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Abstract—In this paper, we present the current state of the art in semantic data modeling of multimedia data. Semantic
conceptualization can be performed at several levels of information granularity, leading to multilevel indexing and searching
mechanisms. Various models at different levels of granularity are compared. At the finest level of granularity, multimedia data
can be indexed based on image contents, such as identification of objects and faces. At a coarser level of granularity, indexing of
multimedia data can be focused on events and episodes, which are higher level abstractions. In light of the above, we also examine
modeling and indexing techniques of multimedia documents.
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1 INTRODUCTION

ULTIMEDIA databases have been the subject of exten-
sive research during the last ten years. Interest in this

area is rapidly growing with the continuous evolution of
telecommunication and computing technologies. A number
of applications in telemedicine, digital libraries, distance
learning, tourism, distributed CAD/CAM, GIS, etc. are ex-
pected to use general purpose multimedia database sys-
tems. With the rapid proliferation of the Web, these appli-
cations are rapidly emerging. Unlike traditional alphanu-
meric databases, multimedia databases require manipula-
tion of complex objects consisting of text, images, graphics,
audio, music, and full-motion video data.

The objective of this paper is to highlight issues
in the design and development of such systems. The pri-
mary emphasis is on semantic modeling of multimedia in-
formation, indexing, and knowledge based representation
of semantics associated with image, video, and complex
multimedia documents.

Data abstraction is an essential component of the mod-
eling process, and requires the use of knowledge-based
representations and spatio-temporal semantics. Such repre-
sentations can vary in terms of handling precision and
fuzziness in query processing, ranging from very specific to
very general. We discuss several approaches in this area in
the following sections, and provide a critical assessment of

the comparative applicability of these approaches under
disparate real-world applications.

In addition to the management of individual media, it is
necessary to develop models for composing complex mul-
timedia objects and documents. Composition can be both in
space and time. Such models require a tight linking with
the underlying image, audio, text and video database man-
agement systems. The objective of spatio-temporal model-
ing is two fold. Firstly, it can lead to the design of efficient
retrieval algorithms for various multimedia data types
which comprise the documents. Secondly, it can provide the
basis for developing indexing and searching of these
documents. Integration of these models with higher level
information abstractions such as hypermedia, or object-
oriented models is required to allow users to search and
browse this large repository of data. Throughout this paper,
special consideration is given to integration issues as they
relate to the unique features of multimedia documents.

This paper is organized as follows. In the next section,
we discuss issues in data modeling and knowledge repre-
sentation for image databases. Section 3 tackles these issues
in relation to video databases. In Section 4, issues pertain-
ing to multimedia document modeling and management
are discussed. A summary of the paper is given in Section 5.

2 SEMANTIC MODELING AND KNOWLEDGE
REPRESENTATION IN IMAGE DATABASES

Research in image database systems has traditionally fo-
cused on the design of robust image processing and recog-
nition techniques. The growing role of images in multime-
dia applications has spurred tremendous interest in man-
agement aspects of image databases. Challenges inherent in
the development of image databases include image proc-
essing for feature extraction, identification of salient objects,
development of efficient data models to allow content-
based indexing and retrieval, query formulation, and fuzzy
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query processing. Most traditional approaches to image
data management use multilevel abstraction mechanisms to
support content-based retrieval. These levels are depicted
in Fig. 1 and correspond to three key functionalities: feature
extraction, object recognition, and domain-specific spatial
reasoning and semantic modeling. This figure provides the
focus of our discussion. We use it for elaborating key issues
and approaches proposed in the literature related to the
development of multilevel abstraction and indexing
mechanisms. The important role played by knowledge-
based representation in processing queries at different lev-
els is also discussed. In Section 2.1, functionalities of the
feature extraction layer are discussed. Section 2.2 describes
the functionalities of the object recognition layer. In Section
2.3, we discuss the models and approaches used for se-
mantic and knowledge representation.

2.1 Feature Extraction Layer
Low-level image processing involves finding portions of
the raw data which match the user’s requested pattern.
During such processing, features in the user’s requested
pattern need to be identified and matched against fea-
tures stored in the database. In other words, pattern
matching needs to be employed to find portions of the im-
age that are similar to a given pattern or to deformed ver-
sions of a given pattern. In this context, deformations of the
pattern include scaling, shifting, rotation, and stretching of
the given pattern.

The problem of pattern matching in image databases has
been actively studied for over 20 years [19], [36]. A typical
approach is to extract a set of features which concisely de-
scribes the given pattern, and then seek these features in the
image. Extraction of feature vectors has been well studied
in certain specialized settings such as face recognition [9]
and character recognition [24]. However, only recently have
the researchers started addressing the problem of auto-
matic feature extraction for a multimedia database for a
wide variety of objects [33]. Image features include colors,
textures, shapes, edges, and the like. These features are
mapped into a multidimensional feature space which can

allow similarity based retrieval of images. Features in an
image can be classified as global or local. Global features
generally emphasize “coarse-grained” pattern matching
techniques. The global feature extraction techniques trans-
form the whole image into a “functional representation.” In
this case, finer details within individual parts of the image
are ignored. Color histograms, Fast Fourier Transform,
Hough Transform, and Eigenvalues are the well-known
functional techniques that fall into this category. Fig. 2 is
an example of a typical histogram of an image. Such a
histogram can be stored as an approximate signature for the
image, and used in subsequent pattern matching.

Example queries involving global features include

•� “Find images which are predominantly green,” or
•� “Retrieve an image with a large round orange textured

object.”

Global features for image indexing carry out uniform
processing over the whole image for the chosen feature.
Because of this, global features are well-suited for process-
ing the type of queries which deal with images as single
entities during the pattern matching process. Such tech-
niques are also useful for comparing images or video
frames to identify changes in the global features in order to
detect scene change, as discussed in Section 3.1. Major ad-
vantage of the coarse-grained approach is the low computa-
tional complexity of feature extraction and pattern match-
ing algorithms. The disadvantage is that a high percentage
of irrelevant images maybe retrieved as a result of query
processing. Improvement in the precision and accuracy of
the retrieval process is possible by incorporating textual
annotation with images [30].

At another level of granularity, local features can be used
to identify salient objects in an image and to extract more
information about the finer details in the image. This ap-
proach is called “fine-grained” because images are seg-
mented into a collection of smaller regions, with each re-
gion representing a potential object of interest. An object of
interest may represent a simple semantic object, such as a
“round object” or “a region with uniform color.” Segmented
regions are processed to extract multiple features. Local

Fig. 1. Processing and semantic modeling for image database.
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features can be perceived as constituting a multidimen-
sional search space. Features in the form of encoded vectors
provide the basis for indexing and searching mechanisms
of image databases. Typical features include grey scale val-
ues of pixels, colors, shapes, and texture. Various combina-
tion of features can be specified at the time of formulating
database queries. Segmented regions are further analyzed
by the object recognition layer to identify objects with
higher level semantics (Section 2.2).

Incorporating knowledge about objects with local fea-
tures can provide more robust and precise indexing and
search mechanisms. Measures such as Minkowski distance
[38], weighted distance [16], [37], color histogram intersec-
tion [41], and average distance [26], [34] can be used to
evaluate the robustness of the mechanisms. The perform-
ance of a similarity-based search depends on the degree of
imprecision and fuzziness introduced by the types of fea-
tures used, and the computational characteristics of the
search algorithm. Faster algorithms require dropping more
image features and hence provide less precise results. The
trade-off is between the time complexity and robustness of
the algorithms. Choice of features, their extraction mecha-
nisms and the search process are domain specific. For ex-
ample, multimedia applications targeted for X-ray imaging,
GIS, etc., require spatial features such as shapes and dimen-
sions. On the other hand, color features are more suitable in
applications involving MMR imaging, paintings, etc.

Various systems have been prototyped that use a feature
extraction layer similar to the one shown in Fig. 1. For ex-
ample, in the Query By Image Content (QBIC) system [14],
color, shape, and texture features are used for image re-
trieval. A fully automatic image segmentation method is
used to identify objects in images with few foreground ob-
jects on separable background. The QBIC system allows
querying of the database by sketching features and pro-
viding color information about the desired objects.

Chabot [30] is another system which uses a combination
of color and textual annotation attributes for image retrieval.

Chabot uses the notion of “concept query” where a concept,
like sunset, is recognized by analyzing images using color
features. It uses a frame-based knowledge representation of
image contents which is precomputed and stored as attrib-
utes in a relational data model. For improving the perform-
ance of the system, it uses textual annotation of images by
keywords that are manually entered.

Hsu, Chu, and Taira use quantitative methods for edge
detection to identify shape features in a radiological data-
base, KMeD [17]. KMeD employs a three layer architecture,
where the lowest layer, known as the representation layer,
uses shapes and contours to represent features. This layer
employs a semiautomatic feature extraction mechanism
based on a combination of low level image processing tech-
niques and visual analysis of the image manually. From a
functionality point of view, this layer reduces to the feature
extraction layer of Fig. 1.

2.2 Object Recognition Layer
Features are analyzed by this layer to recognize objects
and faces in an image database. The process involves
matching features with the object models stored in a
knowledge base. In general, an object model is a template
describing a specific object. During the matching process,
each template is inspected to find the “closest” match.
Object identification with an exact match is generally com-
putationally expensive and the quality of matching de-
pends on the details and the degree of precision provided
by the object template. Occlusion of objects and the exis-
tence of spurious features in the image can further diminish
the success of matching strategies.

Two types of template matching have been proposed in
the literature: fixed template matching and deformable
template matching [35]. Approaches based on fixed tem-
plates are useful when object shapes do not change with
respect to the viewing angle of the camera. Image subtrac-
tion and correlation have been used in fixed template

Fig. 2: (a) (640 × 480) gray scale image; (b) its color histogram.
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matching techniques. In image subtraction techniques, the
difference in intensity levels between the image and the
template is used in object recognition. The template posi-
tion is determined from minimizing the distance function
between the template and various positions in the image.
Although image subtraction techniques require less com-
putation time than correlation techniques, they perform
well in restricted environments where imaging conditions,
such as image intensity between the template and images
containing this template are the same. An example applica-
tion where subtraction technique is appropriate is an X-ray
image database, since target images have a fixed viewing
angle and image intensities do not change substantially.

Matching by correlation utilizes the position of the nor-
malized cross-correlation peak between a template and an
image to locate the best match. This technique is generally
immune to noise and illumination effects in the images, but
suffers from high computational complexity caused by
summations over the entire template. Point correlation can
reduce the computational complexity to a small set of care-
fully chosen points for the summations [22].

Deformable template matching approaches are more
suitable for cases where objects in the database may vary
due to rigid and nonrigid deformations. In this approach,
a template is represented as a bitmap describing the char-
acteristic contour/edges of an object shape. A probabil-
istic transformation on the prototype contour is applied
to deform the template to fit salient edges in the input im-
age [19]. An objective function with transformation pa-
rameters which alter the shape of the template is formu-
lated reflecting the cost of such transformations. The objec-
tive function is minimized by iteratively updating the trans-
formations parameters to best match the object. Applica-
tions of deformable template matching techniques include
handwritten character recognition and motion detection of
objects in video frames.

A certain level of fuzziness and imprecision in object
recognition is inevitable and needs to be incorporated in
the similarity measure in order to increase the success rate
of queries and not to exclude good candidates. For this
reason, manual examination of output images is generally
unavoidable. For example, medical objects belonging only
to patients in a small age group, are identified automati-
cally in KMeD [17]. In addition, such objects have high
contrast with respect to their background and have rela-
tively simple shapes, large sizes, and little or no overlap
with other objects thus resulting in relatively accurate
matching results. The domain knowledge of KMeD main-
tains descriptions about the shapes of objects with simple
structures such as tumor, brain, bones, etc. For large age
groups, however, there are few objects with simple struc-
tures [17]. KMeD resorts to a human-assisted object recog-
nition process in such cases.

Identification of human faces is another important ap-
plication of image databases. However, due to more in-
herent structuredness in human faces, models and features
used for face recognition are different than those used for
object recognition. Face recognition involves three steps:
face detection to locate a face inside an image; feature ex-
traction where various parts of a face are detected; and face

recognition where the person is identified by consulting
a database containing facial models. Several face de-
tection and recognition systems for multimedia environ-
ments have been proposed [28]. Most of these systems use
information about various prominent parts of a face such
as eyes, nose and mouth for face recognition. Other tech-
niques decompose face images into a set of characteristic
features called eigenfaces [28]. These techniques capture
variations in a collection of face images and use them to
encode and compare individual features. Other techniques
employ a profile-posed approach, where detailed structure
of the face not seen in frontal images is stored. In particular,
the size and orientation of the nose is delineated. Face rec-
ognition process in this class of techniques is based on
profiles and it concentrates on locating points of interest,
called fiducial points, and determining the relationships
among these fiducial points.

Extraction of features and object recognition are impor-
tant phases in developing large scale general purpose im-
age database management systems. Significant results have
been reported in the literature for the last two decades, with
successful implementation of several prototypes. However,
lack of precise models for object representation and the
high complexity of image processing algorithms make the
development of fully automatic image management and
content-based retrieval systems a challenging task.

2.3 Spatial Modeling and Knowledge
Representation Layer

The major function of this layer is to maintain the do-
main knowledge for representing spatial semantics associ-
ated with image databases. Queries at this level are gener-
ally descriptive in nature, and focus mostly on semantics
and concepts present in image databases. For most of the
applications, semantics at this level are based on “spatial
events” [13] describing the relative locations of multiple
objects. Such semantics are used for high-level indexing
and content-based retrieval of images. An example in-
volving such semantics is a range query which involves
spatial concepts such as close by, in the vicinity, larger than,
etc. The most common applications employing spatial se-
mantics and content-based retrieval based on range queries
are map databases and geographic information systems
(GIS). This type of systems is extensively used in urban
planning and resource management scenarios. In clinical
radiology applications, relative sizes and positions of ob-
jects are critical for medical diagnosis and treatment. Some
example queries in this application include:

•� “Retrieve all images that contain a large tumor in the
brain,” or

•� “Find an image where the main artery is 40 percent
blocked.”

Such techniques are aimed at inferring new information
pertaining to the evolutionary nature of the data.

The general approach for modeling spatial semantics for
such applications is based on identifying spatial relation-
ships among objects once they are recognized and marked
by the lower layer using bounding boxes or volumes. Spa-
tial relationships can be coded using various knowledge-
based techniques. Several techniques have been proposed
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to formally represent spatial knowledge at this layer. These
include: semantic networks, mathematical logic, constraints,
inclusion hierarchies, and frames. Brief descriptions of
these approaches are given below.

2.3.1 Semantic Networks
Semantic networks are used extensively in artificial intelli-
gence applications. They were first introduced to represent
the meanings of English sentences in terms of words and
relationships between them [42]. This is a graph-based ap-
proach to represent spatial concepts and relationships. Se-
mantic networks are graphs of nodes representing concepts
that are linked together by arcs representing relationships
between these concepts. Efficiency in semantic networks is
gained by representing each concept or object once and us-
ing pointers for cross references rather than naming an ob-
ject explicitly every time it is involved in a relation. Further
extensions of semantic networks can allow efficient search
strategies to locate the desired information. One such sys-
tem that uses hierarchical semantic networks is the KMeD
system [17] discussed in the previous sections. In the sec-
ond layer of this system, known as the semantic layer, ob-
jects and their relationships are identified and abstracted
using an Entity-Relationship model. The third layer of this
system uses a knowledge base abstraction to represent
higher level semantics [11]. This abstraction is called type
abstraction hierarchy (TAH) that is organized using seman-
tic networks. TAHs conceptualize the objects and their se-
mantics and incorporate the domain expert knowledge in
order to improve search efficiency in radiological databases.

2.3.2 Constraints-Based Methodology
In this methodology, the domain knowledge is repre-
sented using a set of constraints in conjunction with formal
expressions such as predicate calculus or graphs. Knowl-
edge is represented by predicates that are augmented
with procedural information. A constraint is a relationship
between two or more objects that needs to be satisfied.
An example of this approach is the PICTION system [40].
Its architecture consists of a natural language process-
ing (NLP) module, an image understanding module (IU),
and a control module. This architecture is functionally
similar to that given in Fig. 1. The system uses a combina-
tion of text annotation and image processing techniques
for face recognition and identifying relative positions of
people in images. In this approach a set of constraints is
derived by the NLP module from the picture captions.
These constraints, also termed as visual semantics are used
with the faces recognized in the picture by the IU module
to identify the spatial relationships among people. The
control module maintains the constraints generated by the
NLP module and acts as a knowledge-base for the IU mod-
ule to perform face recognition functions. Fig. 3a shows an
example image with caption: “In front of the electrical en-
gineering building, Francis Day is standing to the right of
Jaehyung Yang.” The result of employing image processing
techniques that locate possible candidates for faces is
shown in Fig. 3b. Applying natural language processing to
the caption generates the constraint graph shown in Fig. 3c.
Fig. 3d shows the result of applying the constraints to

the candidate faces. Such a system is suitable for those
image database applications where sufficient descriptive
information of images is available. An important applica-
tion of this methodology is in the management of captioned
news image/video databases.

2.3.3 Mathematical Logic
Mathematical logic provides powerful techniques to for-
mulate knowledge representation. In multimedia data-
bases, techniques based on such representations can be
used to represent high level spatial semantics [3], [8], [13].
For example, the approach in [8] uses projections of salient
objects in a coordinated system. These projections are ex-
pressed in the form of 2D strings to form a partial ordering
of object projections in 2D. In other words, these expres-
sions characterize the spatial relationships among objects.
For query processing, 2D subsequence matching is per-
formed to allow similarity-based retrieval. Several spatial
propositions used in GIS applications can be used to iden-
tify spatial contents in an image, including: near, far, inside,
above, below, aligned and next [3]. Imprecision in these
prepositions is handled through a fuzzy function which
allows range-based specification of spatial relations.

Day et al. describe a framework that uses the notion of
binary spatial relations [13]. A set of 13 relations is used to
specify such propositions. These relations, shown in Fig. 4,
have been originally proposed for temporal reasoning [5].
They consist of 13 relations, and can be represented by
seven operators because six of them have inverses. For ex-
ample, after is the inverse relation of before. For inverse rela-
tions, given any two intervals, it is possible to represent their
relation by using the noninverse relations only by exchang-
ing the interval labels. The equality relation has no inverse.

2.3.4 Inclusion Hierarchies
Another category of knowledge representation is inclusion
hierarchies which group together semantically related ob-
jects. This approach is oriented in flavor and uses concept
classes and attributes to represent domain knowledge [45].
These concepts may represent image features, high-level
semantics, semantic operators and conditions. The opera-
tors and conditions are used to formulate descriptive que-
ries involving features and range of values for objects. Be-
ing a hierarchical formalism, this approach renders itself
nicely for object oriented modeling.

2.3.5 Frames
Frames are used to represent knowledge relevant to par-
ticular objects, situations, or concepts. A frame usually con-
sists of a name and a list of attribute-value pairs. A frame
can be associated with a class of objects or with a class of
concepts. A frame-based approach to represent knowledge
through media abstractions is proposed in [7]. Frame ab-
stractions allow encapsulation of file names, features, and
relevant attributes of image objects.

2.4 Summary and Challenges
Table 1 summarizes the characteristics of several prototyped
image database systems. Their key features are highlighted.
One observation from this table is that the underlying de-
sign philosophy of these systems is driven by the application
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domain. Development of a general-purpose, automatic im-
age database system capable of supporting arbitrary do-
mains is a challenging task due to the limitations of ex-
isting image processing knowledge representation models.

We conclude this section by listing several challenges
that need further investigation. There are three major areas
of research identified with image databases regarding
semantic modeling and knowledge representation: devel-
opment of efficient knowledge representation schemes,

development of efficient image retrieval algorithms and
modeling of higher level semantics of images. Extracting
knowledge from images and representing such knowledge
is a challenging problem and requires further research. Ex-
tracting domain-specific features that facilitate the model-
ing of higher level semantics is crucial in improving
the performance of object and pattern recognition tech-
niques. The current limitations of image processing tech-
nologies and lack of precise query formulation mechanisms

Fig. 3: (a) Original image with the following accompanying caption: “In front of the electrical engineering building, Francis Day is standing to the
right of Jaehyung Yang;” (b) a sample edge image where image processing techniques are used to locate faces; (c) constraint graph generated
from natural language processing of the caption; (d) final pictorial output with faces labeled by their respective names.

Fig. 4. Binary relations.
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introduce high degrees of imprecision in the retrieval proc-
ess for image databases. This problem can be acute for
large-scale databases. Alternatively, such limitations can be
partially overcome by resorting to human intervention and
manual annotation.

3 SEMANTIC MODELING AND KNOWLEDGE
REPRESENTATION IN VIDEO DATABASES

The key characteristic of video data that makes it differ-
ent from a-isochronous data such as text, image, and maps
is its temporal dimension. In addition to spatial seman-
tics, video events generally have high degree of temporal
contents. An example of a video query involving spatio-
temporal semantics is:

•� “Find video clips with a touchdown event.”

Important considerations in video data modeling are speci-
fication of such semantics and development of indexing
mechanisms. Another critical issue is to cope with seman-
tic heterogeneity that may arise due to differences in the
interpretations of information in a video clip by different
sets of users. Semantic heterogeneity has proven to be a
difficult problem in conventional databases, with little or
no consensus on the way to tackle it in practice. In the con-
text of video databases, the problem becomes more difficult
and intractable.

Generally, semantics and events in video data can be ex-
pressed in terms of interplay among physical objects in space

and time. For data modeling purposes, spatio-temporal rela-
tions among objects can be represented in a suitable index-
ing structure, which can then be used for query processing.

In this section, we describe issues in event-based seman-
tic modeling and knowledge representation of video data.
We consider two criteria for classifying existing approaches
of modeling video data. Based on these two criteria, we
identify five major classes of approaches that are being em-
ployed in modeling video data, as shown in Fig. 5. Ac-
cording to the first criterion, semantic modeling is classified
based on the level of abstraction of the identified events.
The level of abstraction is considered low if the supported
semantics are low-level semantics which are more relevant
to the machine than users. An example of low-level seman-
tics is scene changes. The level of abstraction increases as
the degree of information contents and knowledge ex-
tracted from video data increases. For example, “scoring a
field goal” in a sports video data carries a high level of in-
formation. However, any camera breaks introduced in the
data may provide only a different viewing angle of the
football field. In the second approach, the emphasis is on
the method of preprocessing of video data which is the ba-
sis on which semantics are extracted. The preprocessing is
of coarse granularity if it involves processing of video frames
as a whole, whereas it is of fine granularity if processing in-
volves detection and identification of objects within a video
frame. Models classified on the right hand side of Fig. 5 are
considered of fine granularity since they focus on processing

TABLE  1
HIGHLIGHTS OF SEVERAL IMAGE DATABASE SYSTEMS
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video data at the object level, whereas the focus of models
on the left-hand side is on processing video data at frame
level using global features. In the rest of this section, we
discuss basis for classification of these approaches and the
functionalities of each technique.

3.1 Video Parsing and Segmentation
Video parsing employs image processing techniques to ex-
tract important global features from individual video
frames. Any significant change in the feature value in a se-
quence of frames is used to mark a change in the scene. The
process allows a high level segmentation of video data into
several shots. Several scene change detection methods have
been proposed in the literature. These include: pixel-level
comparison, likelihood ratio, color histogram, χ2 histogram,
and discrete cosine transform (DCT) based approaches for
compressed video data.

In the pixel-level comparison approach, gray-scale
values of pixels at corresponding locations in two dis-
tinct frames, either consecutive or a fixed distance apart,
are subtracted and the absolute value is used as a meas-
ure of dissimilarity between the pixel values [29], [46]. If
this value exceeds a certain threshold, then the pixel
grey scale is assumed to have changed. The percentage of
pixels that have changed is the measure of dissimilarity
between the frames.

The pixel-level comparison approach is sensitive to sev-
eral factors, including noise introduced by the digitization
process, object movement and camera effects. A modifica-
tion that can be used to limit the effect of such problems is
to subdivide the frame into regions and select only certain
regions for processing. In this approach, known as the like-
lihood ratio approach [20], [46], the frames are divided into
blocks. The blocks of two consecutive frames are compared
based on some statistical characteristics of their intensity
values, such as the mean value of intensity. This approach is
more robust than the pixel-level comparison approach in
the presence of noise and object movement.

In the color histogram approach [29], [46], a frame is
analyzed by dividing the color space into discrete colors
called bins and counting the number of pixels that fall into
each bin. A separate histogram is made for R, G, and B
components of colors present in a frame. A variation of

histogram technique uses a normalization approach [29]
that results in large differences being made larger and
small differences being made smaller. In compressed do-
main, discrete cosine transform (DCT) approach has re-
cently been proposed that carry the advantage of being less
costly in computation [27], [47]. Table 2 provides a sum-
mary of these approaches in terms of their relative advan-
tages and limitations.

3.2 Iconic-Based Grouping and Browsing
Parsed video segments can be grouped together based on
some similarity measure of image features possessed by
one or more frames representing a scene, also known as
representative frames. This can be used to build iconic based
browsing environments. In this case, a representative frame of
each scene is displayed to the user in order to provide the
information about the objects and possible events present in
that scene. An example along these lines is described in
[44]. A directed graph is used to portray an overall “visual”
summary of a video clip consisting of different scenes that
may appear more than once in the video sequence. Nodes
represent representative frames and edges denote the tem-
poral relationships between them, giving an overview of
the order in which these events have occurred. In another
approach, a similarity pyramid is utilized to give a hierar-
chical clustering of all representative frames present in the
video database [10]. Organization of this pyramid is based
on extracted features and user’s feedback. This scheme can
be scaled up to manage large numbers of video sequences
and can provide browsing environments for developing
digital video libraries.

3.3 Object Recognition
The main function of the object recognition layer is to iden-
tify key objects and faces and perform motion analysis to
track their relative movements. The granularity of data
processing at this level is fine-grained since such processing
involves recognition of objects in individual video frames.
For this purpose, each video frame is examined either
manually or analyzed using image processing techniques
for automatic recognition of objects and faces, as discussed
in Section 2. Furthermore, motion information has been
used to identify key objects in video sequences [4]. In this

Fig. 5. Semantic modeling of video data.
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approach, motion and temporal information can be com-
bined with classical image processing techniques to pro-
duce robust results allowing detection of objects without
requiring any a priori assumptions.

3.4 Motion Detection
A major challenge in video data modeling is capturing
of motion information about salient objects and persons.
We need to extract information at higher levels of ab-
straction of identified objects from a sequence of frames
related to the motion of these objects. Incorporating of
knowledge of background information in tracking object
motion results in a coarser granularity of data processing
than that of object recognition as shown in Fig. 5. Several
approaches have been proposed in the literature for track-
ing motion of objects. In this section, we elaborate on
two techniques. The first technique uses a modified ver-
sion of known compression algorithms such as MPEG, to
identify and track motion of salient objects. In essence, this
semantic-based compression approach combines both im-
age processing and image compression techniques. In [15],
for example, a motion tracking algorithm uses both forward
and backward motion vectors of macroblocks used by
MPEG, encoding algorithm to generate trajectories for ob-
jects. These trajectories are subsequently used by the higher
layer for motion-based semantic modeling.

The second approach for motion tracking uses a di-
rected graph model to capture both spatial and temporal
attributes of objects and persons. The model, known as
Video Semantic Directed Graph (VSDG), is used to main-
tain temporal information of objects once they are identified
by image processing techniques [13]. This is achieved by
specifying the changes in the parameters of a 3D projection
associated with the bounding volume of objects in a given
sequence of frames. At the finest level of granularity, these
changes can be recorded for each frame. Although such a
fine-grained motion specification may be desirable for
frame-based indexing of video data, it may not be required

in most of the applications requiring temporal modeling. In
addition, the overhead associated with such detailed speci-
fication may be formidable. Alternatively a coarse-grained
event specification can be generated by analyzing selected
frames for motion tracking at some fixed distance apart.
Such skip distance may depend upon the complexity of
the event. There is an obvious trade-off between the
amount of storage needed for event specification and the
detailed information maintained by the model. Both these
approaches and several others can be used to describe
higher level events using knowledge-bases, as discussed in
the following section.

3.5 Knowledge-Based Event Modeling
Based on the information available from the low layers
of Fig. 5, higher level events (events that are meaning-
ful to users) can be specified by the user to construct
different views of the video data. Modeling at this level
combines coarse information and fine details of video
frames and is placed in the middle of the granularity of data
processing classification axis. There has been a growing in-
terest in using knowledge-based techniques to model high
level semantics and events in video data [6], [10], [12], [13],
[15], [31], [39], [43].

In order to develop high level semantics based on video
parsing and segmentation, scenes are clustered together,
automatically or manually, based on some desired seman-
tics. There are several ways to build such abstractions. For
example, clustering can be based on key objects and other
features within each scene which are identified using image
processing techniques, or textual information from video
caption, in case it is available. Such an approach is
proposed [10] where a set of features of video frames along
with the motion vectors are used. The approach classifies
the data into pseudo-semantic classes corresponding to
head and shoulders, indoor versus outdoor, high action,
and man-made versus natural [10]. In another clustering
approach, domain specific semantics in form of sketches

TABLE  2
ADVANTAGES AND LIMITATIONS OF SEVERAL VIDEO PARSING TECHNIQUES
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or reference frames are used to identify video segments that
are closely related to these frames. Smoliar and Zhang [39] use
this approach by exploiting the well-structured domain of
news broadcasting to build an a priori model consisting of
reference frames as a knowledge base that assists in semantic-
based classification and clustering of video segments relat-
ed to news broadcast. Alternatively, the scenes of the seg-
mented video can be examined manually in order to ap-
pend appropriate textual description. Such description can
then be used to develop semantic-based clustering by ex-
amining events present in different scenes.

Temporal modeling has been extensively used to capture
knowledge and semantics in temporal databases. Several
approaches recently proposed in the literature develop
knowledge-based formalisms for event specification of
video data [6], [12], [13], [15], [31], [43]. Semantic operators
including logic, set, and spatio-temporal operators, are ex-
tensively used. Logical operators include the conventional
Boolean connectives such as not, and, or, if-then, only-if,
and equivalent-to. Set operators like union, intersection, and
difference are mostly used for event specification as well as
for video composition and editing [31], [43]. The crux of
this formalism is a set of spatio-temporal operators, based
on temporal relations for event specification and modeling
[6], [13], as shown in Fig. 4. In essence, the approaches pro-
posed in the literature use different combinations of these
operators. In the following section, we provide an overview
of temporal intervals and discuss their role in developing
high level video modeling.

3.5.1 Overview of Temporal Modeling
Temporal modeling of is used to construct complex views
or to describe events in video data. Events can be expressed
by interpreting collective behavior of physical objects over a
certain period of time. In a simplistic manner, the behavior
can be described by observing the total (or partial) duration
during which an object appears in a given video clip. As
mentioned earlier, the relative movement of an object with
respect to other objects over the sequence of frames in
which it appears is analyzed for event identification. For
example, consider a user’s query to search for the occur-
rence of a slam-dunk in a sports video clip. Modeling this
particular event requires identification of at least two tem-
poral subevents which include precise tracking of the mo-
tions of the player involved in the slam-dunk and the ball,
especially when the ball approaches the hoop. The overall
process of composing a slam-dunk event requires a priori
specification of multiple temporal subevents. It may be
noted that a simple temporal event can be expressed in
form of a logical expression consisting of various spatial
events that span a number of frames [13]. More complex
temporal events can subsequently be defined recursively in
terms of other temporal events.

Temporal intervals are extensively used for modeling
temporal events [5]. Temporal intervals consist of time du-
rations characterized by two endpoints, or instants. Inter-
vals and instant-based representations are well studied
topics [25]. A time instant is a zero-length moment in time,
such as “3:00 PM.” In contrast to time instants, time inter-
vals are defined by two time instants representing their end

points and their durations represent temporal intervals. The
length of a temporal interval is identified by the difference
of its endpoint values. The relative timing between two
intervals can be determined from these endpoints. By speci-
fying intervals with respect to each other rather than by
using endpoints, we decouple the intervals from an abso-
lute or instantaneous time reference, leading us to the bi-
nary temporal relations of Fig. 4. In the next section, we
discuss the use of temporal intervals and their variations in
modeling video data.

3.5.2 Temporal Interval-Based Video Modeling
In one of the approaches, both temporal and logical op-
erators are used to develop spatio-temporal logic for speci-
fying video semantics. In another approach, spatio-
temporal operators with set-theoretic operators are used
to specify video events in form of algebraic expressions.
Such operations include merge, union, intersection, etc. The
set-theoretic approach is also used for video production
environments [15], [31], [43]. Several temporal interval
based modeling approaches have been proposed in the lit-
erature. They include spatio-temporal logic, algebraic mod-
els, and hybrid temporal interval and trajectory based
models. In the following paragraphs, we briefly discuss
these approaches.

3.5.2.1  Spatio-Temporal Logic. In this approach, salient
objects identified in a scene are represented by symbols,
and scenes are represented by a sequence of state assertions
capturing the geometric ordering relationships among the
projections of the objects in that scene. The assertions spec-
ify the dynamic evolution of these projections in time as the
objects move from frame to frame. The assertions are in-
ductively combined through the Boolean connectives and
temporal operators. Temporal and spatial operators, such as
temporal/spatial eventually and temporal/spatial always are
used for modeling video semantics in an efficient manner
[6]. Fuzziness and incomplete specification of spatial rela-
tionships are handled by defining multilevel assertions that
provide general to specific detail of event specifications [6].

Day et al. [13] use the notion of generalized temporal
intervals initially proposed in [25] for temporal modeling of
video data. The generalization is based on the binary tem-
poral relations as shown in Fig. 4. A generalized relation,
known as n-ary relation, is a permutation among n inter-
vals, labeled 1 through n. The basis for the generalization is
that two consecutive intervals satisfy the same temporal
relation. The n–ary relations are used to build the video se-
mantics in the form of a hierarchy. For this purpose, simple
temporal events are first constructed from spatial events by
using the meets n-ary temporal operator. The operands of
this meets operator are the spatial event that is observed
from frame to frame. In other words, the “persistence” of a
specified spatial event over a sequence of frames is ob-
served. This persistence eventually maps into a time inter-
val corresponding to the duration of the persistence associ-
ated with the spatial event. The observed event is termed as
a simple temporal event. Identification of simple temporal
events requires evaluation of spatial and motion informa-
tion of objects, captured in the VSDG model [13].
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An example of a simple temporal event consisting of two
spatial events is “passing of a ball between two players.” This
event can be characterized by relating two similar spatial
events “holding of the ball by player u” and “holding of the ball
by player v” with certain delay. Using the temporal opera-
tors of Fig. 4, simple temporal events can then be combined
to build composite temporal events. “Double pass” is an exam-
ple of a composite temporal event that can be captured recur-
sively based on the simple temporal event. For specifying
this event, we can use the meet operator joining two simple
temporal events such as two single passes.

3.5.2.2  Algebraic Models. In this approach, temporal op-
erators are used in conjunction with set operations to build
formalisms that allow semantic modeling as well as editing
capabilities for video data. For example, the framework
discussed in [15] defines a set of algebraic operators to al-
low spatio-temporal modeling, as well as video editing ca-
pabilities. In this framework, temporal modeling is carried
out by the spatio-temporal operators used in the spatio-
temporal logic formalisms. These operators are imple-
mented through functions that map objects and their tra-
jectories into temporal events. Based on lisp-like operators
for extracting items and lists, several functions are used to
perform various video editing operations such as inserting
video clips, and extracting video clips and images from
other video clips.

Another algebraic video model based on hierarchical
abstraction of video expressions representing scenes and events
is presented in [43]. The model is used to provide index-
ing and content-based retrieval mechanisms. A video ex-
pression, in its simplest form, consists of a sequence of
frames representing a meaningful scene. Compound vid-
eo expressions are constructed from simpler ones through
algebraic operations that include creation, composition,
and description operators. Composition operators include
several temporal and set operations. The set operators are
used to generate complex video expressions, i.e., video
segments, according to some desired semantics and descrip-
tion. Content-based retrieval of data is managed through
annotating each video expression with field name and
value pairs, defined by the user.

Algebraic modeling approach has been extended to de-
velop oriented abstraction of video data [31]. A video object

in this approach is identical to a video expression in [43]
and corresponds to semantically meaningful scenes and
events. An object hierarchy is built using IS–A generaliza-
tions and is defined on instances of objects rather than
classes of objects. Such generalizations allow grouping of
semantically identical video segments. Inheritance in such
object hierarchy is based on interval inclusion, where some
attribute/value pairs of a video object A are inherited by
another video object B provided the raw video data of B is
contained in that of A. Set operators supporting composi-
tion operations such as interval projection, merge, and
overlap constructs, are used for editing video data and de-
fining new instances of video objects.

3.5.2.3  Hybrid Temporal Interval and Trajectory-Based
Models. Interval models described above have a major
shortcoming: They do not support user’s queries that
include trajectory and motion sketches. In several applica-
tions, the complexity of semantics can force users to sketch
the motion trajectories of objects to describe a scenario.
Furthermore, motion of several objects over a period of
time may constitute an event. A novel approach which
combines trajectory information of multiple objects over
time in terms of evolution of object motion is proposed in
[12]. The approach uses a Petri-net based representation of
binary temporal intervals of Fig. 4. A place in the Petri net
represents the detailed 2D trajectory information of an in-
dividual object. The overall structure of the Petri net pro-
vides a higher level temporal semantics involving multiple
object trajectories represented by its places. The hybrid ap-
proach provides a powerful formalism to describe events
based on multiple objects and their motion. The recursive
structure of Petri nets allow higher level semantic descrip-
tions. For such a purpose, a place in the Petri net can repre-
sent a subnet from the lower level Petri net. A place can also
describe events by textual annotation, rather than trajectory
of motion. This formalism provides a succinct representa-
tion and storage of domain knowledge associated with
video data. Fig. 6 shows an example scenario of a touchdown
event from a football clip (http://www.nfl.com). In this clip,
Player 4 makes a touchdown pass while the defense player
is blocked by Player 63. This involves Player 4 and Player 63
running to the right at the same time, followed by the ball
being passed assuming a parabolic trajectory, and finally the

Fig. 6. An example video clip scenario for a touchdown play: (a) “Player 63 moving to right,” represented by place P2, and “Player 4 moving to
right,” represented by place P1; (b) “ball passed,” represented by place P3; (c) “ball slammed (score),” represented by place P4.
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ball slammed on the ground. Fig. 7 shows the hierarchical
representation using the hybrid model.

3.6 Summary and Challenges
Table 3 summarizes the important characteristics of the
major video data modeling approaches surveyed in this
paper. It can be noticed that most approaches that use an
automatic mode of capturing video semantics cannot sup-
port high-level abstractions. This is due to the difficulty in
capturing concepts that are difficult to map into a set of
image and/or spatio-temporal features that can be auto-
matically extracted from video data without human inter-
vention. The use of the domain knowledge, such as the case
in [39], probably is the only way by which higher level se-
mantics can be incorporated into techniques that capture
the semantics through automatic parsing. Also it can be
observed from the table that the use of visual querying and
browsing of video data is an important feature that must be
provided as a part of the database. In particular, algebraic
and logical expressions describing spatio-temporal seman-
tics can pose difficulty in understanding and formulating
queries. The approach in [6] uses a visual query facility,

which provides an intuitive interface. In spatio-temporal
modeling of video data, some degree of imprecision is in-
trinsic. To manage such imprecision, [6] employs different
levels of precision in specifying spatial relationships among
objects, unlike [13], which only supports the most precise
and detailed representation.

The algebraic model presented in [15] has a limitation
in the sense that it puts the burden on the user to de-
fine semantic functions related to video objects. Further-
more, these functions must be defined in terms of object
trajectories. Two other algebraic approaches presented in
[31], [43] require interactive formulation of video seman-
tics by the user. These approaches provide flexibility in
identifying the desired semantics. At the same time, they
suffer from a shortcoming in terms of being unmanage-
able for naive users. Similarly, the high cost of human in-
teraction can make these approaches impractical for large
video databases.

In addition to the challenges we have listed for image
databases, there are several data modeling issues specific to
video data. In particular, semantic modeling of events,

Fig. 7. Hybrid representation of the example touchdown play.
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knowledge representation of spatio-temporal scenarios, and
query formulation are the key issues needing extensive re-
search. Temporal dimension of video data can introduce a
high degree of imprecision and fuzziness. An interesting
related problem is to classify domain-specific motion, and
temporal events which can be used for evaluating the data-
base performance [12].

4 MULTIMEDIA DOCUMENT MODELING

Another major issue that the database community needs to
address is the management of multimedia documents. We
believe, parallel to the explosive growth in computer and
networking technologies, document repositories will soon
become a reality and easy access to multimedia documents
will make it essential to formally develop meta schema and
indexing mechanisms for developing large scale multime-
dia document management systems.

An important issue for managing a large volume of
multimedia documents is efficient indexing techniques to
support querying of multimedia documents. Searching
information about a document can be multidimensional.
These include searching by spatio-temporal structures of
documents, their logical organization, or by contents. For
example, the query:

•� “Find documents that show a video clip of a basketball game, ac-
companied by textual information about other games’ results,”

requires searching documents by their spatio-temporal
structures. Similarly, the query:

•� “Find documents that describe the assembly process of the
transmission system of a car,”

requires searching document databases by content. On the
other hand, the query:

•� “Find all the other sections in this book that refers to the
Image of the Himalayas of Chapter 7,”

requires searching within a document based on its logi-
cal structure.

One of the major issues for multimedia document man-
agement systems is the integration of the data, that requires
both temporal and spatial synchronizations of monomedia
data to compose multimedia documents. In addition to this,
logical organization of document components is desired to
facilitate browsing and searching within and across docu-
ments. For managing documents, representation of compo-
sition and logical information in the form of a suitable meta
schema is essential for designing efficient search strategies.

A generic architecture that highlights the overall process
of document creation, management, and retrieval, is shown
in Fig. 8. Our focus here is on the second layer of this ar-
chitecture that deals with the composition and management
aspects of multimedia documents.

Temporal synchronization is the process of coordinat-
ing the real-time presentation of multimedia information

TABLE  3
SURVEY OF DIFFERENT VIDEO DATABASE MODELS
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and maintaining the time-ordered relations among com-
ponent media. It is the process of ensuring each data
element appears at the required time and is played out for
a certain time period. A familiar example is the voice an-
notated slide show, where slides and voice data are played
out concurrently.

Spatial composition describes the assembly process of
multimedia objects on a display device at certain points in
time. For text, graphics, image, and video, spatial composi-
tion includes overlay and mosaic, and requires processing
such as scaling and cropping. For audio data, spatial op-
erations include mixing of signals, gain, tone adjustment,
and selectively playing out various audio signals on mul-
tichannel outputs (stereo quad, etc.).

In the following sections, we elaborate on two main
aspects of document management; their spatio-temporal
composition requirements and their organization models.
Section 4.1 discusses the spatio-temporal modeling of
documents. The organizational model is described in
Section 4.2.

4.1 Composition Models for Multimedia Documents
In order to facilitate users to specify the spatio-temporal re-
quirements, at the time of authoring a document, a compo-
sition model is needed. Recently, various such models have
been proposed in the literature, which include language-
based models, time-interval based models, and oriented
models [1], [2], [18], [21], [23], [25], [32]. These models are
described briefly in the following subsections.

4.1.1 Language Based Models
In this approach, a scripting language is used to de-
scribe the spatio-temporal structure of multimedia docu-
ments. The leading example is the HyTime model that uses
SGML (Standard Generalized Markup Language). HyTime
has been recognized as an ISO standard for multimedia
document modeling in 1986 [1]. SGML has gained increas-
ing popularity recently through the fame of its child,
HTML, although it is a result of a decades-long effort.
SGML basically defines a framework to describe the logical
layout of the information in a structured format through a
user-defined markup language. Defining metastructures

involve location addressing of entities within data, query-
ing of the structure and content of documents and most
importantly, specification of measurement and scheduling
of data contents along spatial and/or temporal axes. This
last feature of the standard and the deserved popularity of
markup schemes in data representation makes HyTime the
ideal choice for multimedia document specification [1]. On
the other hand, the multimedia technology still lacks
“HyTime-aware” methodologies capable of creating and
analyzing HyTime documents from the database manage-
ment points of view.

A number of researchers have reported work involving
SGML/HyTime structures [21], [32]. They mainly concen-
trate on document modeling and integrating HyTime-based
information with databases. In their work, Özsu et al. de-
scribe a database application of SGML/HyTime documents
for news-on-demand applications [32]. The documents fol-
low a fixed logical structure and the document database is
restricted to a certain schema. The document units are
mapped into database objects in conformance with a prede-
fined type hierarchy. Their work emphasizes the impor-
tance of spatial and temporal analysis and indexing of
multimedia documents, but does not propose any approach
to address this issue.

In [21], an alternate approach to the problem of storage
and processing of structured documents within a DBMS
framework, is presented. Realizing the advantages of a
general purpose scheme, a document insertion mechanism
using super Document Type Descriptors that allow handling
of arbitrary documents in the database is presented [21].
Like the news-on-demand application in [32], the scheme
uses an oriented DB manager called VODAK. Spatio-
temporal indexing is explicitly referenced as an important
research problem, although no specific results have been
reported. However, content-based and general indexing is
briefly mentioned.

In summary, the HyTime standard is expected to play a
major role in leading the research activities in multimedia
document modeling. However, the management aspects of
HyTime-based documents in terms of searching and in-
dexing are open research issues.

4.1.2 Interval-Based Models for Multimedia Documents
Recently, the use of Petri nets for developing concep-
tual models and browsing semantics of multimedia objects
[18], [25] has been proposed. The basic idea in these
models is to represent various components of multimedia
objects as places and describe their inter-relations in
the form of transitions. These models have been shown to
be quite effective for specifying multimedia synchroni-
zation requirements and visualizing the composition struc-
ture of documents.

One such model is used to specify object level syn-
chronization requirements which is both a graphical and
mathematical modeling tool capable of representing tem-
poral concurrency of media. In this approach Timed Petri
Nets have been extended to develop a model that is known
as Object Composition Petri Nets (OCPNs) [25]. The par-
ticularly interesting features of this model are the ability

Fig. 8. A generic architecture for multimedia document management
system.
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to explicitly capture all the necessary temporal relations.
Each place in this Petri-net derivative represents the play-
out of a multimedia object while transitions represent
synchronization points.

Several variations to the OCPN model have been pro-
posed in the literature. One such variation deals with the
spatial composition aspects of multimedia documents. For
such composition, additional attributes are specified with
each media place in the OCPN. These include: the size and
location of the display area for different media within a
document, a priority vector that describes the relative or-
dering among changing background/foreground locations
of intersecting spaces for media display with time; an or-
dered list of unary operations, e.g., crop, scale, etc., applied
to the data associated with the place, and a textual descrip-
tion about the contents of the media place.

As mentioned, the HyTime model suffers from a draw-
back and that is the extraction of various spatio-temporal
and content semantics from this model can be quite cum-
bersome. On the other hand, the OCPN model not only
allows extraction of the desired semantics and generation of
a database schema, but also have the additional advantage
of pictorially illustrating synchronization aspects of the in-
formation. In this regard this model is quite unique and,
therefore, is also well suited for visual orchestration of
multimedia document.

4.2 Organization Models for Multimedia Documents
From organizational structure point of view, a multimedia
document can be viewed as a collection of related informa-
tion objects, such as books, chapters, sections, etc. The logi-
cal structure of objects can be maintained in the form of a
meta schema associated with each document. Meta infor-
mation about such organization can be used for searching
and accessing different parts of a document. Models for the
logical structure of multimedia documents can be inde-
pendent from the composition models. Such independence
can support different presentation styles for a document
that can be tailored to the target audience, as well as hard-
ware display constraints.

The well-known organizational modeling paradigm of doc-
uments is based on hypermedia. There are basically three types
of links used in a hypermedia environment. These include

•� the base structure links for defining the organization
of documents,

•� the associative links for connecting concepts and ac-
cessing the same information from different con-
texts, and

•� referential links that provide additional information
on a concept within a document.

The HyTime model provides an elegant mechanism for
the organizational structure of a document. Using SGML, a
document’s logical content is described by specifying the
significant elements in that document along with the at-
tributes associated with each such element, in a hierarchical
manner. For example, an SGML specification of a textual
report document may declare that it contains a title, an
author and a body. Each of these elements would in turn
have attributes specifying their structure.

The hypermedia-based multimedia document models
have several attractive features. For example, they allow ef-
ficient path searching mechanisms for accessing informa-
tion in various parts of the document [23]. Furthermore, they
allow the development of oriented abstractions of docu-
ments. For this purpose, the document components are rep-
resented in form of a set of nodes which are related to each
other through IS-A, IS-PART-OF, and AGGREGATE rela-
tionships. Associated with each node is a concept or a topic,
and the semantic relationships among nodes are based on
concepts. In other words, in this model, each node is an
information unit, and oriented abstractions between two
nodes can be represented using structural links.

Several hypermedia-based models of documents with
object-oriented abstractions have been proposed in the
literature [18], [21], [23], [32]. The model presented in [21],
in essence, is HyTime model, as discussed earlier. Its
hypermedia-based organization has been used to develop a
multilayered architecture, known as VODAK. The layers
consist of: a conceptual schemata level for accessing several
multimedia databases, a second level that supports a docu-
ment authoring environment by conceptualizing media
objects, and a third level for the presentation of documents.
The limitation in the design of VODAK system is that there
is no explicit mechanism of querying based on contents
associated with objects in a document.

Recently, the researchers in [23] proposed a hypermedia-
based document model that uses the object-oriented para-
digm. They describe a unique indexing scheme based on
the underlying multistructure information of a document to
optimize the indices and to provide efficient access to
document elements. The document data model can be im-
plemented using object-oriented technology. The model is
augmented with an object-oriented query language syntax.

4.3 Summary
There is growing interest in multimedia document model-
ing and developing standards for document authoring.
However, from database management point of view, very
few results have been reported in the literature. We expect
that the object-oriented technology can provide a powerful
paradigm to meet the requirements of multimedia compo-
sition and organizational modeling.

5 CONCLUSION

In this paper, we have highlighted major technical issues
and approaches in modeling and management of multime-
dia data, with emphasis on image, video and document
data. We have tried to emphasize the vital role played by
the image processing technology and knowledge represen-
tation in developing formalisms for multimedia data man-
agement. Overall, the approaches discussed in this paper
provide a panoramic view spanning a variety of issues be-
ing researched by the multimedia database community, and
give an idea of the scope and directions of future research
in this important and promising field of endeavor. As our
appreciation of underlying issues increases, and systems
are refined, we may look forward to an exciting and pro-
ductive age of multimedia databases and applications.
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