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Abstract

The following generalization of Hardy’s inequality is due to I. Klemes [6] (1993);
“There is a constant ¢ > 0 such that for any function f € L(T),
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The proof was based on an elegant construction, (L. Pigno and B. Smith [11]), of a
certain bounded function whose Fourier coefficients have desired properties.

The chief object of this thesis is to record another proof of the above result by
using the construction that was originally used to prove the Littlewood conjecture [8].
In addition, a proof is given that the same generalization is equivalent to another one

involving the norm of the Besov space B;/Q.
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Résumé

La généralisation de l'inégalité de Hardy obtenue par I. Klemes [6] (1993), est donnée
par
“Il existe une constante ¢ > 0 telle que pour toute fonction f € Li(T),
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La démonstration de ce résultat repose sur 1'élégante construction, ( L. Pigno et B.
Smith [11]), d’une certaine fonction bornée dont les coefficients de Fourier ont des
proprietés désirées.

L’objectif de cette these est de donner une autre démonstration du précédent
résultat utilisant cette fois une construction intervenant dans la démonstration de la
conjecture de Littlewood [8]. De plus, une équivalence entre 'inégalité ci-dessus et une

inégalité impliquant la norme de I’espace B;i/z de Besov est donnée.
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Introduction

In 1927, G. H. Hardy proved in [3] that there is a constant ¢ > 0 such that for any
function f € Hy(T),

S <
n=1

Hardy’s inequality, however, is not true for all functions f € L;(T). A simple counter
example of that is the Fejér kernel. In view of the foregoing, many mathematicians are
trying to generalize it for the whole space Li(T). For instance, I. Klemes in [6], where
he was referring to [13]*, remarked that the following generalization is a well-known

open problem:

To the best of our knowledge, this is still an unsolved conjecture, at the time of writing.

On the other hand, many mathematicians succeeded to generalize the inequality
in other ways. As a good example, in 1981, the Littlewood conjecture, concerning
the Li-norm of exponential sums, was proved in [8] as a consequence of a special
generalization of Hardy’s inequality. The proof of that generalization was based on a
very clever construction of certain bounded functions with desired Fourier coefficients.
Two years later, J. J. F. Fournier [2] gave three other constructions that play the same
role as the one given in [8].

In 1993, I. Klemes [6] proved, by using one of those constructions, what we call

here the mized-norm generalization of Hardy’s inequality. It says: “There is a constant

*V. Peller and S. Khrushchev in [10, §3.6] is an earlier reference to this conjecture.
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¢ > 0 such that for any function f € Li(T),
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He also remarked that, with some modifications, the other three constructions (includ-
ing the one in [8]) would also work there.

In chapter 2 of this thesis, we have “re-proved” the mixed-norm generalization of
Hardy’s inequality by using the construction established in [8], after some modifications
of course. There, we have proved also that the same generalization is equivalent to
another one involving the norm of the Besov space B, 1/2. Then, we have found that
there is a similarity between the mixed-norm generalization of Hardy’s inequality and
a theorem due to V. Peller and S. Khrushchev [10] in the reconstruction problem on
Besov spaces (in case p = 2 only).

Chapter 1 contains a brief survey of two famous generalizations of Hardy’s inequality
that are “related” to the thesis’ subject; one of them has been already mentioned in
this introduction. In addition, we have stated the construction used in [8] and the
other three constructions given in [2], for the sake of completeness.

Chapter 0 is devoted to recall and explain shortly some of the basic facts and the
preliminaries that we have used in this thesis.

We should note here that throughout this thesis all the variables and indices are

assumed to be integers unless otherwise stated.
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Chapter 0

Preliminaries

Many basic facts and well-known concepts are used throughout this thesis. As a prepa-
ration, we explain them briefly in this chapter. Proofs and more detailed accounts of

these facts can be found in [5], [12] or [1].

Terminologies

As usual, let T = R/27Z be the unit circle. The functions on T are identified with
the 2m-periodic functions on R; hence, the Lebesgue measure on T can be defined by
means of this identification.

The most important property of the Lebesgue measure on T is its translation in-

variance, i.e.
/f(t—T) dt:/f(t) dt, 7eT.
T T

Also the Lebesgue measure on T is a finite measure with total mass equal to 2.

L,-spaces on T.

For 1 < p < oo, and function f on T, set

o= (o frora)” = (& [Mwra)”
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The L,-space on T, denoted by L,(T), is the set of all complex-valued functions f on
T such that || f||, < co. Furthermore, the L. (T) is defined to be the set of all bounded

complex-valued functions on T with the norm

1flloo = sup [£(£)]-
teT

It is well-known that L,(T), 1 < p < oo, with the norm defined above, is a Banach
space in which the functions are identified with almost every where equivalence. We
should also mention that Lo(T) C L;(T), which follows from the Cauchy-Schwarz

inequality, and that the Lebesgue measure on T is finite.

Trigonometric Polynomials.

A trigonometric polynomial on T is a finite sum of the form

N
f(t) = Z ane™, teT,
n=—N

where a, € C. Notice that the trigonometric polynomials are bounded functions;

consequently, they are in L,(T), 1 <p < oo.

Convolutions.

If f,g € Li(T), then the convolution of f and g, denoted by f x g, is defined by

f*g(T)Z%/Tf(T—t)g(t) gt rerT.

The convolution operation in L (T) is closed, commutative, associative and distributive

(w.r.t. the addition).

Kernels.

A summability kernel on T is a sequence { Py} of continuous functions on T such that:

1) L [Py(t)dt=1 VN;
T
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2) ||Py]li <A VN, for some constant A;
3) forall 0<6<m,

27—0
lim Py (1)] dt = 0.

N—oo 5

If fe Li(T), and k, is a kernel, then k, * f— f in the L;-norm.
n
As far as we are concerned in this thesis, the best servant and the most useful kernel
is the Fejér’s kernel {Ky}. , which are trigonometric polynomials defined by

N

Ey(t)= ) (1 — N|L+|1) et teT.

n=—N
An important property of the Fejér kernel is that Ky > 0 V N > 1; and hence,
|Knyli=1 VN >1.

Fourier Series on T

For any f € Ly(T), the Fourier coefficient of f at n € Z is defined by the formula
fon =5 [ foe
n)=— e :
2m Jp

Notice now that for N > 1, 0 < KN(n) = (1—N|L+‘1> <1, —N <n < N, and

Ky (n) = 0 elsewhere.

The set of all functions f € L,(T) such that f(n) =0 Vn <0 is the Hardy space
H,(T).

The Fourier series of f € Li(T) is the trigonometric series f(t) ~ S f(n)e™.

The Riesz projections (P, and P_) of f € L{(T) are defined by R

(P f)(t) = f(me™, and (P f)(t) =) f(me™, teT.
n>0 n<0
Next we state some remarkable properties of Fourier coefficients.

Proposition 0.1. Let f,g € Li(T), and n € Z, then

~

1) (F+9)n) = f(n)+an).
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2) For a€C, (af)(n) = af(n).

3) If f(t) = f(t), then j%\(n) = f(—n) In particular, if f € Li(T) is a real-
valued function, then f(n) = f(—n)

4) If meZ, and h(t) = f(t)e™, then h(n)= f(n—m).

5) (Fxg)(n) = F(n)g(n).

For a proof of the following theorems see [5, p. 29] or [12, p. 85].

Theorem 0.1. If f € Ly(T), then the Fourier series of f converges to f in the

Lo-norm.

Theorem 0.2 (Riesz-Fischer). If {c,} is a sequence of complex numbers such that

o0
Z lcn]? < oo;

n=—oo

i.e. {cn} € 0o(Z),Y then there exists an f € Ly(T) such that f(n) =¢, Vn€Z.

Theorem 0.3 (Parseval). If f,g € Ly(T), then

3 Ot = 3 STy

=—00

in particular,

- 1/2
1fllz = ( > If(n)|2> = || fllexc2.

n=—0oo

Conventions:

e It is worth-noting that throughout this thesis (and for convenience), we are going

to use || f||e(7) instead of ||f||[2(j), whenever J is a set of integers; that is,

1/2
| fllesry = (Z |f(n)|2> .

neJ

- 1/2
TRecall that {c,} € £2(Z) < |lenllez) = ( 3 |cn|2> < 0.
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e If n and m are integers, then we let [n,m] to be the set of all integers k such that
n < k < m. Similarly, [n,m), (n,m] and (n, m).

e For f € Li(T), the spectrum of f, denoted by spec(f), is defined by

spec(f) = {n € Z : f(n) # 0}.

The next lemma contains some well-known facts about the spectrum of f. The fifth
fact in this lemma is already stated in [8, p. 614], but without a proof; and since we

are going to use it later to prove the main result of this thesis, we record its proof now.

Lemma 0.1. Let f,g € Ly(T), then
1) spec(af) =spec(f), ae€C, a#0.
2) spec(f + g) € spec(f) Uspec(g).
3) spec(f = g) = spec(f) Nspec(g).
4) spec(f g) C spec(f) + spec(g).
5) If spec(f) C (—00,0], and Ref € Lo(T), then spec (ef) C (—o0,0].

Proof. Remembering Proposition 0.1, (1), (2) and (3) become obvious.
(4) The strategy of the proof here is to find a sequence of functions { Py} such that

~

Pa(n) —(fg)(n) Vn,

and spec(Pys) C spec(f) +spec(g) ¥V M. Soif n € Z, and n ¢ spec(g) + spec(f),
then n ¢ spec(Py) YV M. Consequently, (Py)(n) = 0 V M, which implies that
(E)(n) = 0; i.e. n ¢ spec(fg). We do that as follows.

First, by Proposition 0.1 (4), if m € Z, we have

n € spec(g(t)e™) <= gn—m)#0
<= n—m € spec(g)

< n=n—m+m € spec(g) + {m};

hence, spec(g(t)e’™) = spec(g) + {m}.
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Next, let

M
Sut)y= > f(mye™, M>1teT.
m=—M

Then, by the above result and (1) and (2) in this lemma, we get for M > 1,

spec(Sy g) = SpeC( > g(t)f(m)em>

c U, spec (g()f(m)e™)

M . ,
= U spec (g(t)f(m)e“"t)
méespec(f)

= U spec (g(t)e"™)

m=—M
mespec(f)

= 5, speclo) +{m)

mespec(f)

= speclg)+ U {m}

mespec( f)

C spec(g)+ U {m}

m=—o00
mespec( f)

= spec(g) + spec(f).
Now, by Ineq. 4 (on page 16), the Cauchy-Schwarz inequality and Theorem 0.1,
(S 9)(m) = (F9) )] < 1Sur9 = Fally < 15w = 1l lglla 0.

So, by letting Py = Sy g, the proof of (4) is done.
(5) Consider Ky = f, N > 1, where Ky is the Fejér kernel of order N. First, note that

Re(Ky x f) = Re(Ky * (Ref +iImf))
= Re(Ky*Ref +iKy xImf)

= KN*Ref,

because K are real-valued functions; in fact, they are > 0.
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Now, since Ref € Lo(T), then for N > 1, and t € T,

Re(Ky + f) (r) = Ky+Ref(r)= %/TKN(T—t)Ref(t) dt

INE

1
o [ Kolr = )| Ref | dt
T JT

= |[Reflloc < oo,

where we have used in (x) the fact that Ky >0 VN > 1.

Consequently, since the exponential function is an increasing one,
|efvel| = eRelFnef) — eFveRef < clReflle < 56 VN > 1. (0.1)

Now since f € Ly(T) C Ly(T), then Ky * f - f in the Li-norm; and hence there

exists a subsequence {Ky, * f}~ such that
K+ J (1)~ /() a.e (D).
Thence,
Therefore, by (0.1) and the dominated convergence theorem, we obtain that
ekt ef], o
¢
But since for n € Z,

() )~ )| < lefe? — el

then we have

e~

(eF~e*T) () - (ef)(n) VYneZ.
Following the same idea as in (4), we need now only to show that
spec (e"Ve*/) C (—o0,0] V€ > 1.

To see that fix N > 1 and write ¢, = Ky(n)f(n), for convenience. Since

spec(f) € (—00,0], then

0
Ky f(t)= Z cne™, teT.
n=—N
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From (4) in this lemma, we have for all N > 1,

0
spec (eKN*f(t)) = spec ( H ec”em)

n=—N
0 .
C Z spec (ec"em> , teT. (0.2)
n=—N

Now fix n € [—N, 0], and define for M > 0,

M (Cn eint) m M cm einmt
_ _ n
Hy(t) =) =3 " €T
m=0 m=0

Then, by (1) and (2) in this lemma and bearing in mind that n € [—N, 0], we have for
all M > 0,

M m inmit
spec(Hy) C ngspec( ”m’ >
M
U

J. spec (einmt)

- mj\éo{nm} C [nM,0] C (—o0,0]. (0.3)

~

But since 0 < Ky(n) <1, then |¢,| < |f(n)|; hence

. > mt
Hu(t)— e = | 3 ‘
m=M+1
= f
< Z VteT
m=M+
Therefore, X
ety — e < 30 Mg,
00 m! M
m=M+1
which yields that for all k& € Z,
(k) = (e ) B)| < || Har(t) = e
1
< HHM(t)—eCnei” —0.
o M

Using the strategy in (4), we get the following. If k ¢ (—o0,0], then (0.3) yields
that £ ¢ spec(Hy) ¥ M > 0; and hence, by the last result, k& ¢ spec (ecnemt>.
Therefore, spec (ecnemt> C (=00, 0].
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Since n € [—=N,0] is arbitrary, then spec (ecnemt> C (—o0,0] ¥ n € [—=N,0].
Substitute back in (0.2), we obtain

spec (e"¥*/) C (—00,0] VN > 1.

By this we have proved more than enough. QE.D.

Besov Spaces

Next we turn our attention to the definition of the Besov spaces, which play an essential
role in reformulating the main result of this thesis. The following description of the
Besov spaces is mentioned in the introduction of [10].*

The definition involves convolutions with special kernels W,,, n € Z; and so we need
first to describe them. For n > 0, W, is defined to be a trigonometric polynomial such
that W, is a linear function on the intervals [27~1 2] and [27,2"+1], W,(2") = 1,
and W, =0 outside (271, 2"+1). From that, W, = W_, for all n < 0; and finally,
Wo(t)=e ™ +1+¢€" teT.

To be more precise, take for n > 0,

Koy (20— k) = 552, ke 2,2
Wa(k) = Ky (20 — k) =22k, e [2n,2041] (0.4)

27’L

0; otherwise

let W, =W_, forn<0,and Wy(t) =e ™ +1+¢, teT.

Then, we record the following properties of W,,.

Proposition 0.2.
10<W,(k) <1, nke.
2) W,(k) = Wy(k) = W_n(=k), n,k>0.
3) Wo(k) + W, (k) =1, n>0, and k € [271,2"].

*For other equivalent definitions and abstract results about the Besov spaces, see J. Peetre, New

thoughts on Besov spaces, (Duke Univ. Math. Ser. 1), Duke Univ., Durham, N.C., 1976.
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4)Wo(k) + W, 1(k) =1, n<0, and ke[-2" -2
5) Forn >0, and k € [2"7',27],

Proof. The first four properties are easy to prove.

(5) Fix n>0and k€ [2"1,2"]. Let a = W,(k) and b= W,_;(k). Then by (3),
a + b = 1. If one of them is equal to zero or a = b = %, then we are done; so we may
assume that 1 > a > % > b > 0. Now, since a +b = %—i—%, then a—%: %—b.
Since a > b, then a(a — 3) > b(3 — b); hence a? — 2a > b — b?; and therefore,

a’*+b% > L(a+b) = 3. QE.D.

Definition 0.1. For p > 1, ¢ < oo and s € R, the Besov space B, is defined to be
the set of all functions f € L,(T) such that

1/q
11l = (Z i, *f||p)q> .

nez

It should be noted here that in the last chapter of this thesis, where we make use

of the Besov space B, i/z, we will be referring to this important section.

Useful Inequalities

Although we have already used some of them in this chapter, we find it more helpful
to state some of the well-known inequalities that we are going to use later in the proof
of many results in this thesis. The first four inequalities are proved; and references,

where proofs can be found, are given for the others.

Ineq. 1. If a and b are non-negative real numbers, then

Va+b<vVa+ Vb <V2Va+b.
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Proof. Just notice that for a,b > 0,
2Vab < (vVa— Vb2 +2Vab=a+b,

consequently,

a+b< (Va+Vb)?=a+b+2Vab<2(a+b).

Q.E.D.
Ineq. 2. Let x be any real number such that 0 < x < %, then
In(l —z) > —2x.
Proof. This is easy. In fact, if 0 <z < %, then
ok 2 k
T T 2z
—1In(1 — = — = —
wl-n) = D =T
k=1 k=0
T o0
k
k=0
n T 1
= T —
2 1—=x
< zft.2=2
T+ —=-2=2
- 2
Another proof can be given by using the mean value theorem. Q.E.D.
Ineq. 3. Forall z € C with Rez >0,
e — 1| < 2.

Proof. First the inequality is trivial if z = 0; so assume that z # 0. Consider the
function f(z) = “-=1, z # 0. Note that f(z) is bounded on Rez > 0. Indeed,

z

f(z) = Z(_DTZ_, and lim f(z)=0.

|z| =00
k=1

Hence, the maximum modulus theorem applies on Rez > 0. But if z = iy, then

eV — 1| = [e™/? — e /2| = 2|sin(y/2)| < 2Jy/2| = |y| = |iyl.
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Therefore, on Rez > 0, '
=1 _ e —1

< — <
2] yer  |1y]

Ineq. 4. If f € L(T), then for all n € Z,

LFm)] <111,

moreover, if f is also bounded, then
F< 1 < 1 ]l
Proof. Just consider this
fool < oo [ 1o len
n)l = o : e
1
— 5 [lrolde= i,

1
< = o dt = || f]]co-
S

Ineq. 5 (Cauchy-Schwarz). If f, g € Ly(T), then

1 gl < 117112 llgll2-
Proof. See [12, p. 63].

Ineq. 6. If f,g € Ly(T),

1+ glle < AN Mgl

Proof. See [5, p. 4].

Ineq. 7 (Young). If f € Li(T) and g € L,(T), 1 <p < oo, then

1+ gllp < (£l gl

Proof. See [1, p. 232].

16
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Chapter 1

Generalizations of Hardy’s

Inequality

An inequality of G. H. Hardy and J. E. Littlewood ([4], 1948) states thatif 1 <p <2,
f € L,(T), and if

is the sequence of |f(n)| arranged in descending order of magnitude, then there is a

constant a, > 0 depending on p such that

% L/p
7 ()] .
(Z (|n|+1)p2> < a, |17

nez
It is reported also in the same paper that the inequality is not true for p = 1. However,
as we mentioned in the introduction, Hardy’s inequality ([3], 1927) states that there is

a constant ¢ > 0 such that for all f € H(T) ={f € L;(T) : P_f =0},

OLALIERIIR (1)

and it is well-known that this inequality is not valid for all f € L(T).
This chapter is devoted to expose briefly two well-known generalizations of Hardy’s

inequality that are “related” to the mixed-norm generalization (Theorem 2.1, p. 23). The

17
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two generalizations were actually stated in terms of finite complex Borel measures on

T, but in order to serve the thesis’ subject, we “restate” them for functions f € L(T).

The generalized Hardy’s inequality of
McGehee, Pigno and Smith

The truth of the well-known Littlewood conjecture, concerning the L;-norm of expo-
nential sums, was established in 1981 by the team of O. C. McGehee, L. Pigno and B.

Smith [8] as a special case of the following generalization of Hardy’s inequality*.

Theorem 1.1. There is a real number c¢ > 0 such that given any set of integers

S={ny,ng,---} CZ and f € Ly(T) such that ny < ny < ---, and spec(f) C S, then

S <y
k=1

The proof of the theorem was remarkably simple and was based on a clever con-
struction of bounded functions whose Fourier coefficients have “desired” properties. To
clarify the idea, we explain here how the authors formed the construction.

Let {S;}_, be the partition of S such that card(S;) = 4/ and S, = {m},
S1 = {ng,n3,ny,ns}, S3 = {ne,---,n21}, and so on. Define trigonometric polyno-
mials f;, j =0,1,2,---, such that

1) fi(n) =0, if n¢sS;;

2) [fi(n)| =47 if ne S

3) f,f>0.

Write | f;] = i a,e™, and define for j =0,1,2,-- -,

*The Littlewood conjecture was also proved independently by S. V. Konjagin (S. V. Konjagin, On
a problem of Littlewood, Math. U.S.S.R. Izvestia Vol. 18 (2) (1982), 205-225 [translation of Izvestia
Akad. Nauk U.S.S.R., Ser. Mat., 45 (2) (1981), 243-265]). However, according to [2], it seems that

Konjagin’s proof does not contain any generalization of Hardy’s inequality.
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Then the construction was defined inductively as follows:

1
Fy = gfo;
. 1 .
F1j+1 = Fjeih]+l+gfj+17 ]:071727"" (12)

After that the authors pursued and showed that the above construction satisfies
the following crucial features:

) [Fle <1, j>0.

2) If neS;, 0<j<m, then

Fru(n) = 2 f5(n)| <

3) If nkESj,OSjSm, then

Re (Fm f) (ng) >

In 1983, J. J. F. Fournier [2] reported three different constructions that play the
same role and satisfy the same properties as the construction (1.2). These constructions
are as follows
1) It should be mentioned that this construction was actually established by L. Pigno

and B. Smith in [11] for a related purpose. Let 0 < a < %, and define inductively
F() = ]_,
Fip = afjn+ (1—40®|finl’) Fj —afjmF}, j=0,1,2,---. (1.3)

2) Let 0 < a < 1, and define the construction by letting

FO = 0,
F .

Fro = Jitofim oo (1.4)
1L+ afjiF}

3) Let 0 < a < 1. Since the function log(1 — a|f;41|) is integrable, then there is an

outer function G, such that |G;;1| =1 — a|fj41] and

R 1
G41(0) = exp <% /Tlog(l —alfj+1]) dt) :

TFor a definition of outer function see [12, p. 342].
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Then define the construction as follows:

F(]:O,

Fj+1 = Gj+1Fj+afj+17 ]:071727

20

(1.5)

The mixed-norm generalization of Hardy’s inequality (Theorem 2.1, p. 23), as we

mentioned in the abstract, was already proved by I. Klemes [6] in 1993. The proof

depends mainly on building a certain trigonometric polynomial F' that satisfies the

following:
1) F e Lo(T).
2) There is a constant ¢ > 0 such that
1/2

Yo F(-n)P | <caP 1

4i-1<n<4i

3) If fj, j = 1,2, -, are defined by either f; =0, if f(n) =0 Vn €[4 49),

or otherwise by

—-1/2

fiy=4721 > If (k)P Y. fme™ teT,

4I=1<k<4d 4i-1<n<4J

then
1/2

Y. IFm - fimP) <

47-1<n<4J

NN

4792 5> 1.

The trigonometric polynomial F' was formed via using the construction (1.3); how-

ever, . Klemes remarked in the same paper that the other three constructions, we

mentioned above, and “with some modifications (such as convolving with Fejér kernel

at each step), each of them would also work here”.

It is well-known (as noted in [6]) that the mixed-norm generalization is much

stronger than Hardy’s inequality if f € H;(T), because

| o0

<by (47 Y 1P

j=1 4-1<n<di

z_:l |f§1n)
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for some constant b > 0. In fact, via the Cauchy-Schwarz inequality, we have

. 1/2 1/2
|/ (n)] ; 1
ORI S SR Y S S
4i-1<n<4i 41 <n<di 4i-1<n<di
1/2 1/2
N 1
2
< Z |f(n)| ' Z 42G-1)
4i-1<n<43 4i—1<n<4]
1/2 e
. 3. 4
_ 2
= X vor) - (55)
4i-1<n<4i
1/2
= 43|47 > fmP)
4i-1<n<4i
hence,
. . 1/2
SRSy P <avay - (40 30 e
n=1 Jj=1 \4i-1<n<4J Jj=1 47-1<n<4j

This fact can also be infered from [9, p. 223].

Hardy’s inequality and the Besov spaces

In [10, §3.6], V. V. Peller and S. V. Khrushchev treated the reconstruction problem in
the space of all finite complex Borel measures on T. The problem consists in finding
conditions on X such that if y is a finite complex Borel measure and P_pu € X, then
i € X. In this section, we are going to display another well-known generalization of
Hardy’s inequality, which is stated in this paper as a corollary of a theorem on the
reconstruction problem. Again for the sake of the thesis’ subject, we are going to

expose the results in terms of functions f € L(T).
Theorem 1.2 (Peller-Khrushchev). Let 1 < p < oo and f € Ly(T). Then

P_fe€B,)/" = feB,\", (1.6)

—

where p' = r—
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Applying the definition of the Besov space B,:;,l/pl for p = 2, the theorem gives the

following generalization of Hardy’s inequality.

Corollary 1.1. If f € L{(T), then

o0

Z|f(;)|2<ooz>z|f .

n=1

In addition, it is remarked in the same paper that if s € Z, then
o A
S UEE < oo — 5 R

It is an open problem to find numbers s > £ for which (1.7) holds. For s = 1, (1.7)
becomes (0.1).

|25 |25

(1.7)

P. Koosis (jointly with S. Picorides) in [7] gave a new simple and elegant proof of

Corollary 1.1; in fact a stronger result.

Theorem 1.3 (Koosis). If f € Li(T), and ) W < 00, then
n=1

o0 A o0 r o 2
> JOF s~ B < oy
n=1 n=1

It should be noted here that we will be referring to this crucial section at the end

of chapter 2.



Chapter 2

Mixed-Norm Generalization of

Hardy’s Inequality

The objects of this thesis are achieved here. The mixed-norm generalization of Hardy’s
inequality, which is the main result, is proved first. In the next section, we prove that

the main result can be expressed using the norm of the Besov space B;/Q.

Main Result

Theorem 2.1 (Klemes). There is an absolute constant ¢ > 0 such that for all
functions f € Li(T),

1/2 1/2
oo oo

S a7 X F@P) <efli+eX (47 X Fenr] L@

j=1 4i-1<n<4i Jj=1 47-1<n<4i

Proof. First, it is easy to see that if the theorem is true for all trigonometric polyno-
mials in L;{(T), then it is also true for all functions f € L;(T). Indeed, suppose the
inequality (2.1) is true for all trigonometric polynomials in L, (T) with some absolute

constant ¢ > 0 and let f € Li(T) be any arbitrary function.

23
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Consider Ky x f, N > 1, where Ky is the Fejér kernel of order N. Since for all
N > 1,

and

K flly < I Knllllflle = 11f]ln < oo,

then Ky x f is a trigonometric polynomial in L;(T) ¥V N > 1.
Therefore, Ky * f satisfies the inequality (2.1) VN > 1; i.e.

1/2 1/2
o o 2

S S [En)] 1P | < ellicns fll+e 3 (477 [Ra-m)]

j:l nEI]‘ j:1 nEI]‘

where [; = [4771 47).
Now, recall that 0 < KN(n) <1 VN >1,and Vn € Z. Hence, for all M,N > 1,

we have
y | A . 1/2
Ru(N) = Y0 (473 [Ry(m)] [F )P
j=1 TLEIj
1/2
> . . 2 .
< S (3 [Kvm)] 1P
j=1 nel;
1/2
oo ) N 2
< B flli e |47 [Bn(=n)] 1f(-n)P
Jj=1 nel;
1/2
< ciflli+ed |47 1f(=n)P
j=1 TLGI]‘
R 2
Since Rp(N) is a finite sum for all N >1 and [KN(n)] — 1 VneN, then
VM >,
y 1/2 ~ 1/2

lim Ry(N) =Y (473 1fm)P | <elfli+ed (4773 |f(=n)?

N—o00 - -
j=1 nel; j=1 nel;
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Hence, our claim now follows directly because

1/2

—j r 2 _ . .
P EEDNID] = lim lim Ry (N)
7=1 nEIj

1/2

< el ed (471 (=n)?
j=1

nGI]‘
Having proved that, we can proceed now to complete the proof of the theorem,
assuming that f € L;(T) is a trigonometric polynomial. Say

47 -1

=Y fe™,  teT,

n=—47+1
where J is the smallest non-negative integer such that spec(f) C (—47,47). Since
0 <c¢|f]l: is true for ¢ > 0, then there is nothing to say when J = 0. Hence, we can
assume also that J > 1.
For convenience, write a, = f(n), n € Z.
Define trigonometric polynomials ¢;, j=1,---,J %, by

0; if a, =0 Vnel

p;(t) = —1/2 , teT, (2.2)
4=912 (Z |ak|2> > a,e™;  otherwise

kel; nel;
where I; still denotes the interval [477!, 47).

For the time being, assume that the following proposition and theorem are true.

Proposition 2.1. For n € N, define

L
B, = Ll;rgo Kw(n),
=y
where j is the unique integer such that n € I; = [4771,47), and Ky, from now

and on, denotes Ky ,0_5, the Fejér kernel of order equal to 2 -4° — 3. Then B, is
well-defined and B, > 1/4.

*In this chapter, j is just an index which may have different limits in different occurrences.
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Theorem 2.2. There exist absolute constants c¢1, co > 0 and a trigonometric polyno-
mial F' with the following properties:
(1) [Flloc < 1

1/2
(2) (Z |F(—n)l2) <ed P >

nte
1/2
(5) for 1<j <, (z |F(n)—bn¢j(n)|2> < 1472,
nte

J A . .
where b, = [[ Ku@y(n), nel;=[4"14%).
=

Then the proof of the main theorem continues by using a standard duality argument
as follows.
Consider the function F' obtained from Theorem 2.2. Since ||F||» < ¢, then we

have

d
alfle = 1Pl [ 170 5

v

[ 7@ i1 5

> / F(t)f(t) ;l—fr : (2:3)

T

Notice that since f and F are trigonometric polynomials, and so in Ly(T), then, by
Parseval’s theorem, we have

[T 5= Y fnF.

T n=-—oo

Recalling that a, = f(n) and substituting in (2.3), we get

alfll = |aF )+ aF(n)+ Y auF(n)

n>0 n<0

agF'(0) + Z an%

\Y
(]
S
/'E>
S

> Zanﬁ(n) - (CLO%‘ + Zan%> ) (24)




Mixed-Norm Generalization of Hardy’s Inequality 27

where we have used the triangle inequality in the last two steps.

Now notice that ‘ﬁ(())‘ — ‘F(O)‘ < || Flloo < 1, and ao| = [F(0)] < |If]]:.

Hence, rewriting (2.4), by using the above information, we get

S aFm)| < allflh+|aF© ‘ S anF(n)
n>0 n<0
< allfll+allfl+ - la] ﬁ(n)\
n<0
= 21| fli+ DD lacallF (=
j=1 nEIj
1/2 1/2
o0
< 2+ )0 | lanl > IF(=n)P
J=1 nel; nel;
1/2
m .
< 2flh+ed (47> laal] (2.5)
j=1 nel;

where we have used the Cauchy-Schwarz inequality and Theorem 2.2 (2) in the last

two lines, respectively.

On the left-hand side of (2.5), we have

= Y (Y wf
j=1

nte

Z an%

n>0

> ZRe ZanA(n) . (2.6)

nel;
Now fix j>1.1If a,=0 Vne€l; then
1/2
Re | Y a,F(n) | =0= 47> Ja.[*| . (2.7)
TLGI]‘ TLEIj

If a, # 0 for some n € I;, then we next prove that

S e Em) | > g4

TLEIj
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First, since for n e I;, 0< Kg(n) <1 V> j, then, by using Proposition 2.1,

we obtain that

J L
) , . 1

= HK(@)(?”L) > B, = LILI{:OHK(@(TL) > Z (28)

=j =j

Also, notice that
~1/2 1/2
loslle = lleilleayy = 47772 | D lawl? Dolaf) =47 (29)
kel; nel;

Hence, using (2.8) and (2.9), we get

| 1
D bupi(m)@i(n) = Y balds(m)* > Zllgslly = 7477 (2.10)

nel; nel;

Therefore, we obtain

> @) | = Re | 30500 (bapi(n) + Fln) = bugs(n) )

nel; nel;j

= Re| ) bp;(n)g;(n) | +Re| > ¢;(n (F —bapj(n ))

nel; nel;

> 47 = 31 )] [F(n) = buy(n)
nel;
1/2

1 .
147 lleille) Y IEm) = bagi()F )

nel;

vV
I

where we have used (2.10) and the Cauchy-Schwarz inequality in the last two lines,

respectively. Using Theorem 2.2 (3) and (2.9), the last estimate becomes

5. Ly e N e e
> @in)F(n) | > Tt SRS St

nGI]‘

Now, since
1/2

a =4 Y il | pi(n),

kEIj
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then via using the last estimate

1/2
Re (Y a,F(n)| = 472> |a?| Re | ¢i(n)F(n)
nel; kel; nel;
1/2
1 . )
> 3 473 " : (2.11)
kel;
From (2.6), (2.7) and (2.11), we get
1/2
— 1 ( . )
> a,F(n) ZZ% 47N )| . (2.12)
n>0 j=1 nel;

Finally, collecting estimates (2.5) and (2.12), and recalling that a,, = f(n), we have

1/2 1/2
DoAY <t6alfli+8ey (47 Y |f(-n)
J=1 nel; J=1 4i—1<n<4i
Letting ¢ = 8max(2¢y, ¢3) = 1024, the proof is done. Q.E.D.

Now, we need only to prove the above Proposition 2.1 and Theorem 2.2. Before we
do that, it is very useful to compare the above proof and the original one given by I.
Klemes in [6]. Both proofs have used the standard duality argument after constructing
a certain trigonometric polynomial F whose Fourier coefficients have desired properties.
One can notice that the difference between the two proofs is mainly due to the constants
b, in Theorem 2.2 (3), which lead us, naturally, to their definition. The Fejér kernels,
used to define b,, come from the construction of the trigonometric polynomial F' and
this is the departure point to the proof of Theorem 2.2.

[. Klemes in [6], as mentioned in chapter 1 page 20, constructed his F' by using
the recursive sequence (1.3). However, we, in the following proof of the existence of
such F', are going to use another different construction, namely the recursive sequence
(2.14). This construction is just a version of (1.2), the one used to prove the Littlewood
conjecture [8]. The modification is mainly the convolution with Fejér kernels of certain

orders. One now can understand the reason behind the definition of b,.
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The most important property of b, is their absolute lower boundedness, and here
comes the benefit of Proposition 2.1.

Proof of Proposition 2.1. Fix n > 1, choose j such that n € [4/7! 47), and
define
L>j.

I
e b
>

since 0 < f((g)(n) <1 V{2>j, then {Br(n)};_; isa decreasing sequence, hence
B, = Llim Or(n) exists and is well-defined.
—00

Since K(y(n) >0 V/£>j, then we can write

n) = exp (i: In (IA((,_;) (n))) .

Now, we recall Ineq. 2 on page 15, that is for real z, 0 < x < %,

In(1—2) > —2ax. (2.13)
Since for ¢ > j, f((e)(n) = (1 - Jﬁ) , and

0< n < 47 —1 1
2.4 -2 724 —1) 2

then for L > j, Ineq. 2 gives

;L;ln (f((g)(n)) - iln <1 - ﬁ)

vV
&
M=
bo
*'i
|
[\D

L L—j
47 — 1 49 —1
Z - ZQ 4t — 9 __222 4t _ 9
l=j =0
L—j L—j
47 — 1 4 —1
> =2 ¢ ¢ __Z ¢
Z:02 47 .4t — 2.4 e:04(4ﬂ—1)

(V4
|
1M
S
Il
|
[GSRTSN
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Since e” is an increasing function, then

L
Br(n) = exp (Zln (K(e)(n)>> > e > i VL>j
=

Hence, we get B, = lim 3p(n) >

L—o00

| =

QE.D.

We should turn our attention now to the proof of Theorem 2.2, and for that we

need first to prove some prerequisite results.
Notation 2.1. For g € Ly(T), set

g(t)=9(0)+2) g(n)e™,  teT

The next lemma is already mentioned in [8, p. 615].

Lemma 2.1. If g is a real-valued function in Ly(T), then g* has the following proper-
ties:

(1) g € Ly(T);

(2) Reg'=g;

(3) g*(n) =0, n>0;

(4) llg*ll2 < 2llgll>-

Proof. Since g € Ly(T); ie. {§g(n)}’_ € £5(Z), then {g*(n)} € £5(Z); consequently,
by Riesz-Fischer theorem, g* is well defined and belongs to Lo(T). (3) is easily seen and

(4) is clear by Parseval’s theorem. Now for (2), observe that ¢(n) = g(—n), because

g is a real-valued function, and hence
) Lo, —A
Reg'(t) = 5 (o) +g°(0)
71 . _— .
= 3(0)+ Y (gtme™ +glnje ™)
= D _ame™ = g(t).

QE.D.
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Next, we prefer to recall some of the information and terminologies we have already
used during the proof of the main result (Theorem 2.1). First we have f € Li(T) is a

trigonometric polynomial, moreover,

471

f&y=">_ fme™, teT,

n=—47 41
where .J, which has been assumed to be > 1, is the smallest non-negative integer
such that spec(f) C (—47,47). In addition, we have the trigonometric polynomials

©;, j=1,-++,J, defined by

0; if a, =0 Vnel

pi(t) = -1/2 , teT,
4912 (Z |ak|2> 3 ane™;  otherwise

kGI]' nte

where a,, = f(n) and I; = [4/~1,47).

It should be noted, however, that .J is fixed throughout the rest of this section.
Also, for future purposes, please keep the above information in mind.

Since ¢, € Ly(T), then we can define h; = |p;|* for j=1,---,.J.

Now, define the following inductive sequence of trigonometric polynomials

F9 = Ky = (ere ™) ;

FO = Kgoyx ([FO+gpa]en),  1<j<, (2.14)

and put F© = F}E), where 0 < e <1 is a parameter to be decided later.
We claim that this () has enough power to attain the desired end and achieve our
goal. First, we need to study the behaviour of the above inductive sequence. We start

with the next lemma.

Lemma 2.2.
() [[FOf <+

(2) For 1<j<J, spec(Fj(f’) C[~2-47 +3,49).
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Proof. (1) Since F(9 = F} ), it is more than enough to show that for all 1 < j < .J,

A | =

VteT.

(e)
FOw)| <

First, since for 1 <j <.J, h; =|p;|*, then by Lemma 2.1 (2), Re h; = |¢;|. Hence,

‘e‘ehﬂ'(t)‘ = e~ Rehi(t) = p=elvi(®)] < _ VteT, (2.15)
1+ €|i; (t)]
where we have used the known inequality e™* < 1+:c’ x > 0.
Therefore, for 1 < j < J, we have
—eh; [210] 1
w;(t)e i) < I <~ yiteT. (2.16)
U E e PG

Now consider the following mathematical induction. If j =1 and t € T, we have

FOW] = |Kayx (pe™™) ()
d
< /K (t =) |or(r)e M) %
1 d
S —/Kg)t—’/'_ —T
€ 27
T
1 dr 1
- - | K = =
6/ 5(7) 27 €’
T

where we have used the fact that Lebesgue measure is translation invariant on T.

j(f)(t)‘ < % Vit e T, for some fixed 1 < j < J. Then, by

Suppose now that
using the induction assumption and (2.16), we pass to the last step as follows. For

t € T, we have

EAO| = Kooy ([ + o] ) 0

< [ Ko=) [FO0) + o] e @

T
/K]’+1 t—T |:

1—|—6 )| dr 1
/K]H Lt elgin(r)] dr _

dr

dr
27

IN

FO@)|+ lesn@l] e+

Dl 2n ~ €

IN
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(2) For 1 < j < J, we know that ¢, is a trigonometric polynomial and hence it
is in Ly(T). Also, from (2.15), and from the proof of (1) in this lemma, we have
e~ " and Fj(f) € Lo(T) C Ly(T). Therefore, we can use Lemma 0.1 in the following
mathematical induction.

For 1 < j < J, recall that spec(p;) C [4°7,47); and it is clear by definition of h;

that spec(h;) C (—o0, 0]; hence also spec(e~") C (—o0,0]. Therefore, we have

spec (pre ™) C spec(pr) + spec (e~ )

- [17 4) + (—OO, 0] = (—OO, 4)
Then spec (FI(E)> = spec (K * (pre "))

—ehl)

= spec(K (1)) Nspec(p;e

C [~5,5]N (—o0,4) = [—5,4).

Now, suppose that spec(Fj(e)) C[-2-47+3,47) for fixed 1 < j < .J. Then

spec (F9+p;51) € spec (F1) Uspec(psn)
C [-2- 47 + 3, 4j) U [43', 4j+1)
= [-2- 4 4 3, 4j+1)‘
Hence,
wpec ([Fj(e) * Spj“] eiehm) < spec (FJ‘(E) T ‘Pj+1) +spec (e ")

C [-2-47 43,41 4+ (o0, 0]
= (—o0, 4j+1)‘
Therefore, the final step completes the proof as follows
e (18 = e (o ([ 0] )
= spec (K(j+1)) N spec <[Fj(f) + <Pj+1] e—ehj+1>
C [-2 477 43,2 4771 — 3] (=00, 4711

= [-2-47Fh 43,47,

The proof is done. Q.E.D.
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As a consequence of the nature of the above construction (2.14), we set the following
notation, for convenience. First, note that if ¢ € Ly(T), then e="ig € Li(T) for all
1 < j < J, because ‘e‘ehﬂ" < 1, by (2.15); hence we are allowed to do the following.

For 1<m <M< J, and g € L{(T), set for “Convolution with Fejér kernels”,
CF[M,m, 6] = Ky (e (Koo ¢ -+ (40 (K + (¢ 479))) ) - (2:17)

For fixed M and g € L(T), the reader may regard CF[M, m, ¢] as a finite sequence
of functions on m. One can also think of it as an infinite sequence of functions on m,
via generalizing the notation for m =0 and m > M.
First note that
(1) Since K(m) = Koym_3 m >1, we can write K = 0.
(2) CF[J, J,g] = Ky * (e*Eth).
(3) For indices m > J, we can define ¢,, = 0; and since h, = |@n,|*, then
e~hm = 1.
Therefore, it makes sense to set the following generalized notation.
Notation 2.2. For 1 < M < .J, m>0and g€ Li(T), put
0; ifm=20
CF[M,m,g] = < Formula (2.17); if1<m <M .
g; iftm>M

Next, we register the following easily-proved properties of the above notation.

Proposition 2.2. Let 1< M <J,m>0, a,€C, and g,h € Ly(T), then
(1) CF[M,m,ag + Bh] = aCF[M,m, g] + SCF[M, m, h|;
(2) CF[M,m,g] = CF [M,m+ 1, K(m) * (e’fhmg)] , 0<m< M;
(3) CF[M +1,m, 9] = K1) * (e*GhMHCF[M,m,g]) , 0<m<M+1<J.

Now, we are ready to show how the above notation plays the key role in many

results that will simplify the proof of Theorem 2.2.



Mixed-Norm Generalization of Hardy’s Inequality 36

Lemma 2.3.
(1) For 1 <m < J, spec(CF[],m,¢,]) C[-2-47 + 3,4™).
(2) For 1 <m < .J+1,

J
F© — CF J,m—l,F,Ef’_Q] + > CF[J,p, ).

p 1

(Here, for convenience, put F(El) = FO(G) =@y =0.)

(3) For g€ Li(T) and 1 <m < J,
CF[J,m,g] = CF [Jm+1, K= ((e" —1)g)]

J—1
+ Y CF [J,p+2,Kpiny = ((e " = 1) (K 5 -5 Ky % g))]

p=m

+K(J)*"'*K(m)*g.

Proof. (1) It is more than enough to prove that for all m and M such that

1<m< M <.J, we have
spec (CF[M,m, ,,]) C [-2-4M +3,4™).
We show that by mathematical induction on M. If M =1, then

spec (CF[1,1,¢1]) = spec (K(l) * (e’fhlgol))

C spec (K1) N {spec (e™") + spec(p1) }

—eh
C [-5,5]N{(—00,0]+[1,4)} = [-5,4).
Now, suppose that for fixed M < J —1,
spec (CF[M,m, p,]) C [-2-4M +3,4™) V 1<m < M.
Then, from Proposition 2.2 (3), we have for all 1 <m < M + 1,

CF[M + 17 m, Spm] = K(M+1) * (e*GhM+1CF[M, m, (pm]) ’
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Hence, if T' = spec (CF[M + 1,m, ¢,,]), then

r

N

spec (K(M+1)) N {spec (e_EhM“) + spec (CF[M,m, @m])}
C [-2-4MF 43,2 4M 310 {(—00,0] + [-2 - 4M + 3,4™)}

= [-2-4MF 4 34™).

(2) Following the same idea, it is more than enough to show that for all m and M such

that 1 <m < M +1<.J+1, we have

M
Fij) = CF [ M,m — 1, F),| + 3 CFM,p, )

p 1

Again we do it by mathematical induction on M. First, suppose M = 1; and recall
that F(el) = FO(G) = o = 0. Now, if m =1, we get

1
CF [1,0, FS)] + ZCF[I,p, ¢p] =0+ 0+ CF[1,1,¢1] = K * (e_ehlgpl) = Fl(e).

p=0

Similarly, if m = 2, we obtain

1
CF [1’ l’FO(E)] + ZCF[I,p, @p] =0+ CF[L,1,¢1] = FI(E)'

p=1
So, suppose that our claim is true for some fixed M < J. If m = M + 2, then we

are done, because

F]&/;)-H = K(M+1) * <|:F]E/;) + <10M+1:| e_ehMJrl)

= Kqy * (e_ehMHFJS)> + K1) * (e_EhMHSOMH)
M+1
= CF|[M+1,m—1LE,|+ 3 CFM+1,p0,)

p=m—1

So, assume that m < M + 1. Then by the induction assumption, we have
F(G) - K F(G) —ehpry
M+1 (M+1) * M T P €

Y CF[M,p, %]})

= Kara * (eehM“ {CF [M,m = 1,F,§flz] +

p
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+K (pr41) * (fi_EhM+1 SOMH)

Koy * (M CF [M,m — 1, F,])

+ Z K(M+1) * (€7EhM+ICF[M7p7 @p])

p=m—1

+CF[M + 17 M + 17 ()OM+1]

CF[M+1,m—1F( ] ZCFM—i—lp,gop]

p=m—1
+CF[M +1,M+1,0,,]
M+1
CF[M+1,m—1 P ] Y CFIM +1,p,p,),
p=m—1

Where we have used Proposition 2.2 (3) in the third step.
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(3) Let g € Li(T) be any arbitrary function. First recall that for any 1 < j < J,
e g e Li(T); hence, K(jy* (e "ig) and K5 *g € Li(T).

Consider the following mathematical induction on J —m. If m = J, then by using

the definition of CF[J, J, g], we have

CF[J, J, ]

= Kuyx(e ™)
= Ky ((e™ =1)g+y)
= Ky (™ =1)g) + Ky

= CF[JJ+1,Ky*((e™ -1)g)]+Ku*g

J—1

+3 CF [J,p+2,Kpyny * (e = 1) (K *- -

p=J

« Ky *g))]-

Now, suppose it is true for fixed m, 1 < m < J, and for any function g € L;(T).

Then, by using Proposition 2.2 (2) and (1), we get

CF[Jm—1,9) = CF [J, m, K(m_1) * (e‘ehmflg)]

= CF [J;m, K 1y * (7" = 1) g+ g)]

(
(

= CF [J,m, K1) * (

g hm—1 _ ) )] + CF [J, m, K(m_1) *g] )
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Using the induction assumption for CF [J, m, K1) * g]; and letting, for conve-

nience, C'F = CF[J,m — 1, g|, then we obtain that

CF = CF[J,m, Ky % ((e 1 —1)g)]

+CF [J,m + 1,K(m) * ((e_ehm — 1) (K(m—l) * g))]
J—1
+ Z CF [J,p + 2, K(p+1) X ((e_Ehp“ — 1) (K(p) k o0k K(m) * K(mfl) * g))]

p=m

+K(J) IR K(m) * K(m—l) * g
= CF [J, m, K(m—l) * ((efehm_l - 1) g)]

J—1

+ Y CF [Jp+2,Kpyny* ((e = 1) (K %+ % K1) )]

p=m—1

—i—K(J) K-k K(m—l) * ¢.
Q.E.D.

Since I; denotes the interval [4771 47), for sake of simplicity, we let T; denote

the interval (—47, —4771].

Corollary 2.1.
(1) For 1 <m < J,  ||Kyy* -+ Kgpoq) * F7~(,22||£z(’1m) =0.

T
(2) ) = 5 CF[J, L, 4.
=1
J
() FO =FO|g= 3 Ky * - * Kg * 0.
=1
Proof. (1) Fix m as above. From Lemma 2.2 (2), we have

spec (F,F,jlz) C[-2-4m243,4m2) C[-2.47 4324 -3 Vp>m—1.

Hence,
J
spec (K(J) s ook Koy * F,Sf),2> = ng_l spec(K ) N spec (F,Sf),2>

— spec (F@_Q) C[-2-4™2 4 3,4m72),

m
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Therefore, we are done because T, N [—2-4™2 + 3,4™2) = ().
(2) Put j =2 in Lemma 2.3 (2).

(3) Tt is obvious. QE.D.

The next lemma gives approximations to some terms involving the CF[, -, -|.

Lemma 2.4. Let g be a bounded function and 1 <m < J. Then
(1) | CE[J,m, om] |2 < [l @mll2-

J
(2) || CE[J,m, g = Ky s -+ 5 Ky * g ll2 < 2€l|glloe > llsppllo-

p=m
Proof. Bearing in mind the facts that ||[Ky|li; =1 VN >1,andforall1 <m < J,
le=€hm| < 1, consider the following.

(1) It is more than enough to prove that for all m and M such that 1 <m < M < J,

we have

| CFIM, m, om] (2 < [|@mll2-

Suppose M =1, then, via Young’s inequality, we have

ICF[L L gl = [[Kq * (™),

1Kl le™ @], < llenlle.

IN

Assume, if it is possible, that the claim is true for fixed M < J and for all
1 <m < M. Then, by Proposition 2.2 (3) and again Young’s inequality, we obtain for
all1<m < M +1,

H CF[M +1,m, (pm] ||2 = HK(MJFU * (eighM+ICF[M7m7 QOm]) H2

IN

Kl [[e” "+ CF[M, m, ¢ ||,

< | CF[M,m, om] ll2 < llomll2-

Observe that (in the last line) if m = M + 1, then CF[M, m, ;] = @m-
(2) Fix m, 1 <m < .J. By Lemma 2.3 (3), we have
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CF[J,m,g] — K¢y * -+ % K4, * g = CF [J,m—i— 1, K(m) * [(e‘fhm — 1) g]] +

J—1
+ Z CF [J,p—|— Q,K(p+1) * [(efehp"'l — 1) (K(p) R K(m) * g)]] . (2.18)

p=m

We need here to record some clear facts about the h,,, 1 < m < J. First, since
hm = |pm|*, then Reh,, = |on| > 0. Hence, by using Ineq. 3 on page 15 and Lemma
2.1 (4), we have

He*hm - 1H2 < €l|hmll2 < 2¢€]|om]|2- (2.19)

Now, for simplicity of writing, let = = CF [J,m+ L, K(m) * ((e‘ehm — 1) g)]
Then, by using Young’s inequality, and the facts mentioned at beginning of the proof,

we obtain
ol = [[Kepy * (e (Kgoay * (- (e (Kgmy * [(e7" = 1) g])) -+)) ]
< Bl [lem (Koo = (- (e (Ko [(e7 = 1) g])) ) I,
< [lem ™ (g # (oo (e (B * [(e7 = 1) g])) ) [l
< [[Eoy = (e (K (- (7™ (B # [(e7" = 1) 9])) ) |l
< K-yl e (Kozy = (- (e (K + [(e7" = 1) g])) )]
< flem M (Kgoay (o (7 (B x [(e7 = 1) g]) ),
<[ By = (e (€7 (B * [(e7 = 1) g])) ),
< e <llem=1)gl,
< gl le™ " = 1l2 < 2€l|g]loollm 2,

where we have used (2.19) in the last line.

Similarly, following the same idea of the above estimation, and letting
Yp = CF [J.p+ 2, Kpny = [(e7" = 1) (K %+ % Km) % 9)]]
where m < p < J —1, we get that

lyplla = || Koy * (- (e (Kpyny * [(e7"74 = 1) (K % - % Kimy % 9)])) - ++) ||,

< (e = 1) (K # - % Ky % 9) ||

IN
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IN

1K gy % - -+ % Ky * glloo ||e”77 =1,

< 2ellglloollopalle;

where we have used the fact that || K,) * - - % K * gl|oo < [|g]|os- To confirm this fact
notice that for any bounded function G and for all N > 1,

dt
Ky G (r)] < /KN(T |Gl X = |Gl VT ET.
T

or
This implies that ||Ky * Gl|oc < ||G||oo; consequently, the result follows by classical
mathematical induction.
Finally, back to (2.18); apply the Lo-norm and substitute by the last two estima-

tions.

ICE[J,m, g] = Ky % -+ % Kiny % gl =

J-1
xr + Zyp
p=m

J-1

< lellz + ) Hlgllo
p=m

J-1

< 26llgllcllomllz + Y 2€llglloollepralls

p=m

J
= 2ellgllee D llgplle.
p=m

2

QE.D.

Corollary 2.2. Let g be a bounded function, n € N and 1 <m < J. Then

J
ICF L, m, gllleary < WKy # -+ % Ky * glleay + 2€llgllos Y [l0pll2,

p=m

where T, = (—4", —4""1].
Proof. Remembering Parseval’s theorem, this is easy. If x = CF[J, m, g|, then

zlleycra)y = [ICF[J,m,g) = Ky % -+ % Ky x g4+ Ky % -+ % Ky * glley(1,)

< NCFJ,m, g] = Ky # -5 Koy * gllescrny + 1K@y # -+ Kmy # glleacr,)
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< ||CF[J,m,g] — K(gy % -+ % Ky * gll2 + ([ K5y %+ % Ky * 9lea(1)

J
2¢ellglloo > Nlepllz + 1Ky % - % Kmy # gllear,)-

p=m

IN

QE.D.

Finally, we can say that we are ready to prove Theorem 2.2.
Proof of Theorem 2.2. We have already claimed before that our F(© built from the
inductive sequence (2.14), is the one that satisfies the three properties, after choosing
the €, of course. To show that consider the following.
(1) we have already proved that ||[F(9]| < 1 in Lemma 2.2 (1). So, ¢; = 1 > 0,

obviously.

(2) Fix j > 1. By Lemma 2.2 (2),
spec (F) = spec (F§€)> C[-2-4743,47).

Therefore, If j > J + 2,
1/2

ST IFG(=n)2 | =o.

TLEIj

So, assume 1 <7 <.J+1.

Now, if we let m = j in Lemma 2.3 (2), then we have

1/2
/? 2 _ €
> IFE(=n)] = HF()H@(@-)
nte
J
— |lcF [J,j—1,Fj<j>2] + Y CFlJ.p.¢,)
p=j-1 £>(T;)
J
< forlri-1 5|, + X ICFp el (220
S p=j1

FY,

From the proof of Lemma 2.2 (1), || F}”

‘ < %, 1 <j < J+1. Hence, Corollary
o0

2.2 gives

HCF [J,j _1, F;zg]

= HKu) #-o-x K« F)Y

)+2€HFJ'(€)2

J
\ > Nl
o0 A

p=j—1

12 (7]' Lo (Tj
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100
< 0+42--
< 042 3 oyl

p=j—1

- 9 Z 4—:0/2:8.4—9'/2,

p=j—1
where we have used Corollary 2.1 (1) and (2.9) in the last two lines, respectively.

Also, from Lemma 2.4 (1), we have
ICFLL.p, @plllestryy < NCFLp,0pllle < llipplle = 47772, (2.21)

Substituting the last two estimates into (2.20), we get

1/2

J
Z|F(e)(_n)|2 < 8.479/2 4 Z 4—P/2
nel; p=j—1
o
< 8.4 N4

p=j—1
= (8+4)479/2=12.479/2,

Hence, ¢y = 12.

(3) First recall Corollary 2.1 (2) and (3). Since spec(py) C I, 1 < ¢ < J, then
J
FO@) = > (Kyy#-# Ky p0) (t)

00
2 : mt

= Z bppe(n)e™.
=1 nely

So, for fixed j, 1 <j < J, and n € I, we have

(S

e~

FO(n) = buti(m)| = [FO(m) ~ FO(m)].

Hence, actually, we need to show that

—_

< Z479102,

|70~ FO,, <L
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First, use Corollary 2.1 (2) and (3) to write

J J
F(e) —F(O) = ZCF[L&S@Z]_ZK(J)*"'*K(Z)*SOZ
(=1 =1
J
= CF[J,E, gOg] _K(J) *---*K(g) * Qg (2.22)
=1

Now, observe that

J
spec(Kyy -+« Ky x@p) = p@l spec(K ) Nspec(yy)

= spec(ipp) = [4°1,4°).

So, by using Lemma 2.3 (1), we get

spec(CF[J, €, pg] — K(gy % -+ % Ky % ) C [—2- 47 4+ 3,45,

This means that for 1 </ <j—1 andfor n € I; = [47! 47), we have

(CF[J, f, gOg] - K(J) koe-e ok K(g) * (pg) (n) =0.

Using this fact and (2.22), we obtain for n € I;

J
(F(e) Z CFJZ(,O@ K()*---*K(g)*(pg)(n).
t=j
Now notice that, by the Cauchy-Schwarz inequality,
leelloo <D 10e(n)] < 4721202 = 1.
nely

The above facts, with Lemma 2.4 (2) and (2.9), imply that

J

D CF[J, 4,00 = Kgy %+ % K iy
t=j

HF(G) o sz(lj)

£2(I;)
J

< D NICFL G pd = Koy x - % Ko # el
l=j

J

< |CF[J, 4, 06] = Kgy %+ % Koy * i)
=
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IN

J J
> 2ellelloo D lipsllo
=3 p={L

J o
< 2 Z Z 4p/2

t=j p=t
< 4650:4"/2 = 8¢-477/2,
l=j
So, by choosing ¢ = 6%1; and hence ¢; = 64, the proof is done; and now I can say
that it is my pleasure to type the welcome symbol QE.D.

Reformulation of the Main Result in B, 1/2

In this section, we show that the mixed-norm generalization of Hardy’s inequality
(Theorem 2.1, p. 23) can be reformulated in terms of the norm of the Besov space

—1/2

B,,"". We start with the following proposition.

Proposition 2.3. There is an absolute constant a > 0 such that for all functions

fe LI(T)7
1/2 1/2
Y127 X P <alflitad (27 > (=)
Jj=1 27-1<n<2i J=1 27-1<n<2i

Instead of proving (directly) the above proposition, we are going to prove the fol-

lowing lemma.
Lemma 2.5. Proposition 2.3 s equivalent to Theorem 2.1, p. 23.

Proof. For the sake of simplicity of writing, put I; = [2/~1,27) and I] = [47°1 47).

The strategy of the proof is to show that for any arbitrary function f € L;(T),

1/2 1/2

)3 EXDIUOIE DI EED VO] I

nefj j:l
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and
12 1/2
PR EEDDCOI B W E W VICE O
j=1 nel; J=1 neI]
Since the proof should be independent of f, then it is enough to prove only the first
equivalence.
Write A=) A;, and B = ) Bj, where
7=1 7j=1
12 1/2
A= (273 I . and B = |47 )
nel; nel;

J

Since A; >0 Vj>1,then S;:= ) A; isan increasing sequence; and hence its
j=1

limit as J — oo exists (which may be oo). Therefore, any subsequence of {S;} also

tends to the same limit as J — oo, in particular, S;;. However, since

27 7
Sz = ZAJ‘ = ZAzjq + Agj,
j=1 j=1

then ;
A= i S = i 2 A ey = 2 A e
]:

7j=1
Now we claim that Agj_y + Ay; ~ B; V j > 1. To see that fix j > 1 and recall

Ineq. 1 on page 14, which is
Va+b<Va+Vb<V2Va+b, a,b>0.

Since all the terms here are non-negative real numbers, then, by using Ineq. 1, we
get
1/2 1/2

Agi 1+ Ay = 2 2t Z |f(n)|2 +(27¥ Z |f(n)|2

n€laj nels;

< V22 ST fm)P 27 Y ()P

nefzj—l nefzj

1/2
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1/2

V2 [2:27 37 [fm) 2270 3 | ()

nefzj—l nEfzj

IN

1/2

= 2(27% ) |fm)P+27¥ ) [f(n)

nefzj—l nefzj
1/2

= o[ S e+ S imiE) | =28,

n6i2j71 TLEizj

because Izy LU -[2y [22@ 1) 2j71) U [223'71722]‘) = [22(3'*1)7221') = ]J
Also, by Ineq. 1,

1/2

Agiy + Ay; > 272! Z |f(”)|2 +27% Z |f(”) ?

nefzj—l nefzj
1/2

279 3 fmP+27¥ )Y |fm)P )  =B;

n6i2j71 TLEizj

Y

Hence, we have B; < Ag; | + Ay; < 2B; Vj > 1. Consequently, B < A < 2B;
ie. A~ B. Q.E.D.

For the next theorem, recall the Besov spaces section in chapter 0, in particular, the
definition of B;/z and the kernels W,,, and their properties (Proposition 0.2). Also,
recall that for f € Li(T), the Riesz projections P, and P_ are

(PLf)(t) =) f(n)e™ and (P => f(n)e™, teT.

n>0 n<0

Theorem 2.3. Proposition 2.3 s equivalent to the following:

“There is an absolute constant b > 0 such that for all functions f € Li(T),
B4 fll gz22 < OISl A+ BIP-f]] 12

Proof. Since, by the definition of W,, spec(W,) = (2"1,2""), n > 0, and
W, (k) = W_,(—k) ¥ k,n >0, then for n < 0, we get spec(W,) = (—27"+1, —2-n=1),
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Therefore, for n < 0, we have
spec(V, P, f) = spec(IW,,) N spec(P,f) € spec(Wi) 1 (0, 00) =
consequently, by Parseval’s theorem, [|[W,, * P, f|[ =0 V n < 0. Hence,

B fllyoe = 302 WL B Sl = 32 W5 B
nez n>0

= 27" IW * P f115)

n=0

1/2

Now, since 0 < /Wn(k) <1 Vmn,k € Z,then, by Parseval’s theorem, we obtain for

n > 0,

Wa s PLfIls = D [Walk)” [P f (k)

keZ
2n+1

< > Wb If (k)
k:2n—1

Also, since Wy(t) = ™™ + 1 + ¢*, then

[Wo x Py fI2 = [Wo(=1)[? [P f(—1)[2 + [Wo(0) | [Py £ (0) | + [Wo (1) 2 |B F(1)[?
— If())>

For convenience, let x = ||Py f|[ ,-1/>. Then by using Ineq. 1, (0.4) and the last

two estimations, we get

o0

o= Y (2 |Wa P f]2)"?

n=0

= (W Py f112)7 4 (2 YW« Py fIR) Y+ (272 W« Py f2)

(271w« P fI3)

Fp) " (r (VUF+;ﬂwﬁ)m
[
o[

1/2

(170

IN

R R R 1/2
* (517 F+V(W+ZV@P+hﬂ®F+5ﬂmﬁ)

2
V(H>>w+~-

OO|P—‘

2
(O + SIFOP + JFDP+ -
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20

= Qﬂ”ﬂw{k@*(m@W+év@W)fﬁ
+ (2_2 %|f(3)|2>>1/2 + (2—2 <|f(4)|2 +%|f(5)|2 + %|f(6)|2 N i|f(7)|2>>1/2
+ <2_3 <i|f( )P+ 5 |f( )|2+%|f(7)|2>>1/2

(2 3(|f<8>|2+---+g|f<15>|2))1/2+---
< (e + (2 (1Fp §|f(s>|2))1/2
(2 (5l
(2% (GUOIR + 5l70)F + 1li >|2))1/2
w (20 (1R + 4 1'f<15>'2>>1/2 T
va (Ifor) " +v2 (2 (1f@E +1/eE))

(2*2 (|f(4)|2 + |f(5)|2 + |f(6)|2 I |f(7)|2))1/2
(2*3 (|f(8)|2 4ot |f(15)|2>>1/2 L

(o
£ (1)
+2—1;
+ 2%

IN

oo

1/2
= 2V2 Z (2n Z f(k)Z) |

2n—l<p<2n

So, we have

1/2
P+f32:/2<23/22<2n > f(k>2) |

n=1 2n—1Sk<2n

Next, we claim that

1/2
P+f'323/2>23/22(2n > f(kf) .

n=1 Zn_1§k<2n

(
2>>1/2 ( <|f( )|2+ (5 )|2+%|f(6)|2+i|f(7)|2>>1/2
(6
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We do this, again by using the above estimation and Ineq. 1, as follows; recall that

v = B S s

X

v

Y

v

o0

ST @ WL Py fIR)

n=0

(21 Wo + Py £112) Y%+ (2 Wy Py fII2) 2+ (272 Wa + B 1)

+ (27 Wy + PfI2) 2
(Fwr)™+ (2 (1Fe + Hier))

O L N (¥ VRN DO PO
+ (27 (HWBP + I @P + S G + I 6)F + 510

1/2

1/2

1, . J 32 . 1 12
+ (27 (FFOR + plFOF + SUMF +-+ i) )+

()™ (o (o)) 2 (= (o)

A A ) A 1/2

L (o (o o+ D))
— <23 (If(8)|2---+ é|f(15)|2>>1/2 4o

75 (700) 75 (2 (1o« o))

+

2 (1P -+ lFaP) ) -

J5<%V“W?U%+§§(24<§V@n”+%mwnﬁ>w2

v (272 (GIFOF + 517 OP + 517 OF + JIF0P) )

1/2
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o (o (M b)) e
1/2

DO | =

1 5 NE
> 2—\/57; 27" Y |f (k)]

2n—1§k<2n

Similarly, since W, (k) = W_,(—=k) V k,n > 0, and the above proof is independent

of f, we get
1/2
2023 e ST R < P S
n=1 2n—1§k<2n
1/2
< 2232 Y |f(RP
n=1 2n—1§k<2n
Q.E.D.

Corollary 2.3. The mized-norm generalization of Hardy’s inequality can be reformu-
lated in terms of the norm of B;ﬂ as follows:

“There is an absolute constant b > 0 such that for all functions f € Li(T),
1B fllrre < Bl + BB f] ee.” (2.23)
21 21

Notice the similarity between (2.23) and (1.6) when p = 2. Corollary 2.3 solves the
reconstruction problem for the Besov space B;i/z; that is,
P_.feB,, — feB,,

Now it is natural to raise the following question: for which numbers p > 1,

P_feB," = feB, "



Conclusion

From this thesis, it can be concluded that the mixed-norm generalization of Hardy’s
inequality (Theorem 2.1) can be proved by using at least two different constructions
namely (1.3) and (1.2). In addition, reformulation of the mixed-norm generalization
can be presented in terms of the norm of the Besov space B;im. This reformulation
solves the reconstruction problem of the Besov spaces B, i/Q. In addition, all of these
results can be restated in terms of finite complex Borel measures.

We conclude this study with the following questions, which may raise a suggestion
for pursuing this work in the same direction:
e Is there any relationship between the mixed-norm generalization of Hardy’s inequal-
ity and the open problem in (0.1)?

e Is it possible to rewrite the mixed-norm generalization of Hardy’s inequality as

follows:
1/2 1/2
Sl Y e -7 X 1P| | <elfihe
j=1 4i—1<n<4i j=1 4i—1<n<4i

e For which numbers p > 1,
P_feB, "= feB "

e (Can the mixed-norm generalization be deduced from Theorem 1.27

e (Can the mixed-norm generalization be deduced from Theorem 1.37

23
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