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Abstract 

In ultrasonic nondestructive testing (NDT) of materials, pulse-echo measurements are masked by the characteristics of the 
measuring instruments, the propagation paths taken by the ultrasonic pulses, and noise. This measured pulse-echo signal is 
modeled by the convolution of the defect impulse response and the measurement system response, added to noise. The 
deconvolution operation, therefore, seeks to undo the effect of the convolution and extract the defect impulse response which is 
essential for defect identification. In this contribution, we show that the defect ultrasonic model can be formulated in the higher- 
order-spectra (HOS) domain in which the processing is more suitable to unravel the effect of the measurement system and the 
additive Gaussian noise. In addition, a new technique is developed to faithfully recover the impulse response signal from its HOS. 
Synthesized ultrasonic signals as well as real signals obtained from artificial defects are used to show that the proposed technique 
is superior to conventional second-order statistics-based deconvolution techniques commonly used in NDT. 0 1997 Elsevier 
Science B.V. 
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1. Introduction 

Pulse-echo signals measured in ultrasonic NDT 
include the effect of the measuring systems, the propaga- 
tion paths taken by the ultrasonic waves, and are 
corrupted by additive noise. For instance, the ultrasonic 
signals for a particular reflector recorded under the same 
conditions, but using different transducers can be quite 
different. This leads to the difficulty of comparing and 
analyzing signals, particularly in automated defect 
identification systems employing different transducers. 
Generally, it is assumed that the measured pulse-echo 
is obtained by linearly convolving the defect impulse 
response with the measured system response. 
Deconvolution operation therefore seeks to undo the 
effect of the convolution and extract the defect impulse 
response which is an essential step for the identification 
and characterization of defects. Conventional deconvo- 
lution techniques such as least square, Wiener filter and 
minimum variance deconvolution [I] are based on prior 
knowledge of second-order statistics (SOS) of the noise 
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and the input signal. In practice, however, ultrasonic 
pulse-echo signals are found to be nonminimum phase 
systems and the acoustic noise due to scattering from 
the grains inside the propagation medium does not have 
a readily known statistic [2]. SOS-based deconvolution 
techniques, being phase-blind, cannot therefore accu- 
rately estimate the defect impulse response. 

An important criterion for the deconvolution of non- 
minimum phase systems with non-Gaussian noise statis- 
tics is the inclusion of the additional information 
contained in the higher-order statistics of the signals. 
The objective of this paper is to formulate the defect 
ultrasonic model in the polyspectra domain in which 
the processing is more suitable to unravel the effect of 
the measurement system and the additive Gaussian 
noise. In addition, a new technique is developed to 
faithfully recover the impulse response signal from its 
polyspectrum. Synthesized as well as real data obtained 
from artificial defects are used in this paper. Comparison 
of the impulse response obtained from the proposed 
HOS-based deconvolution technique and that obtained 
from its counterpart conventional SOS-based deconvo- 
lution technique demonstrates clearly the superiority of 
the former (proposed) over the later technique. In the 
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next section, we present the SOS-based deconvolution 
scheme, and in Section 3 how this scheme can be 
extended to higher-order statistics. In Section 4 we 
develop a new scheme to recover the signal from its 
bispectrum. Simulation results are presented in Section 5 
where it is demonstrated that the HOS-based deconvolu- 
tion technique is a good candidate to unravel the effects 
of the measurement system and that the resulting 
impulse response, being highly accurate, can be used 
efficiently in any automated defect identifier. 

2. Background 

A measured ultrasonic flaw signal, y(t), can be mod- 
eled as the convolution of the measurement system 
impulse response function, x(t), with the flaw’s impulse 
response function, h(t), plus noise, N(t). The model can 
be written as 

y(t)=x(t)Oh(t)+N(t), (1) 

where @ denotes the convolution operation. With this 
model, a defect of a particular geometry would be 
completely characterized by its impulse response. 
Estimation of h(t) in Eq. (l), given the measured flaw 
signal and the measurement system impulse response is 
variously known as system identification, filtering, or 
simply as deconvolution. Many deconvolution tech- 
niques have been developed in different engineering 
areas ranging from seismic exploration to medical 
imaging. Chen et al. [I] have studied the feasible applica- 
tion of conventional deconvolution techniques to ultra- 
sonic NDT, and concluded that the Wiener filter is a 
good candidate for such a purpose. 

2.1. Wienerjiltering 

A least-square error estimate of h(t) from Eq. ( 1) via 
the frequency domain is given by [3] 

k(w) = 
Y(w). x*(w) 

Mw)12 +uw%(d 
(2) 

where X(w), Y(w) and h(w) are the Fourier transforms 
of x(t), y(t) and 6(t), respectively, whereas S,(w) and 
S,(w) are the power spectral densities of N(t) and h(t), 
respectively. It can be seen from Eq. (2) that the applica- 
tion of ‘optimal’ Wiener filter requires estimates of the 
parameters (mean and variance) which describe the noise 
and scattering amplitude distribution of the defect, 
respectively. In practice, estimating the parameters 
which describe the scattering amplitude distribution of 
the defect is possible only in rare instances. Conversely, 
reliable estimates of the noise distribution parameters 
are generally not known. A ‘near-optimal’ implementa- 

tion of Wiener filter can be achieved by replacing the 
ratio of the spectral densities in Eq. (2) by a positive 
value q commonly defined by 

q=O.Ol]X(M’)];ax. (3) 

This constant is sometimes known as the ‘noise- 
desensitizing factor’. However, in moderate to low 
signal-to-noise ratio (SNR) applications, it is clearly 
unacceptable to achieve the deconvolution via the 
Wiener filter with the desensitization term taken to be 
a frequency independent constant which is insensitive 
to the noise level. Neal et al. [4] have shown that an 
optimal filter can be achieved that utilizes prior noise 
information only, with no prior information about the 
flaw distribution. In practice, however, it is found that 
ultrasonic pulse-echo signals are nonminimum phase 
systems, and that the acoustic noise due to scattering 
from the grains inside the material is not necessarily 
Gaussian. Thus, optimal implementation (even if pos- 
sible) of the Wiener filter does not necessarily garantee 
accurate estimation of the defect impulse response. This 
drawback is alleviated when higher-order statistics-based 
deconvolution (via cumulants) of the pulse-echo are 
used. 

3. Higher-order statistics and spectra 

In this section, we first introduce the definitions, and 
the properties of higher-order statistics, i.e. moments 
and cumulants, and their corresponding higher-order 
spectra. Emphasis is placed on the second-, third- and 
fourth-order statistics and their respective Fourier trans- 
forms: power spectrum, bispectrum and trispectrum. 

If {X(k)}, k=O, _tl, f2, +3,... is a real stationary 
discrete-time signal and its moments up to order n exist, 
then 

m,“(zi, z2,..., ~,)=E{X(k)X(k+~,)X(k+z,)...X(k+z,)}, 

(4) 

represents the nth-order moment function of the signal, 
and E{.} denotes statistical expectation. Clearly, the 
second-order moment function, mf(rr), is the autocorre- 
lation of {X(k)}. 

The nth-order cumulant function of a non-Gaussian 
stationary random signal X(k) can be written as (for 
n=3, 4 only): 

@r,, r2,..., r,-,)=mZr,, t2>..., q-1) 

-m.G(z,, z2>..., q-1), (5) 

where mp(z,, z2,..., z,_ i) is the &h-order moment func- 
tion of an equivalent Gaussian signal that has the same 
mean value and autocorrelation sequence as X(k). 
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Clearly, the nth-order (n >2) cumulant of a Gaussian 
process is zero. 

Higher-order spectra are the multi-dimensional 
Fourier transforms of higher-order statistics. Thus, the 
power spectrum, bispectrum and trispectrum are the 
one-, two- and three-dimensional Fourier transforms of 
the cumulants of order 2, 3 and 4, respectively. For 
instance, the bispectrum of the signal X(k) is defined as 

xex~H(w~ +wA (6) 

whereas the trispectrum is defined as 

Ci(w,, w2, W3)’ +c” ‘c” Y c;(z,, 72rLd 
1,=-m r2=-m T3=-cc 

xex~[-i(w~~~ + w272 + ~~4, (7) 

Cumulant spectra are more useful in the processing 
of random signals than are moment spectra because 

cumulant spectra of order n > 2 are zero if the signal 
is Gaussian, and thus nonzero cumulants spectra 
provide a measure of extent of non-Gaussianity; 
the cumulants of (higher-order) white noise are multi- 
dimentional impulse functions, and the polyspectra 
of this noise are multidimensionally flat; 
the cumulant of the sum of two statistically indepen- 
dent random processes is equal to the sum of the 
cumulants of the individual random processes, 
whereas the same is not true for higher-order 
moments; 
the bispectrum of a symmetrically distributed random 
process is zero. 

Using the HOS properties Nikias et al. [3], Eq. (1) 
_~~~ 

can be written in HOS domain as 

9(w,, wz,..., wn-,)=CXw,, wz,...,w.-,W(w,) 

xH(w,)...H*(w,+w,+...+w,_,) 

+C(w,, WZ,...,W,-I), (8) 

where H(w) is the Fourier transform of the defect 
impulse response h(t). In a similar fashion, Eq. (8) can 
be expressed as 

c3;(w,, WZ,..., w,-,)=CXw,, WZ,..., w,-1) 

x C!Xw,, w2,..., w,-1) 

+C:(w,, WZ,..., w,-i), (9) 

where c(w,, w2,..., w,-i) is the polyspectrum of h(t). 
In view of the attractive properties of higher-order 
spectra, the computation complexity of the polyspectra 
as the order is increased, and the simplicity to formulate 
the ultrasonic defect model, only the bispectrum is used 
in this work. Eq. (1) is rewritten in terms of the bi- 

spectrum as 

C%Wlr w,)= c;(w*, W2)c”,(Wl,~,). (10) 

It is clear from Eq. (10) that the noise does not have to 
be Gaussian to be filtered out, but it can have any 
symmetrical probability density function (PDF) (such 
as Laplace, uniform, Bernouli-Gaussian distributions). 
Thereafter, the noise-free bispectrum of the defect 
impulse response is used to recover h(t) using a new 
recovery method that will be described in the next 
section. 

4. Signal recovery from its bispectrum 

We have seen in the previous section that the bis- 
pectrum of the defect impulse response can easily be 
computed from Eq. (10). Any additive white noise with 
a symmetrical PDF is automatically filtered out, and 
the objective therefore, is to recover the signal from its 
bispectrum. This operation is not a one-to-one trans- 
formation, but it requires considerable efforts [5-71 and 
a prior phase information (usually not available) to 
achieve this goal. Moreover, the recovered signal is 
contaminated with an estimation error that can have, in 
some cases, a high variance. We have developed in this 
paper a simple but accurate technique capable of recov- 
ering the signal from its bispectrum by using the relation- 
ship between the bicepstra and the bispectra defined by 
Pan and Nikias [8] as 

rn,b~(m,,m,)=F~’ 
F2bI .4(%,~2)1 1 F2[&7,>~2)1 ’ 

(11) 

where F; 1 [ . ] denotes the two-dimensional inverse 
Fourier transform, b:(. ) is the third-order cepstrum (or 
bi-cepstrum) of the impulse response h(t), and m, is the 
variable along axis 1 in the bicepstrum domain. Using 
the properties of the Fourier transform, Eq. ( 11) can be 
written as 

m,b:(m,, m,)=F;’ 

where a/i?w, ( .) is the partial derivative with respect to 

w19 and j=fl. 
Eq. (12) is the basis of the recovery technique. First, 

it shows an alternative relationship between the bicep- 
strum and the bispectrum using the derivative of the 
logarithm rather than the logarithm relation tradition- 
ally used. Second, it does not require any phase unwrap- 
ping required by the logarithmic relation. This enables 
the recovery method to be highly accurate when com- 
pared to other recovery techniques [5-71. For linear 
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systems, it is known that the bicepstrum is completely 
defined along the three lines given by m, =O, m2=0, 
and m,=m, as 

i 

a, m,=O,m,=O, 

-A("'Z'/m2, m,=O,m,>O, 

-A("'~)/ml, m,>O,m,=O, 

~!3ml,mJ= 
Bc-"'l)/ml, m,<O,m,=O, 

-LFmz'/m2, m,=O,m,<O, 
(13) 

. 

-A("'z'/m,, m,=m,>O, 

LFm2'lm2, m,=m,cO, 

0, otherwise. 

and a simple procedure for the computation of the 
impulse response h(t) using the bicepstral parameters 
A("') and B(*) [9] can be used. The proposed algorithm 
used to extract the defect impulse response, h(t), from 
the knowledge of x(t), y(t) using the proposed HOS- 
based deconvolution method is as follows: 

(1) 

(2) 

(3) 

(4) 
(5) 

Given the system response, x(t), and the defect 
echo, y(t), calculate their bispectrum. 
For an additive white noise with a symmetrically 
distributed PDF, obtain the bispectrum of the defect 
from Eq. (10). 
Calculate the bicepstrum of the defect using 
Eq. (12). 
Obtain the bicepstral parameters from Eq. ( 13). 
Use the Oppenheim and Schafer algorithm [9] to 
compute h(t) from the knowledge of the bicepstral 
parameters. 

5. Simulation and results 

In this section, we first use synthesized data generated 
using the model shown in Fig. 1 to test and compare 
the proposed deconvolution technique with the Wiener 
filter. Thereafter, real ultrasonic data obtained from 
artificial defects is used. 

The input signal, x(t), is taken as a Gaussian pulse 
that is amplitude modulating a single tone carrier whose 
frequency lies in the ultrasonic range. The noise, n(t), 
having a normally distributed PDF, is scaled by a factor 
to account for the different SNR used. The impulse 
response, h(t), is modeled by the following system which 
is known to have a pronounced maximum phase part, 
and having a transfer function given by [3] 

H(z)=0.2197z-0.747+0.6085z-1+0.1533z-2. 

Estimation of the impulse response h(t) from the knowl- 
edge of the (x(t), y(t)) pair only is carried out using 
Wiener filter and our proposed technique. Fig. 2 shows 

u: 

N(t) 

Fig. 1. Ultrasonic defect model. 

this estimated impulse response at a SNR of 40 dB. For 
comparison, the true impulse response is also displayed. 
For such a high SNR, the Wiener filter is estimating an 
acceptable impulse response as expected. However, for 
lower SNR, this estimated impulse response deviates 
considerably from the true one, while the bispectrum- 
based method produces a highly accurate estimate. Fig. 3 
illustrates this result for a SNR of 10 dB. 

Next, the performance of the proposed technique is 
tested at different SNR. An estimation error variance is 
computed to quantify this performance. Fig. 4 shows 
the variation of this estimation error variance with SNR. 
As expected, the HOS-based deconvolution technique 
produces accurate estimate of the impulse response even 
at extremely low SNR. For comparison, the performance 
of the Wiener filter is also included, where it can be 
seen that the proposed technique outperforms its 
counterpart SOS-based deconvolution technique. For 
instance, the performance of the proposed technique at 
- 5 dB SNR is equivalent to the performance of Wiener 
filter when the SNR is more than 70 dB. This can be 
attributed to the inherent high-frequency oscillations in 
the impulse response estimated [l] using SOS-based 
deconvolution techniques. This oscillation is also seen 
in the estimated impulse response using Wiener filter 
which is shown in Figs. 2 and 3, while the HOS-based 
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Fig. 2. Impulse response computed using SOS- and HOS-based decon- 
volution with SNR =40 dB. 
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Fig. 3. Impulse response computed using SOS- and HOS-based decon- 
volution. with SNR = 10 dB. 
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Fig. 4. The variance of the estimation error versus SNR. 

deconvolution, being highly accurate even at extremely 
low SNR, produces oscillation-free impulse response. 

The proposed deconvolution technique is tested using 
real data [lo], which are part of a larger data set 
obtained from the Army’s Material Technology labora- 
tory (Watertown, MA). The ultrasonic signals used are 
shown in Fig. 5, namely T15A0, T15Al and T15A2. 
T15AO is the measurement system impulse response, 
also known as the reference signal, while T15Al and 
T15A2 are, respectively, the pulse-echoes from a flat- 
cut hole (Al) and an angular-cut hole (A2) with equal 
diameters of 32 mm (see Ref. [lo] for an illustration of 
these defect geometries). The center frequency of the 
transducer used is 15 MHz, and the A-scan signals 
contain 512 data points digitized at a rate of 100 MHz. 
The impulse responses of these artificial defects 
estimated using the HOS-based deconvolution technique 
are shown in Figs. 6 and 7. As expected from the 
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Fig. 5. Real ultrasonic signals used. (a) Flawless sample signal T15AO; 
(b) flat-cut hole signal T15Al; (c) angular-cut hole signal T15A2. 

simulation results, these impulse responses are oscilla- 
tion-free. In addition, as the ultrasonic signals used have 
a high SNR, the resulting defect impulse responses 
should be very close to the ‘true’ ones. 
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Fig. 6. Impulse response of defect Al (flat-cut hole) obtained using 

HOS-based deconvolution. 
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Fig. 7. Impulse response of defect A2 (angular-cut hole) obtained using 

HOS-based deconvolution. 

6. Conclusion and discussions 

The defect ultrasonic model described by a convolu- 
tional operation is adopted in many NDT problems. 
Extraction of a signal that is insensitive to the noise and 
the measurement system, but dependent on the defect 
type only, is the ultimate goal and the challenge for 
today’s NDT scientific and engineering communities. As 
ultrasonic pulse-echoes are found to be nonminimum 
phase systems, and that the acoustic noise due to 
scattering from the grains inside the propagation media 
is not necessarily Gaussian, SOS-based deconvolution 
techniques cannot therefore accurately estimate the 
defect impulse response, as they are phase blind. 

In this contribution, we have formulated the defect 
ultrasonic model in the higher-order spectrum domain 
in which the processing is more suitable to easily filter 

out any additive noise with a symmetrically distributed 
PDF. Recovering the defect impulse response signal 
from its bispectrum is not a one-to-one operation, but 
it requires considerable efforts and a prior phase infor- 
mation to achieve this goal. In addition, the recovered 
signals using existing techniques are usually contami- 
nated by high variance estimation errors. We have 
developed in this work a simple but accurate recovery 
technique that does not require any phase unwrapping, 
or any prior information to be used. Simulation results 
using synthesized data demonstrate that the proposed 
deconvolution technique is a good candidate that is 
capable of faithfully recovering the defect impulse 
response from signals with extremely low SNR. Real 
ultrasonic signals are used to extract impulse responses 
of artificial defects, which are tested and found to be 
nonminimum phase systems. Moreover, it can be noticed 
that unlike the SOS-based deconvolution techniques [l] 
which produce high frequency oscillations in the defect 
impulse response, the proposed technique, being highly 
accurate even at extremely low SNR, has yielded 
oscillation-free defect impulse responses. Future work 
will focus on the use of this HOS-based deconvolution 
technique on real defect signals using different 
transducers. 

Acknowledgement 

This work is supported in part through research grant 
provided by SABIC under the grant EE/SABIC/96-8. 
The authors would like to express their thanks to 
Professor C.H. Chen of the University of Massachusetts 
for his valuable help and comments. 

References 

[I] C.H. Chen, S.K. Sin, High resolution deconvolution techniques 

and their applications in ultrasonic NDE, International Journal of 

Image Systems and Techniques I (1989) 223. 

[2] S.P. Neal, K.D. Donohue, Testing for non Gaussian fluctuations 

in grain noise, QNDE I5 (1996) I, 

[3] C.L. Nikias, A.P. Petropulu, Higher-Order Spectra Analysis: A 

Nonlinear Signal Processing Framework, Prentice Hall, Englewood 

Cliffs, NJ, 1993. 
[4] S.P. Neal, P.L. Speckman, M.A. Enright, Flaw signature estima- 

tion in ultrasonic nondestructive evaluation using Wiener filter with 

limited prior information, IEEE Transactions on Ultrasonic 

Ferroelectrics and Frequency Control 40 (4) (1993) 347. 

[5] T. Matsuoka, T.J. Ulrych, Phase estimation using the bispectrum. 

IEEE Proceedings 72 (IO) (1984) 1403. 

[6] H. Bartelt, A.W. Lohmann, B. Wirnitzer, Phase and amplitude 

recovery from bispectrum, Applied Optics 23 (18) (1984) 3121. 

[7] D.R. Brillinger, M. Rosenblatt, Asymptotic theory of &h-order 
spectra, in: B. Harris (Ed.), Spectral Analysis of Time Series, Wiley, 

New York, 1967, Chapter 3, p. 153. 



A. Yamani et al. 1 Ultrasonics 35 (1997) 525-531 531 

[S] R. Pan, C.L. Nikias, The complex spectrum of higher-order 
cumulants and non minimum phase system identification, IEEE 
Transactions on ASSP 36 (2) (1988) 185. 

[9J A.V. Oppenheim, R.W. Schafer, Discrete-time Signal Processing, 
Prentice Hall, Englewood Cliffs, NJ, 1989. 

[IO] C.H. Chen, High resolution deconvolution techniques and their 
applications in ultrasonic NDE, International Journal of Imaging 
Systems and Techniques 1 ( 1989) 223. 


