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Abstract— This paper presents the use of balanced multi-
wavelets for image fusion. The proposed image fusion scheme
incorporates the use of balanced multiwavelets transform, which
uses multiple wavelet and scaling functions for the first time.
‘Wavelet-based fusion techniques have been successfully applied
to combine perceptually important image features because the
sensitivities of the human visual system (HVS) can be efficiently
incorporated in the design of wavelets. Balanced multiwavelets
have attracted attention for their desirable properties since they
can simultaneously achieve symmetry, orthogonality, compact
support and approximation order higher than one. Hence,
filters with shorter length are used yielding lower computational
complexity than scalar wavelet.

I. INTRODUCTION

With the availability of multi-sensor data in many disparate
fields such as remote sensing, machine vision, robotics, med-
ical imaging, and military application, effective sensor/data
fusion has received much attention in the literature. In multi-
sensor image, each of the input images conveys important
information that cannot be discarded.

Image fusion can take place at the signal, pixel, feature,
transform, and symbol level. Fusion techniques range from the
simplest method of pixel averaging to more sophisticated and
state-of-the-art methods such as multiresolution- and neural
networks-based fusion. Initially, multi-sensor images must be
correctly aligned on a pixel-by-pixel basis [1] for an effective
and successful fusion.

Usually, more generic requirements are imposed on the
fusion outcome such that: All relevant information in the input
images must be preserved in the resulting image to satisfy the
“information-preserving” rule [2]. Any irrelevant details such
as noise should be discarded from the result. The human visual
system (HVS) is primarily sensitive to moving light stimuli.
Any artifacts or inconsistency that would distract the human
observer should be also suppressed. The fusion scheme, being
employed, should not introduce such artefacts.

In this paper, the fusion based on balanced multiwavelets is
introduced for the first time. The results clearly demonstrate
the advantages of this approach. The paper is organized as
follows: In section 2, we briefly review a generic multiresolu-
tion fusion scheme and then we will introduce and motivate
the use of balanced multiwavelets in image fusion. In section
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3, we introduce the stages of the proposed fusion algorithm.
Experimental results of the proposed method are shown in
section 4. Then, the proposed fusion is scheme is compared
to a similar one based on unbalanced multiwavalets. Finally,
conclusions are outlined in Section 5.

II. IMAGE FUSION: SCALAR WAVELETS AND
UNBALANCED MULTIWAVELETS

The basic idea of multiresolution-based fusion techniques
is motivated by the ability of the wavelet transform to take
into account the properties of the HVS functionality. Wavelet
decomposition allows the extraction of important image fea-
tures such as edges [3]. Edges and corners are examples of
local contrast changes to which the HVS is primary sensitive.
Based on this motivation, wavelet-based fusion performs the
combination of the important image features such as edges in
the source images. The fusion process will produce a fused
image that retains all the most salient features of the source
images.

A. Scalar Wavelet Fusion

A straightforward approach to image fusion is to compute
the average of the source images pixel-wise. Despite the
simplicity of this approach, the low contrast of the fused
image seriously limits its use. To circumvent this limitation,
multiresolution-based approaches are proposed for image fu-
sion. The basic idea of all wavelet-based fusions schemes is
to combine all respective wavelet coefficients from the input
images. The combination is performed according to a specific
fusion rule [1]. The wavelet decomposition of each source
image f;(m,n) is performed leading to a multiresolution
representation. The actual fusion process is performed as
a combination of the corresponding wavelet decomposition
coefficients of all input images, to build a single wavelet
decomposition image. This combination takes place on all
decomposition levels & (k = 1,2,...,L) where L is the
maximum wavelet decomposition level. Two different fusion
rules are applied to combine the most important features
of the input images. A basic fusion rule is applied to the
Lth-level approximation subbands. The three detail subbands
(horizontal, vertical, and diagonal) are combined using a more
sophisticated fusion algorithm as explained in Section 3. The
procedure for merging two source images using scalar wavelet
decomposition is illustrated in Figure 1.

Typical multiresolution decompositions include pyramid
transforms such as the Laplacian pyramid, gradient pyramid,
ratio of lowpass pyramid, and discrete scalar wavelet transform
[3]. Burt [4] first proposed a multiscale approach for binocular
fusion in human stereo vision. The proposed implementation



is based on Laplacian pyramid and “maximum” selection rule.
Similar schemes, based on the wavelet transform and using
different combination rules, have been proposed [5].

| Fusion

Figure 1: Image fusion process using scalar wavelet decomposition.

B. Unbalanced Multiwavelets Wavelet Fusion

Multiwavelets are very similar to scalar wavelets but have
some important differences. In contrast to scalar wavelets,
which are described in the context of multiresolution anal-
ysis with a unique scaling function and a wavelet function,
multiwavelets may have two or more scaling (and wavelet)
functions. Goodman and Lee [6] are among the earliest to
develop a multiresolution theory of multiwavelets. In his PhD
work, Strela [7] further extends the theory of multiwavelets.
He successfully presented it in terms of perfect reconstruction
multifilter banks in both time and frequency domains. In the
case of multiwavelets, the set of scaling functions can be writ-
ten using the vector notation ®(t) = [y (£) ¢ (t) - - - &y (8)]T
where ®(t) is called the multiscaling function. Likewise,
the multiwavelet function is defined from the set of wavelet
functions as W(t) = [vy (£) 2 (t) -, (8)]7. The scalar
wavelet case is represented by r = 1. The values taken by
the parameter r can be arbitrarily large; we will restrict r to 2
in this paper. The multiwavelet two-scale equations are similar
to those of wavelets [7]:

() =V2 Y Hp®(2t —k) (1)
k=—oc0
U(t) =2 i Gr®(2t — k) 2)

It is worth noting that ff[ k?oand {G}} are matrix filters, i.e.,
Hj, and G are r x r matrices for each integer k. In contrast
to the case of wavelets, the input and output of every branch
in the multifilter bank is a vector. Figure 2 illustrates a single
analysis/synthesis stage of multiwavelet processing. Each filter
block in Figure 2 is really a 2-input/2-output system.
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Figure 2: Analysis/synthesis stage of a single-level biorthogonal multiwavelet
processing.

Many motivations lie behind the emergence of multi-
wavelets in signal and image processing applications. First,
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the extra degrees of freedom inherent in multiwavelets can be
used to reduce restrictions on the filter properties. For example,
it is well known that a scalar wavelet cannot simultaneously
have both orthogonality and a symmetric impulse response
that has length greater than 2. Symmetric filters are necessary
for symmetric signal extension, while orthogonality makes the
transform easier to design and implement. Following these
motivations, Wang et al. [8] propose a scheme for pixel-level
fusion using discrete multiwavelet transform. Multiwavelet
decomposition is quite different from that based on scalar
wavelets as shown in Figure 3.

LiLo | LoHy | LiHa

Lyl | LoH; | LiH;

HiLo | HoHo | HeHy

HoLg | HoH, | HyH,

Figure 3: Single-level decomposition of Lena image using GHM mulitwavelet
transform.

Figure 3 shows a single-level decomposition of Lena im-
age using discrete Geronimo-Hardin-Massopust (GHM) multi-
wavelet transform. Unlike scalar wavelets, each decomposition
level consists of 16 subbands. For instance, the lowpass
subband consists of four blocks as illustrated in the right side
of Figure 3. These local subbands, characterized by different
spectral properties, make L-level decomposition using discrete
multiwavelet look like L+1-level decomposition using discrete
scalar wavelet [10].

In [8], the four blocks of the lowpass subbands are combined
using the same fusion rule. It is clear that this approach does
not take into account the spectral dissimilarity of these blocks.
On the other hand, the detail subbands (horizontal, vertical,
and diagonal) consist of blocks having similar spectral content.
Hence, a shuffling procedure [11] can be applied on the blocks
of the three detail subbands. Figure 4 confirms that shuffling
cannot be applied to the blocks of the lowpass subband. In the
next section, we propose the use of balanced multiwavelets
[10] for improved image fusion. These latter yield subbands
having blocks with similar spectral content. Thus, shuffling
can applied equally.

Figure 4: Lowpass subband of Lena image (left). Blocks’ spectral content
(center). Lowpass subband after shuffling (right).

III. IMAGE FUSION USING BALANCED MULTIWAVELETS

In general, for multiwavelets, the preservation property
does not automatically follow from the vanishing moments
property. But, for the balanced multiwavelet filter banks, both
the preservation and annihilation properties hold. The balanced



multiwavelets do not require a pre-processing stage (other than
polyphase vectorization) for the input. If the lowpass/highpass
branches of the filter bank preserve/annihilate polynomials of
order less than p where p < K, then the balancing order for
the multiwavelet is p. A balancing order of p implies at least
p vanishing moments; it also implies that (Oth, 18t ond
(p — 1)*") order polynomials are eigensignals of the lowpass
branch band-Toeplitz matrix [10].

Figure 5 shows Figure 5 shows the lowpass and highpass
branch outputs of a balanced multiwavelet filter bank (BAT-
2 family [10]) for first order (ramp) input. It is clear that
the input signal is preserved at the lowpass output while
it is annihilated by the highpass branch. Symmetric signal
extension contributes to the smoothness of the boundary points
of the lowpass and highpass signals.

v - w L] = [ * - = =

Figure 5: Decomposition using a second-order balanced multiwavelet of a
ramp signal. Input signal (dotted blue) and branch output (solid red).

Selesnick [12], Lebrun and Vetterli [10] propose various
constructions of balanced multiwavelet families. A balanced
version of GHM multiwavelets is presented in [13]. During our
work, we tested most of the proposed balanced multiwavelets.
Most of them yielded similar performance for the image fusion
problem. Balanced multiwavelets can be implemented using
time-varying filter banks [10]. This implementation produces
a signal representation identical to that obtained using scalar
wavelets. Figure 6 shows the adopted implementation.

)

Figure 6: The time-varying balanced orthogonal multiwavelet filter bank.
Analysis section (left). Synthesis section (right).

Like scalar wavelets, 2D balanced transform is separable.
Hence, it can be defined as the tensor product of two 1D
transforms. Figure 7 shows a single-level decomposition of
Lena image using balanced multiwavelet transform (Bat-1 [10]
multifilters). As expected, the blocks of the lowpass subband
have similar spectral content.

As expected, shuffling can be safely applied to the blocks of
the lowpass subband to yield a single-block lowpass subband
similar to that obtained using scalar wavelets! (see Figure

1 The shuffling process contributes to use exactly the same fusion procedure
as that used with scalar wavelets.
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Figure 7: Single-level decomposition of Lena image using balanced BAT-
1 mulitwavelet transform (left). Lowpass spectral content (center). Lowpass
subband after shuffling (right).

7). Thus, balanced multiwavelets can now be compared to
scalar wavelets on equal footing in practical image fusion
applications.

Please note that we assume that the source images are
“perfectly” registered since they are be obtained from different
sensors having different resolutions. In the proposed fusion
scheme, we apply the discrete balanced multiwavelet transform
to each source image to create fused images that retain the
most important features pertaining to all the source images.
The captured features will then be exploited for human visual
perception, object detection and target recognition. Except for
the lowpass subband, all other subbands contain transform
values that fluctuate around zero [8]. While the lowpass
subband is an approximation of the input image, the three
detail subbands convey information about the detail parts in
horizontal, vertical and diagonal directions. Different merg-
ing procedures will be applied to approximation and detail
subbands. Lowpass subbands will be merged using simple
averaging operations since they both contain approximations
of the source images. A selection procedure will be applied
to the multiwavelet coefficients of the three detail subbands.
The implemented selection allows for picking up the most
salient features in these subbands for each source image.
Figure 8 shows an image fusion scheme based on balanced
multiwavelet decomposition as proposed in this paper. It is
worth noting that Figure 8 shows a single-level balanced mul-
tiwavelet decompostion for illustration purposes. In practical
situations, we usually use three-level decomposition.

Lowpass subbands:
Fusion Rule I

Details subbands:
= Fusion Rule IT

Figure 8: Proposed fusion scheme using balanced multiwavelets.

To provide a measure for image saliency, all transform co-
efficients in the detail subbands will be convolved with feature



extracting operators P, P and Pg, respectively [8]. Py, Po
and P3 are designed to extract the edge information in the
horizontal, vertical and diagonal detail subbands, respectively.
They are defined as follows [8]:

-1 -1 -1 -1 2 -1
Pi=| 2 2 2| Py=|-12 -1
-1 -1 -1 | -1 2 -1
~1 0 —1]
P;=| 04 0 3)
-1 0 -1 |

IV. SIMULATION AND EXPERIMENTAL RESULTS

Performance analysis of the proposed algorithm is summa-
rized in this section. The set of test images consists of several
pairs of natural images. The first two image pairs were taken
using a Sony digital still camera MVC-FD72. Figure 9 shows
two pairs of test images with opposite side focus.

Figure 9: Test images with left focus (left column) and right focus (right
column).

To compare fusion effects, several other methods were
used to fuse the source images. The fused images using the
proposed method are shown in Figure 10. Table I shows
a summary of the performance of many fusion schemes to
fuse the second pair of images shown in Figure 9 (second
row). A subjective fusion quality measure can be provided by
comparing the original image® with the fused image. For such
comparisons, we will use the universal image quality index
provided by Wang and Bovic [14]. An index value closer to 1
indicates better perceptual quality of the fused image. Figure
10 and Table I clearly demonstrate that the proposed fusion
algorithm provides fused images with the best visual quality.

V. CONCLUSION

In this paper, it is demonstrated how the performance of
multiresolution-based image fusion can be increased signifi-
cantly through the use of balanced multiwavelets. Balancing

2The authors would like to thank Prof. Rick Blum, ECE Department,
Lehigh University, for kindly providing these two image pairs.

3The original image is produced using a simple cut-and-paste technique,
taking physically the ”in focus” areas of each source image.
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Figure 10: Fused images using proposed algorithm.

I Fusion Algorithm [ Universal Quality Index ||

Simple Averaging 0.7952
Principal Component Analysis 0.7962
Maximum Selection 0.7439
Minimum Selection 0.7497
Laplacian Pyramid 0.8259
Gradient Pyramid 0.7718
DWT (Daubechies Basis) 0.8178
Shift-Invariant DWT (Haar Basis) 0.8433
Unbalanced multiwavelet (GHM [8]) | 0.7971
Balanced multiwavelets (Bat-1 [10]) 0.8651

Table I: Performance of several fusion algorithms: Fusion quality.

is essential to multiwavelet transform. Balanced multiwavelets
have smoother basis functions allowing better quality for
image fusion. The improved performance of the novel image
fusion scheme is demonstrated using experimental images. The
proposed scheme is compared to other fusion algorithms where
results clearly indicate the superior performance of the former
in terms of fused image quality using universal quality index.
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