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Abstract— Driven by the recent advances in digital entertain-
ment technologies, digital multimedia content (such as music
and movies) is becoming a major part of the average com-
puter user experience. Through daily interaction with digital
multimedia content, large digital collections of music, audio and
sound effects have emerged. Furthermore, these collections are
produced/consumed by different groups of users such as the
entertainment, music, movie and animation industries. Therefore,
the need for identification and management of such content grows
proportionally to the increasing widespread availability of such
media virtually ”any time and any where” over the Internet. In
this paper, we propose a novel algorithm for robust perceptual
hashing of musical content using balanced multiwavelets (BMW).
The procedure for generating robust perceptual hash values
(or fingerprints) is described in details. The generated hash
values are used for identifying, searching, and retrieving musical
content from large musical databases. Furthermore, we illustrate,
through extensive computer simulation, the robustness of the
proposed framework to efficiently represent audio content and
withstand several signal processing attacks and manipulations.

I. INTRODUCTION

This paper describes the details of a novel framework for
robust perceptual hashing of audio content. Perceptual hashing,
unlike conventional hashing used in cryptography, represents
a unique binary string or code that uniquely identifies a
segment of audio content (such as music) similar to personal
fingerprints used to identify human beings. Several applica-
tions can be foreseen for audio hashing such as: 1) content
identification; 2) broadcast monitoring; 3) connected audio;
4) filtering technology for peer-to-peer (P2P) networks; 5)
automatic music library organization. The proposed framework
for robust perceptual hashing consists of two sub-systems: The
first system generates of extracts the hash values from the
audio content, while the second sub-system applies an efficient
search scheme to identify the extracted hash value from an
existing multimedia database that represents the stored content
by their extracted hash values. Therefore, instead of using the
audio content in the search/identification/retrieval operations,
we will base these operations on the extracted hash values
which allow for efficient database queries. In the proposed
solution, hash values are extracted using an algorithm that
generates bit sequences of 32 bits length for every 11.72
ms of audio content. Then, the hash representations of 256
different audio sequences are combined to uniquely represent
every 3 sec of audio content. Such a representation contains
enough ”consistent” information to allow for reliable content
identification. It is worth noting that with such representations,
the search space has a dimension of 2256×32. Such a space
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Fig. 1. Proposed framework for robust perceptual audio hashing.

dimension dictates an efficient design for the hash search algo-
rithm to enable efficient matching of hash blocks in the queried
database. Obviously, this is not a trivial task, because hash
blocks are expected to have different binary representations
in the database. Many factors contribute to such differences.
For instance, we may be searching for a content that has been
represented in the database using either different file format
or compression rates such as in the case of WAV versus MP3
formats or different audio quality (CD-Quality, FM-Quality,
etc.). The foundation of the proposed system is the statistical
modeling of balanced multiwavelet representations of audio
signals. The results of the statistical model are used to build
novel robust hash values for identifying manipulated audio
content. In most of the tested cases, the proposed frame-
work has been evaluated and informed by conducting several
performance evaluation tests. New contributions of this work
to the area of ”Computer Audition” include: robust feature
extraction from audio content, analysis of audio content using
balanced multiwavelets 1, robust technique for audio content
identification using perceptual hashing or fingerprinting. Fig.
1 shows a schematic diagram of the underlying principles of
the proposed framework for robust perceptual audio hashing.

II. A ROBUST PERCEPTUAL AUDIO HASHING ALGORITHM

In the remaining of this paper, we focus on the design and
implementation of a robust perceptual audio hashing algo-
rithm. For notational convenience, we will inherently assume
that the hashing extraction procedure is secured through the

1To the best of our knowledge, we are unaware of audio analysis using
balanced multiwavelets reported in the literature.
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use of secret keys, and therefore, we will drop the subscript
K in the representation of the hash function; it will be
denoted by HX for an input content X . We present the
corresponding design algorithm and some simulation results.
We experimentally show that the proposed algorithm achieve
Eqs. 1-2for an extensive range of attacks.

Pr
[
D

(
HK(X),HK(X̂)

)
= 0

]
≈ 1, (1)

Pr [D (HK(X),HK(Y )) > 0] ≈ 1, (2)

where HK(X) and HK(X̂) represent the fingerprint repre-
sentations for the input X and a similar input X̂ , respectively.
D(., .) represents a distance metric such as Hamming distance
[1].

A. Design Principles

Perceptual audio hashing aims at extracting the relevant
perceptual features from an audio content. At the same
time, implementation requirements impose that extracting and
searching hash values should be fast and easy, preferably
with a small granularity to allow system scalability in highly
demanding applications (e.g. mobile-enabled music identifica-
tion). However, many issues should be addressed before pro-
ceeding with the design and implementation of such systems.
The most prominent ones are [1]:

• Features’ selection (semantic 2 vs. non-semantic fea-
tures).

• Hash representations.
• Hash granularity.

B. Hash Extraction Algorithm

Most hashing extraction algorithms process audio content in
a similar way to the techniques in audio coding and processing
[2]. In order to reduce the computational load, we reduce
the sampling rate of the processed audio clip by a factor
of 8. It is assumed that the input audio is sampled at a
CD-Quality rate, i.e., 44100Hz. Then, the audio signal is
segmented into audio frames. For every frame, a set of features
is computed as explained below. It should be kept in mind that
the extracted features are chosen to achieve perceptual invari-
ance to content degradations. Unlike [1] where the content
features are extracted from Fourier coefficients, we propose
the use of subband coefficients of balanced multiwavelets.
Features derived from Fourier coefficients are also proposed
in [1], [3]. In [4], Logan proposes the use of non-semantic
features based on the Mel Frequency Cepstral Coefficients
(MFFC). Allamanche et al. [5] propose the use of spectral
flatness, sharpness, and coefficients of the linear predictive
coding (LPC). Mathematically-derived quantities are also used
to represent the content features. These derived quantities
such as the means and variances of the features are mapped
into more compact representations using either hidden Markov

2We propose to use the class of non-semantic features for their mathematical
tractability and ease of computation.
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Fig. 2. Overview of audio hashing extraction.

models (HMM) [6] or quantization [1]. We extract from each
audio frame an sub-hash string that is not sufficient to identify
a complete audio clip. However, the combination of several
sub-hash strings will produce a global hash value that will
sufficiently describe the overall audio clip. Fig. 2 gives an
overview of the hash extraction procedure proposed for the
perceptual audio hashing system.

Each audio frame is transformed using a one-dimensional
balanced multiwavelet transform. Then, for each audio frame
(time interval of 11.8 milliseconds), a sub-hash string of 32
bits is extracted. For an audio clip of 3 seconds, we will have
256 different audio frames. Therefore, the system guarantees
a granularity of 3 seconds. It is worth noting that in order
to avoid signal discontinuities, we propose to use overlapping
frames with an overlap factor of 31/32 [1]. All the audio
frames are weighted with a Hanning window having the same
overlap factor of 31/32. Based on this approach, we obtain
a sub-hash binary for every 11.6 milliseconds. Furthermore,
in order to capture the most important perceptual features, we
propose to use a multiresolution decomposition based on the
balanced multiwavelet transform. Such a decomposition has
the merits to provide an excellent model of the human auditory
system (HAS). On the other side, frame boundaries have a
negative effect on the content phase. However, because the
HAS system is relatively insensitive to phase, we propose to
use the coefficients’ magnitude represented by the estimation
quantization (EQ) scheme [7]. For the extraction of the sub-
hash binary strings, we divide the decomposition subbands into
32 different frequency bands. In Fig. 3 shows the approach
used in the selection of the frequency blocks for the lowpass
subband at decomposition level 5. Similar approach is used
for the remaining subbands with a varying number of blocks.
Unlike the system proposed in [1], the algorithm described
here allows for a frequency decomposition that is similar to
that performed by the HAS system which operates on the Bark
scale. In [1], to obtain a decomposition similar to the HAS-
based one, a logarithmic spectrum division is carried out to
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Fig. 3. Frequency block selection for lowpass subband at decomposition
level 5.

obtain 32 different blocks.
Details of the extraction algorithm are given below:

1) Downsample the input audio content of 3 sec to obtain
a sampling rate of 5512 Hz.

2) Apply the framing division on the downsampled content
using Hanning window with an overlap factor of 31/32.

3) Compute the forward balanced multiwavelet (BMW)
transform for each audio frame using 5 decomposition
levels.

4) Divide the subbands’ coefficients into 32 different blocks
as illustrated in Fig. 3 for the case of the finer lowpass
subband.

5) Apply the estimation quantization (EQ) scheme using a
neighboring window of 5 audio samples.

6) Compute the log variances of the magnitudes of the
subbands’ coefficients.

7) Compute the mean value, µn
EQ, of all the log variances

for each audio frame where n = 1, 2, . . . , 256.
8) For each of the 32 subband blocks, apply the following

formula to extract the sub-hash bit:

H(n,m) =

{
1 if σ

(m,n)
EQ > µn

EQ

0 if σ
(m,n)
EQ < µn

EQ

1 ≤ n ≤ 256 and 1 ≤ m ≤ 32 (3)

where H(n,m) is the nth bit in the sub-hash string represent-
ing the mth audio frame.

III. PERFORMANCE ANALYSIS

A. Statistical Analysis

Based on the similarity metric, used in the proposed system,
we declare two audio contents perceptually similar if the
normalized Hamming distance is below a specific threshold,
Th. The false positive rate, Pfp, can be directly determined
from the threshold Th [8]. For an adequate choice of Th, we
assume that the extracted hash strings are independent and
identically distributed (i.i.d) random variables. Therefore, the
number of bit errors will follow a binomial distribution (n, p)
[8], where n represents the length of the extracted hash strings
and p represents the probability that the extracted bit is ’0’ or

’1’. For a random variable with (n, p) binomial distribution,
the probability is given by [8]:

P {y = k} =
(

n
k

)
pk (p − 1)n+k

k = 0, 1, 2, . . . , n (4)

In this case, the corresponding distribution is a staircase
function [8]. An interesting asymptotic approximation for the
binomial distribution is given by the normal distribution for
sufficiently large values of n [8]. For a fixed value of p (we
have p = 0.5), and a large value of n = 8192, DeMoivre-
Laplace theorem gives the following approximation [8]:

(
n
k

)
pk (p − 1)n+k ≈ 1√

2πnp(p − 1)
e−(k−np)2/2np(p−1) (5)

where the mean is given by µ = np and the standard
deviation is given by σ = 1√

np(p−1)
. Using Eq. 5, for a given

hash string H1, the probability that a randomly selected hash
string H2 has less than T = αn bit errors with respect to H1

is given by [1], [8]:

Pfp(α) =
1√
2π

∫ ∞

(1−2α)
√

n

e
−x2

2 dx =
1
2
erfc

(
(1 − 2α)√

2

√
n

)
(6)

where α denotes the BER rate and erfc represents the error
function [8]. Finally, to take into account the larger standard
deviation of the BER distribution, Eq. 6 is modified as follows
[1]:

Pfp(α) =
1
2
erfc

(
(1 − 2α)

3
√

2

√
n

)
(7)

B. System Robustness

In order to assess the robustness of the proposed hashing
system, we need to address the issue of the performance
measure to be used during the evaluation experiments. It
is legitimate to assume a given value for the threshold Th

for the evaluation purposes. In [1], Haitsma et al. assume a
threshold of Th = 0.35. To illustrate the robustness of the
proposed algorithm, we will lower the latter threshold further
to Th = 0.25. This new threshold will be considered as the
upper performance bound for the system described herein.
Throughout the simulation carried out to assess the system ro-
bustness, we use two different audio clips, namely ”Manchild”
clip by Neneh Cherry and ”Last Breadth” clip by Abu Khater.
During the evaluation experiments, both original audio clips
will be subjected to the following signal degradations/attacks:

• MP3 Encoding/Decoding
• Lowpass and Highpass Filtering
• Noise Addition
• Silence Reduction and Addition
• Amplitude Alteration
• Echo Attacks
• Stretching and Pitch Bending
• Dynamic Delay
• Content Mixing
• Denoising and Hiss Reduction
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Fig. 4. System performance in the presence of lowpass filtering attack.
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Fig. 5. System performance in the presence of highpass filtering attack.

For illustration purposes, we report the results related to
Manchild clip only. Fig. 4 shows the robustness of the pro-
posed system against lowpass filtering attacks. The perfor-
mance curve indicates that the system is performing ade-
quately as long as the main content energy is not removed
by the filtering attack. Fig. 5 shows the robustness of the pro-
posed system against highpass filtering attack. An interesting
interpretation of the obtained performance indicates that the
content frequency from 100 Hz to 4000 Hz is crucial for a
reliable perceptual representation of the content. Fig. 6 shows
the robustness of the proposed system against MP3 compres-
sion attacks. By analyzing the performance reported, we can
conclude that under MP3 compression attack, the proposed
system yields an excellent performance for compression rates
higher or equal to 24 KBits/sec. However for compression
rates lower than this threshold value, the system performance
degrades gradually. The system robustness to various audio
attacks is illustrated in Fig. 7. It is clear from this figure that
the system performs robustly in the presence of various audio
attacks with the exception of the double stretching attack.

IV. CONCLUSIONS

In this paper, we have proposed a novel framework for
robustly identifying audio content by using short robust
hashing codes. We have proven, through extensive computer
simulation, that these hashing codes are robust against various
audio alterations and attacks. Furthermore, the proposed hash
extraction mechanism yields totally different hash sequences
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Fig. 6. System performance in the presence of MP3 compression attack.
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for different audio content.
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