 2003.

[96] S. Janson, D. E. Knuth, T. ÃLuczak, and B. Pittel, “The birth of the giant

component,” Random Structures and Algorithms, vol. 4 (3), pp. 233–358, 1993.

[97] S. Janson, T. Luczak, and A. Rucinski, Random Graphs, Wiley-Interscience,

New York, 2000.

[98] K. Joag-Dev and F. Proschan, “Negative association of random variables, with

applications,” Annals of Statistics, vol. 11 (4), pp. 286–295, 1983.

[99] N. L. Johnson and S. Kotz, Urn Models and Their Application: An Approach

to Modern Discrete Probability Theory, John Wiley, New York, 1977.

[100] A. Kamath, R. Motwani, K. Palem, and P. Spirakis, “Tail bounds for occupancy

and the satisfiability threshold conjecture,” Random Structures and Algorithms,

vol. 7, pp. 59–80, 1995.

[101] R. Karp, M. Luby, and F. Meyer auf der Heide, “Efficient PRAM simulation

on a distributed memory machine,” Algorithmica, vol. 16, pp. 245–281, 1996.

BIBLIOGRAPHY 219

A preliminary version appeared in: Proceedings of the 24th ACM Symposium

on Theory of Computing (STOC), pp. 318–326, 1992.

[102] D. E. Knuth, “Notes on “open” addressing,” unpublished notes, 1963. Available

at http://www.wits.ac.za/helmut/first.ps.

[103] D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching,

Addison-Wesley, Reading, Mass., 1973.

[104] D. E. Knuth, “Linear probing and graphs, average-case analysis for algorithms,”

Algorithmica, vol. 22 (4), pp. 561–568, 1998.

[105] V. F. Kolchin, B. A. Sevast’yanov and V. P. Chistyakov, Random Allocations,

V. H. Winston & Sons, Washington, D.C., 1978.

[106] A. G. Konheim and B. Weiss, “An occupancy discipline and applications,”

SIAM Journal on Applied Mathematics, vol. 14, pp. 1266–1274, 1966.

[107] S. Kotz and N. Balakrishnan, “Advances in urn models during the past two

decades,” in: Advances in Combinatorial Methods and Applications to Proba-

bility and Statistics, Birkhauser, Boston, pp. 203–257, 1997.

[108] P.-Å. Larson, “Linear hashing with partial expansions,” in: Proceedings of the

6th International Conference on Very Large Databases, pp. 224–232, 1980.

[109] P.-Å. Larson, “Analysis of uniform hashing,” Journal of the ACM, vol. 30 (4),

pp. 805–819, 1983.

[110] P.-Å. Larson, “Dynamic hash tables,” Communications of the ACM, vol. 31

(4), pp. 446–457, 1988.

[111] E. L. Lehmann, “Some concepts of dependence,” Annals of Mathematical Sta-

tistics, vol. 37, pp. 1137–1153, 1966.

220 BIBLIOGRAPHY

[112] N. Linial and O. Sasson, “Non-expansive hahsing,” in: Proceedings of the 28th

ACM Symposium on Theory of Computing (STOC), pp. 509–517, 1996.

[113] W. Litwin, “Linear hashing: A new tool for files and tables addressing,” in:

Proceedings of the 6th International Conference on Very Large Databases, pp.

212–223, 1980.

[114] M. L. ÃLuczak and E. Upfal, “Reducing network congestion and blocking prob-

ability through balanced allocation,” in: Proceedings of the 40th IEEE Sympo-

sium on Foundations of Computer Science (FOCS), pp. 587–595, 1999.

[115] G. S. Lueker and M. Molodowitch, “More analysis of double hashing,” Combi-

natorica, vol. 13 (1), pp. 83–96, 1993.

[116] G. Lugosi, “Concentration-of-measure inequalities,” presented at the Workshop

on Combinatorics, Probability and Algorithms, Montreal, 2003. Available at

http://www.econ.upf.es/~lugosi/anu.ps.

[117] V. C. H. Ma and M. D. McCool, “Low latency photon mapping using block

hashing,” in: SIGGRAPH/Eurographics Graphics Hardware Workshop, pp. 89–

98, 2002. Full version is available as Technical Report CS-2002-15, School of

Computer Science, University of Waterloo, 2002.

[118] J. A. T. Madison, “Fast lookup in hash tables with direct rehashing,” The

Computer Journal, vol. 23 (2), pp. 188–189, 1980.

[119] E. G. Mallach, “Scatter storage techniques: a uniform viewpoint and a method

for reducing retrieval times,” The Computer Journal, vol. 20 (2), pp. 137–140,

1977.

[120] C. L. Mallows, “An inequality involving multinomial probabilities,” Biometrika,

vol. 55, pp. 422–424, 1968.

BIBLIOGRAPHY 221

[121] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Computing Sur-

veys, vol. 7 (1), pp. 5–19, 1975.

[122] C. McDiarmid, “On the method of bounded differences,” in: Surveys in Com-

binatorics 1989, vol. 141, pp. 148–188, London Mathematical Society Lecture

Notes Series, Cambridge University Press, Cambridge, 1989.

[123] C. McDiarmid, “Concentration,” in: Probabilistic methods for algorithmic dis-

crete mathematics, (M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B.

Reed, eds.), Springer, pp. 195–248, 1998.

[124] K. Mehlhorn and U. Vishkin, “Randomized and deterministic simulations of

PRAMs by parallel machines with restricted granularity of parallel memory,”

Acta Informatica, vol. 21, pp. 339–374, 1984.

[125] H. Mendelson and U. Yechiali, “A new approach to the analysis of linear probing

schemes,” Journal of the ACM, vol. 27 (3), pp. 474–483, 1980.

[126] F. Meyer auf der Heide and M. Dietzfelbinger, “High performance universal

hashing with applications to shared memory simulations, data structures and

efficient algorithms,” in: Data Structures and Efficient Algorithms, LNCS 594,

Springer-Verlag, pp. 250–269, 1992.

[127] F. Meyer auf der Heide, C. Scheideler, and V. Stemann, “Exploiting storage

redundancy to speed up randomized shared memory simulations,” in: Theo-

retical Computer Science, Series A, vol. 162 (2), pp. 245–281, 1996. Extended

abstract appeared in: Proceedings of the 12th Symposium on Theoretical As-

pects of Computer Science, pp. 267–278, 1995.

[128] F. Meyer auf der Heide, K. Schröder, and F. Schwarze, “Routing on networks of

optical crossbars,” in: Theoretical Computer Science, 196, pp. 181–200, 1998.

222 BIBLIOGRAPHY

[129] P. B. Miltersen, “Error correcting codes, perfect hashing circuits, and determin-

istic dynamic dictionaries,” in: Proceedings of the 9th ACM-SIAM Symposium

on Discrete Algorithms (SODA), pp. 556–563, 1998.

[130] M. D. Mitzenmacher, The Power of Two Choices in Randomized Load Balanc-

ing, Ph.D. thesis, Computer Science Department, University of California at

Berkeley, 1996.

[131] M. D. Mitzenmacher, “Load balancing and density dependent jump Markov

processes,” in: Proceedings of the 37th IEEE Symposium on Foundations of

Computer Science (FOCS), pp. 213–222, 1996.

[132] M. D. Mitzenmacher, “Studying balanced allocations with differential equa-

tions,” Combinatorics, Probability, and Computing, vol. 8, pp. 473–482, 1999.

Full version available as Technical Note 1997–024, Digital Equipment Corp.

Systems Research Center.

[133] M. D. Mitzenmacher, B. Prabhakar, and D. Shah, “Balls and bins with mem-

ory,” in: Proceedings of the 43rd IEEE Symposium on Foundations of Computer

Science (FOCS), pp. 799–808, 2002.

[134] M. D. Mitzenmacher, A. Richa, and R. Sitaraman, “The power of two random

choices: A survey of the techniques and results,” in: Handbook of Randomized

Computing, (P. Pardalos, S. Rajasekaran, and J. Rolim, eds.), pp. 255–305,

2000.

[135] M. D. Mitzenmacher and B. Vöcking, “The asymptotics of selecting the shortest

of two, improved,” in: Proceedings of the 37th Allerton Conference on Commu-

nication, Control, and Computing, pp. 326–327, 1998. Full version available as

BIBLIOGRAPHY 223

Technical Report TR–08–99, Department of Computer Science, Harvard Uni-

versity, Cambridge, MA, 1999.

[136] R. Morris, “Scatter storage techniques,” Communications of the ACM, vol. 11

(1), pp. 38–44, 1968.

[137] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University

Press, Cambridge, MA, 1995.

[138] J. I. Munro and P. Celis, “Techniques for collision resolution in hash tables with

open addressing,” in: Proceedings of 1986 Fall Joint Computer Conference, pp.

601–610, 1999.

[139] M. Okamoto, “Some inequalities relating to the partial sum of binomial prob-

abilitie,” Annals of Mathematical Statistics, vol. 10, pp. 29–35, 1958.

[140] A. Östlin and R. Pagh, “Simulating uniform hashing in constant time and

optimal space,” Technical Report RS-02-27, BRICS, Department of Computer

Science, University of Aarhus, 2002.

[141] A. Östlin and R. Pagh, “Uniform hashing in constant time and linear space,”

in: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC),

pp. 622-628, 2003.

[142] R. Pagh, “Hash and displace: Efficient evaluation of minimal perfect hash

functions,” in: Proceedings of the 6th International Workshop on Algorithms

and Data Structures, LNCS 1663, Springer-Verlag, pp. 49–54, 1999.

[143] R. Pagh, “A trade-off for worst-case efficient dictionaries,” Nordic Journal of

Computing, vol. 7, pp. 151–163, 2000. A preliminary version appeared in: Pro-

ceedings of the 7th Scandinavian Workshop on Algorithm Theory, LNCS 1851,

Springer-Verlag, pp. 22-31, 2000.

224 BIBLIOGRAPHY

[144] R. Pagh, “On the cell probe complexity of membership and perfect hashing,”

in: Proceedings of 33rd ACM Symposium on Theory of Computing (STOC),

pp. 425–432, 2001.

[145] R. Pagh, Hashing, Randomness and Dictionaries, Ph.D. thesis, University of

Aarhus, 2002.

[146] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in: Proceedings of the European

Symposium on Algorithms, LNCS 2161, Springer-Verlag, pp. 121–133, 2001. A

previous version is available as BRICS Report Series RS–01–32, Department of

Computer Science, University of Aarhus, 2001.

[147] W. W. Peterson, “Addressing for random-access storage,” IBM Journal of Re-

search and Development, vol. 1 (2), pp. 130–146, 1957.

[148] G. C. Pflug and H. W. Kessler, “Linear probing with a nonuniform address

distribution,” Journal of the ACM, vol. 34 (2), pp. 397–410, 1987.

[149] B. Pittel, “Linear probing: The probable largest search time grows logarithmi-

cally with the number of records,” Journal of Algorithms, vol. 8, pp. 236–249,

1987.

[150] B. Pittel, J. Spencer, and N. Wormald, “Sudden Emergence of a Giant k-Core

in a Random Graph,” Journal of Combinatorial Theory, Series B, vol. 67, pp.

111–151, 1996.

[151] P. V. Poblete and J. I. Munro, “Last-Come-First-Served hashing,” Journal of

Algorithms, vol. 10, pp. 228–248, 1989.

[152] P. V. Poblete, A. Viola, and J. I. Munro, “Analyzing the LCFS linear probing

hashing algorithm with the help of Maple,” Maple Technical Newletter, vol. 4

(1), pp. 8–13, 1997.

BIBLIOGRAPHY 225

[153] M. Raab and A. Steger, ““Balls into bins”—a simple and tight analysis,” in:

Proceedings of the 2nd Workshop on Randomization and Approximation Tech-

niques in Computer Science, vol. 1518, Lecture Notes in Computer Science,

Springer-Verlag, pp. 159–170, 1998.

[154] R. L. Rivest, “Optimal arrangement of keys in a hash table,” Journal of the

ACM, vol. 25 (2), pp. 200–209, 1978.

[155] J. T. Robinson, “Order preserving linear hashing using dynamic key statistics,”

in: Proceedings of the 5th ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems, pp. 91–99, 1986.

[156] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

[157] T. Schickinger, A. Steger, “Simplified witness tree arguments,” in: Proceedings

of the 27th Annual Conference on Current Trends in Theory and Practice of

Informatics (SOFSEM 2000), LNCS 1963, Springer-Verlag, pp. 71–87, 2000.

[158] J. P. Schmidt and A. Siegel, “Double hashing is computable and randomizable

with universal hash functions,” submitted. A full version is available as Techni-

cal Report TR1995-686, Computer Science Department, New York University,

1995.

[159] D. Shah, B. Prabhakar, “The use of memory in randomized load balancing,”

in: Proceedings of the IEEE International Symposium on Information Theory,

2002.

[160] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parame-

ter sensitive hashing,” in: Proceedings of the 9th IEEE International Conference

on Computer Vision, vol. 2, pp. 750–760, 2003.

226 BIBLIOGRAPHY

[161] A. Siegel, “On universal classes of extremely random constant time hash func-

tions and their time-space tradeoff,” Technical Report TR1995-684, Computer

Science Department, New York University, 1995. A previous version appeared

under the title “On universal classes of fast high performance hash functions,

their time-space tradeoff and their applications,” in: Proceedings of the 30th

IEEE Symposium on Foundations of Computer Science (FOCS), pp. 20–25,

1989.

[162] A. Siegel and J. P. Schmidt, “Closed hashing is computable and optimally ran-

domizable with universal hash functions,” submitted. A full version is available

as Technical Report TR1995-687, Computer Science Department, New York

University, 1995.

[163] V. Stemann, “Parallel balanced allocations,” in: Proceedings of the 8th ACM

Symposium on Parallel Algorithms and Architectures, pp. 261–269, 1996.

[164] J. D. Ullman, “A note on the efficiency of hashing functions,” Journal of the

ACM, vol. 19 (3), pp. 569–575, 1972.

[165] A. Viola, “Exact distributions of individual displacements in linear probing

hashing.” Preprint, 2003.

[166] A. Viola and P. V. Poblete, “The analysis of linear probing hashing with buck-

ets,” Algorithmica, vol. 21, pp. 37–71, 1998.

[167] J. S. Vitter, Analysis of Coalescing Hashing, Ph.D. thesis, Department of Com-

puter Science, Stanford University, 1980.

[168] J. S. Vitter W.-C. Chen, Design and Analysis of Coalesced Hashing, Oxford

University Press, New York, 1987.

BIBLIOGRAPHY 227

[169] J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data struc-

tures,” in: Handbook of Theoretical Computer Science, Volume A: Algorithms

and Complexity, ed. J. van Leeuwen, pp. 431–524, MIT Press, Amsterdam,

1990.

[170] B. Vöcking, “How asymmetry helps load balancing,” in: Proceedings of the 40th

IEEE Symposium on Foundations of Computer Science (FOCS), pp. 131–141,

1999.

[171] B. Vöcking, “Symmetric vs. asymmetric multiple-choice algorithms,” in: Pro-

ceedings of the 2nd ARACNE Workshop, Aarhus, pp. 7–15, 2001.

[172] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing sys-

tem with selection of the shortest of two queues: An asymptotic approach,”

Problems of Information Transmission, vol. 32 (1), pp. 15–27, 1996.

[173] M. N. Wegman and J. L. Carter, “New classes and applications of hash func-

tions,” in: Proceedings of the 20th IEEE Symposium on Foundations of Com-

puter Science (FOCS), pp. 175–182, 1979.

[174] M. N. Wegman and J. L. Carter, “New hash functions and their use in authen-

tication and set equality,” Journal of Computer and System Sciences, vol. 22

(3), pp. 265–279, 1981.

[175] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New

York, 1977.

[176] P. Woelfel, “Efficient strongly universal and optimally universal hashing,” in:

Proceedings of the 24th International Symposium on Mathematical Foundations

of Computer Science, LNCS 1672, Springer-Verlag, pp. 262–272, 1999.

228 BIBLIOGRAPHY

[177] J. Wu and L. Kobbelt, “Fast mesh decimation by multiple-choice techniques,”

in: Proceedings of Vision, Modeling, and Visualization, pp. 241–248, 2002.

[178] A. C. Yao, “Uniform hashing is optimal,” Journal of the ACM, vol. 32 (3), pp.

687–693, 1985.

