
VLSI Design IP Protection: Solutions, New Challenges, and Opportunities

Lin Yuan and Gang Qu

Electrical and Computer Engineering Department
and Institute for Advanced Copmuter Studies

University of Maryland, College Park, MD U.S.A.
{yuanl, gangqu}@glue.umd.edu

Lahouari Ghouti and Ahmed Bouridane

School of Computer Science and the Institute of
Electronics, Communications and Information

Technology
Queen's University of Belfast, Belfast, UK

{L.Ghouti, a.bouridane}@qub.ac.uk

Abstract
It has been a decade since the need of VLSI design
intellectual property (IP) protection was identified
[1,2]. The goals of IP protection are 1) to enable IP
providers to protect their IPs against unauthorized
use, 2) to protect all types of design data used to
produce and deliver IPs, 3) to detect the use of IPs,
and 4) to trace the use of IPs [3]. There are significant
advances from both industry and academic towards
these goals. However, do we have solutions to achieve
all these goals? What are the current state-of-the-art
IP protection techniques? Do they meet the protection
requirement designers sought for? What are the (new)
challenges and is there any feasible answer to them in
the foreseeable future?

This paper addresses these questions and provides
possible solutions mainly from academia point of
view. Several successful industry practice and ongoing
efforts are also discussed briefly.

1. Introduction
The ever-increasing logic density has resulted in more
transistors on silicon than designer’s ability to design
them meaningfully. This creates the design
productivity gap between what can be built and what
can be designed. Despite the design technology
innovations in the last decade, this gap is becoming
wider and wider. To close this gap, we need a
significant shift in design methodology. At the heart of
this shift is the principle of design reuse, which is the
most significant design technology innovation in the
past decade as one can see from Figure 1.

In this new design method, large previously designed
blocks, such as bus controllers, CPUs, and memory
subsystems, will be integrated into an ASIC
architecture to deliver routine functions in a
predictable manner. Designers now can focus on what
they do best to design new blocks, representing their
true design innovation, based on the system
requirements. This not only makes it possible to have
the new products on market in a timely and cost

effective fashion, the newly developed blocks will also
be tested, documented, and deposited as design
intellectual properties (IPs) in the internal IP library
for future reuse.

There exist significant technical barriers to increase
design productivity by design reuse. IP protection is
among the original six key enabling technologies
identified by the Virtual Socket Interface (VSI)
Alliance when it was founded in 1996 [1]. It was also
cited as a unique and one of the most challenging
areas awaiting research breakthroughs.

What makes IP protection a unique challenge is the
new reuse-based design environment we just
described. It forces engineers to cooperate with others
and share their data, expertise, and experience. Design
details (including the RTL HDL source codes) are
encouraged to be documented and made public to
make reuse more convenient. But at the same time,
this makes IP piracy and infringement easier than ever.
It is estimated that the annual revenue loss in IP
infringement in IC industry is in excess of $5 billion.
The goals of IP protection include: enabling IP

Figure 1. Design technology
innovations in the past decade. (data
source: International Technology
Roadmap for Semiconductors 2001 [4].)

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

providers to protect their IPs against unauthorized use,
protecting all types of design data used to produce and
deliver IPs, detecting and tracing the use of IPs [3].

There have been significant advances from both
industry and academic towards these goals. Highlights
include the VSIA’s white paper on IP protection [3]
and its physical tagging standard [5] that has now been
widely adopted by semiconductor and EDA industry;
practices on the protection of web-based collaborate
design environment and FPGA design protection by
individual companies such as Xilinx
(www.xilinx.com) and Altera (www.altera.com); and
the numerous protection mechanisms proposed by
researchers both from industry and academia on
literally every phase of the design procedure[2, 6-16,
18,19,24-26]. Naturally, efforts from industry are on
the identify and trace of legal IP usage for the purpose
of checking, updating, and royalty reporting among
others. Research from academia concentrates on the
protection and deterrent of high-tech IP piracy, which
is a potentially critical, but not yet real problem in
semiconductor and EDA industry. This interesting
distinction between industry and academia determines
the fact that people will view the same question in
different ways and provide different answers within
different but relevant context. They are
complementary to each other and will collaborate to
reach all the goals for IP protection in VLSI design.

In paper, we first provide a comprehensive review of
the current state-of-the-art IP protection practice and
advances. We then discuss several key challenges,
explain how people view these challenges differently
from academia and industry. We mention a couple of
successful and current efforts from industry. Our main
focus is on the directions and practical approaches
from academic point of view on how to answer such
challenges.

2. State-of-the-Art IP Protections
We restrict our survey to the non-law enforcement IP
protection practice and research.

VSIA’s physical tagging standard [5] is by far the only
official standard and has enjoyed tremendous success
in the past few years. It describes a procedure on how
to embed information into the graphical design system
II (GDSII) file. Such plain text information allows
semiconductor manufacturer to tag and track
components used (reused) in a design at the
fabrication process. This standard is designed to
facilitate the information sharing among lawful and
honest IP providers and users rather than protect the
GDSII file from being misused by adversaries. Note
that the standard is open to the public, every foundry

can check the information from the GDSII file, and
adversary can also easily modify it.

Standard encryption has been mentioned as one way to
protect design IPs (including design data) despite the
rather expensive decryption process [3]. Recently,
several FPGA design tools provide users the
encryption choice. Altera’s encryption software
enables users to encrypt their design and any attempt
to compile an encrypted IP will fail if the core is not
decrypted properly. Xilinx adds a decryption unit on
its latest Virtex-II and Virtex-II Pro FPGA board. Its
design tool allows user to select up to six plaintext
messages and uses them as the key to encrypt the
FPGA configuration bitstream file. The decryption
unit will decrypt it before configuring the FPGA
board.

On the other hand, protection mechanisms developed
from academia serve as the deterrent for IP piracy.
Most of these works are under the watermarking
framework proposed by Kahng et al. [2,15], which has
been applied to various aspects of the VLSI design
process, from behavioral and logic synthesis to
standard cell place and route algorithms, to FPGA
designs [2,7-10,12,15,17,24,25]. There are also several
studies on IP fingerprinting techniques [6,14] and
methods to recover the embedded signatures
[11,16,19,26].

Figure 2. Basic concept of the constraint-
based watermarking technique.

The constraint-based watermarking technique [2,15]
translates the to-be-embedded signatures into a set of
additional constraints during the design and
implementation of IP in order to uniquely encode the
signature into the IP. Considering IP invention as
solving a hard problem where the requirements for the
IP serve as constraints, this basic idea can be depicted

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

in Figure 2, where we also show its key concept of
cutting solution space.

To hide a signature, the designer first creates another
set of constraints using his secret key; these
constraints are selected in such a way that they do not
conflict with the constraints in the original problem.
Then the original and additional constraints are
combined to form a more constrained stego-problem.
The stego-problem, instead of the original problem, is
solved to obtain a stego-solution. Using information
hiding terminologies, we refer to the original problem
as cover-constraints, and the signature as embedded-
constraints. A stego-solution will satisfy both
constraints.

To claim the authorship, the author has to demonstrate
that the stego-solution carries information based on his
signature. The stego-solution unnecessarily satisfies a
set of additional constraints that look random until the
author regenerates them using his signature together
with his secret key. Cryptography functions such as
one-way hash and stream cipher will be used to
generate the embedded-constraints. There are several
approaches proposed to detect the embedded
watermark. For several specific instances, Kahng et al.
[11] choose signatures selectively and develop fast
comparison schemes to detect such signatures.
Charbon and Torunoglu [26] discuss copy detection
under a design environment that involves IPs from
multiply sources that requires IP providers to register
their IPs in a trusted agent. Kirovski et al. [19] propose
a forensic engineering technique to identify solutions
generated by strategically different algorithms.

3. Challenges
There seems to be an interesting and growing rift on
the objectives and approaches between industry and
academia on IP protection. In industry, design teams
are in dire need of techniques and standards that
enable them to build yield and risk assessment, checks
release numbers, warn them when a problem arises,
optimize future library for content definition and
enables IP management such as royalty reporting.
Being able to protect their IPs from being misused is a
nice feature, but unfortunately has not been really
considered by many design teams as a necessity. Both
the released VSIA physical tagging standard and the
soft IP tagging standard [27] look to identify ways to
embed design-related plaintext messages into the
design to achieve these goals.

In academia, being aware of the existence of powerful
reverse engineering tools, researchers are developing
techniques at various levels of the design process to

discourage any attempt of IP piracy from happening.
Their approach is also based on the idea of embedded
design-related information into the design. However,
such information is encrypted and hidden so the
adversary cannot see it with ease.

Nevertheless, both sides have agreed, although again
they view the same problem in different ways, on the
following new major challenges for IP protection.

3.1 Restrain Design Overhead
Due to its nature of adding constraints, the
watermarking-based IP protection techniques
inevitably introduce design overhead. As it has been
pointed out originally, design overhead should be kept
as low as possible [2,11]. Qu and Potkonjak [17] study
the random graph coloring problem and conclude that
it is possible to keep the overhead at the minimal level
while still providing strong protection. However, they
also mention that if the number of watermarking
constraints is not selected carefully, the overhead can
be arbitrarily high. Furthermore, the randomness of the
watermarking constraints makes the design overhead
hard to predict. For example, Lach et al. experiment
the timing and resource overhead for various FPGA
watermarking techniques. They report resource
overhead from 0.005% to 33.86% and timing overhead
from –25.93% to 11.95% [6,9]. Kirovski et al. develop
watermarking protocols during the multi-level logic
minimization and technology mapping phases. The
design overhead goes from negative to 8.12% [8].
Oliveira proposes a technique to watermark sequential
circuit designs where the area and delay overhead can
be negligible for large designs but are as high as
2747% and 273%, respectively, for even very small
designs [10].

Currently, there is no watermarking technique that
guarantees the design quality or gives an upper bound
on the design overhead. The lack of quality guarantee
remains one of the key obstacles for the watermarking-
based IP protection techniques to be adopted as an
industry standard.

3.2 Protect Soft IP
Soft IPs are delivered in the form of synthesizable
HDL codes like Verilog or VHDL programs.
Although soft IPs have less predictable performance
and much higher protection risks, the emerging trend
is that most IP exchange and reuse will be in the form
of soft IPs because of the design flexibility they
provide [18]. On some occasions, IP provider may also
prefer releasing soft IPs to leave customer-dependent
optimization process to the users.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

From security point of view, protecting soft IPs is a
much more challenging task than protecting hard IPs
such as GDSII files or fully placed netlist. The
flexibility makes soft IPs hard to trace and therefore
difficult to prevent IP infringements from happening.
IP providers are taking a high risk in releasing their
IPs in the soft form before they protect their HDL
codes with techniques that are effective, robust, low-
complexity, and low-cost. Unfortunately, such
techniques or tools are not available and their
development is challenging.

Existing constraint-based watermarking techniques for
netlist [2,8,15] are applicable to protect gate-level
HDL code. Although it is synthesizable, gate-level
HDL code is just a plain description of the design and
does not help users to understand and thus effectively
reuse the design. Synthesizable behavioral-level HDL
code, on the other hand, gives a high level description
of the system. Its C-like programming syntax and
structure makes it friendly for reuse and hence the
most valuable asset of soft IPs.

However, existing software protection techniques are
not applicable to HDL code protection either. The
reason is that these protections are either on the
executables or syntax techniques such as removing
comments and renaming variables. HDL programs,
first of all, do not have any executables or binary
codes. Second, they are suggested to have proper
documentations and to follow standard coding
guidelines for better reusability [18].

3.3 Protect CAD Tool and Algorithm
CAD tools, algorithms, and design environment are
yet another type of VLSI design IPs. They are
currently being treated and protected as traditional
software by mechanisms such as licensing agreements
and encryption. Despite the lack of enforcement of
licensing agreements and the security holes of
encryption protocols, these protections do not provide
the ability to detect IP piracy. That is, if a tool or an
algorithm is illegally used to generate an IP, one
cannot tell from this piece of IP whether it is obtained
legally. Because the (dishonest) IP designers can claim
that they obtain the IP by other tools or algorithms.
Another characteristic on CAD tool and algorithm
protection is that piracy normally involves the misuse
instead of illegally redistribution of the tool or
algorithm.

The only known technique that detects possible CAD
tool and algorithm piracy is the forensic engineering
approach proposed by Kirovski et al. [19]. It enables
the identification of solutions generated by
strategically different tools and algorithms. First,

statistical data are collected from the solutions
generated by a pool of algorithms. Then they study
certain problem-dependent properties of the solutions
to put the pool of algorithms into clusters. To detect
which algorithm has been applied to obtain a given
solution, they simply check the given solution for the
properties that the algorithm clustering has been
performed and claim that the solution is obtained by
the algorithm that has the best fit. It has several
limitations: first, it is only applicable to distinguish
strategically different algorithms. Second, it requires
the availability of a pool of candidate algorithms and a
large benchmark of problems as well as the computing
resource to run each algorithm on each problem
instance. Third, characterization of the solutions to
cluster the algorithms is not a trivial task.

The collaborated web-based design frameworks [20-
22], including IBM’s recent launched “on demand
collaboration environment to verify chip designs”
verification environ-ment [23], make CAD tools more
vulnerable than ever to be used misappropriately.
Given the important role that CAD tools and
algorithms play in the EDA society, particularly in the
IP-based design era and the collaborated web-based
design environment, the need for effective CAD tools
and algorithms protection becomes obvious and
urgent.

4. Opportunities
We discuss the possible directions to tackle the above
challenges with emphasis on approaches from
academia.
4.1 Design Overhead
In the original proposal of watermarking-based IP
protection, the pre-processing and post-processing
methods are discussed [2,15]. Pre-processing
techniques embed watermark before the synthesis
tools are applied to solve the (watermarked) problem.
In post-processing, the original problem without any
watermark is first solved, and then the solution will be
altered based on the watermarking constraints. To
achieve high robustness of the watermark, the authors
argue that it is preferable to have pre-processing and
this vision has impacted almost all the follow-up work
on IP protection.

As we have already mentioned in the section of
challenges, pre-processing techniques add random
extra constraints to the initial problem and thus
introduces the unpredictable design overhead. Even in
the optimization-intensive version [24], no guarantee
on the watermarked IP’s quality degradation can be
provided. However, in the post-processing approach,

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

the best solution from the synthesis tool is known
before the watermarking process. It becomes possible
to embed watermark in such a way that the overhead
can be controlled, if not avoided completely. This is at
the cost of reduced robustness because adversary
could also make changes on the solution and
eventually alter or remove the watermark.

To achieve limited overhead guarantee and high
robustness simultaneously, we propose a three-phase
watermarking embedded approach. In the first phase,
synthesis tool is applied to the original problem to
produce the best possible solution. In the second
phase, we identify certain non-critical constraints in
the problem that will not affect the solution quality
dramatically and embed them as the watermark. In the
last phase, the synthesis tool is applied again to create
a watermarked solution. Comparing to the pre- and
post-processing watermarking approaches, this new
approach has the following advantages and
disadvantages:
1. Phase I conducts the design without any

watermarking. This allows us to obtain a design
solution with the best possible quality.

2. With the best quality design solution as a
reference, we can select constraints to trade
solution quality for robustness or other
watermarking objectives in phase II. Note that this
is impossible for pre-processing because the best
design quality is unavailable.

3. Re-synthesis in Phase III makes it again difficult
for adversary to temper the watermark. This
distinguishes our approach with post-processing.

As one can see, the key step is Phase II where we
actually perform the watermarking procedure. We
believe that 1) there exist plenty of “redundancies” in
the original design constraints, for a given solution,
which can accommodate the watermark. We will
demonstrate this later in this section by the example of
finite state machine state minimization problem. 2)
watermarking constraints should be embedded close to
the end of the synthesis to reduce the complexity of
(re-)synthesis and to increase the predictability of the
solution quality change due to watermarking.

As an example, we mention a recent FPGA
watermarking approach proposed Jain et al. [25] that
guarantees no design overhead in timing and system
resource. A design as usual is performed first to get all
the timing on all the nets. Then the required signature
is mapped to additional timing constraints on carefully
selected nets and the place and route is redone to
generate the FPGA configuration bitstream. Real life
FPGA designs demonstrate that all the timing

requirements are met with no additional resource. And
the watermarked designs have FPGA configuration
bitstreams significantly different from the original
ones to provide strong proof of authorship (Table 1).

4.2 Soft IP Protection
The IP protection development and working group in
VSIA is currently developing a specification/standard
for moving soft IPs between companies using a simple
tagging or watermarking scheme. This effort is to
help honest IP users to exchange IPs. However, it may
create a huge security hole for IP protection. In the
physical tagging standard, plaintext information on the
IP is embedded in the GDSII file and only limited
number of semiconductor foundries are capable to
misuse such information. An HDL code, on the other
hand, can be tweaked easily by any hardware designer.
Nevertheless, our belief is that soft IP protection
problem, from academic point of view, is solvable.

First, the programming styles and variable naming
conventions among other standards suggested by
industry experts [18] increase the readability and
reusability of the HDL code. Meanwhile, it also limits
the power of adversary. With the ongoing effort on
soft IP tagging standard, this can only become better
once it is adopted. For example, a netlist of the design
without documented HDL code makes itself
suspicious. Second, technically, it is still possible to
hide information into the soft IP. As we will see in the
protection of CAD tool and algorithm, every designer
has his or her design style that can be traced from the
HDL code he or she writes. Moreover, recall that the
motivation for soft IP exchange is to make reuse easier
and more efficient. Resynthesizing the soft IP with

Table 1. Validation of zero overhead and
strength of watermark on benchmark
FPGA designs [25].

FPGA Designs Original Watermarked Overhead Bitstrem
Difference

Resources 1083 1083 0% DAP
(2,503,260

gates)
fmax required:

40MHz √ √ 0%
1.13%

Resources 1522 1522 0% VIDEO
(56,253
gates)

fmax required:
35MHz √ √ 0%

2.15%

Resources 746 746 0% RISC
(6,894
gates)

fmax required:
50MHz √ √ 0%

5.47%

Resources 285 285 0% AddrGen
(2,862
gates)

fmax required:
40MHz √ √ 0%

1.83%

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

other blocks normally results in designs better than the
ones obtained by integrating the hard IP with other
blocks. However, certain parts of the soft IP, such as a
rather unique memory design, are very unlikely to
share resources with other blocks. In such case,
providing those parts as hard IP reduces the flexibility
of reuse, but it may not affect much of the design
quality. Meanwhile, it opens room for hard IP
protection techniques. We believe that this
combination of hard IP and soft IP will be a promising
direction for soft IP protection.

In [28], the authors argue that any good HDL source
code watermarking technique should provide (1)
strong proof of authorship, (2) low design overhead,
(3) survivability from re-synthesis, (4) resilience, and
(5) preserve IP’s I/O interface. To reach these goals, it
is necessary to have the documentation assumption
and the verification assumption. The first requires
the designer to document the HDL modules properly
and give sufficiently detailed information on each
reusable module’s input, output, and functionality. It
allows, however, designer not to document other
details on how each module is implemented. The
second requires all HDL design to follow the
hierarchical modular fashion and not to mix
complicated gate-level HDL code with RT-level
description. Based on these assumptions, several
techniques have been proposed to embed information
into HDL source code. However, these techniques are
ad hoc with limited watermark embedding capacity
and may have large design overhead.

4.3 Design Tool and Algorithm Protection
Conceptually, it is possible to apply the constraint-
based watermarking technique to protect design tool
and algorithm during the design and implementation
of such tool and algorithm. (To see this, just treat the
design tool and algorithm as IPs.) However, quality of
the solutions obtained by such protected tool and
algorithm cannot be guaranteed. Furthermore, this
approach cannot protect existing tools and algorithms
without redesign them.

We argue that an effective CAD tool and algorithm
protection technique must be able to
• identify with high accuracy that whether the given

solution is generated by the target tool or
algorithm;

• retain the performance (e.g., CPU and memory
requirements) of the tool and algorithm and the
quality of the solutions it provides;

• be robust against attempts to remove the
protection from the tool and algorithm, or to
disguise the solutions obtained by them.

Note that although the design process may not be
reversible, CAD tools and algorithms usually leave
plenty of traces in the design solution they find. The
forensic engineering technique attempts to collect
these unintentionally left trace to identify CAD tools
and algorithm by sampling over a large set of
representative trials. We propose to “intentionally"
leave a trace of the tool and algorithm in the design
solutions generated by them. This enables us to
quickly detect the usage of the protected tool and
algorithm with high accuracy. As an example, the
following scheme protects a 3SAT solver:

1. select a fixed set of clauses from the 3SAT
formula;

2. for each selected clause, x+y+z, append
(x'+y'+z')(x+y'+z')(x'+y+z')(x'+y'+z) to the
formula;

3. solve the new formula to find a solution;

There are seven different ways to make clause x+y+z
true. The addition of extra clauses in step 2 enforces
that one and only one of the three literals x,y,z can be
assigned to be ‘1’. For any solution obtained by this
(protected) solver, the fixed set of clauses (those
selected in step 1) will have exactly one literal
receiving assignment ‘1’. This unique feature of the
solver can be used to detect whether a given solution
is obtained from this solver and thus achieve our goal
of CAD tool and algorithm protection.

Yuan et al. [29] propose a birthmarking method for
CAD tool and algorithm protection. In their approach,
they first use the tool/algorithm to find a design
solution with the best possible quality. Then they
conduct an additional design step to “birthmark” the
design solution by changing it locally without
affecting the design quality. Such local changes can be
detected later as a proof of the tool/algorithm that has
been used during the design. This is similar to the
post-processing watermarking technique [2,15]. They
use a gate-level timing-driven gate duplication tool as
example to illustrate this approach and the extensive
experimental results show that such birthmarking
technique incur very small overhead.

4.4 Redundant Design Constraints
To end our discussion, we use the finite state machine
(FSM) state minimization problem as an example to

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

demonstrate the concept of redundant design
constraint [30].

(a) (b)

Figure 3. (a) State transition graph for the
FSM. (b) State transition graph for the
reduced FSM.

Consider an FSM with eight states, one binary input
and one output. Its state transition graph is shown in
Figure 3 (a). This FSM can be reduced to one with
only four states, and there are two solutions:
{{1,4},{2,5},{3,6},{7,8}} and {{1,4,7},{2,5},{3,6},
{8}}. Figure 3 (b) is the state transition graph for the
first solution.

Surprisingly, if we keep all the output information and
only the seven state transitions that have a dot on the
arrow in Figure 3 (a), the solution remains the same.
This suggests that these conditions are sufficient to
obtain the above solutions. The absence of other five
state transitions (i.e., replacing the next states of these
transitions by don't care will not have any impact.
Therefore we call them redundant design constraints.

There are very rich redundant constraints in finite state
machine synthesis as indicated by experiments on the
standard MCNC sequential circuit design benchmarks
[30]. In addition, one can add redundant states, states
that are equivalent to other states, and synthesize the
non-minimized finite state machines. When part of the
redundant states are added, the synthesis solutions
have very little overhead, and very often are better
solutions, in area and power consumption.

We can leverage this redundancy to hide information
by, for example, the following scheme: keeping the
redundant constraint for a bit 1 and deleting it for a
bit 0. Note that we obtain the set of redundant
constraints from an existing solution and this
modification of the system specification will not
change the correctness of this solution. The
watermarked design and non-watermarked design will
start from this same solution and therefore there will
not be any design overhead.

5. Conclusion
VLSI design intellectual property protection has been
a hot topic since the late 90’s and is cooled off in the
past couple of years. In this paper, we survey the
current status of IP protection, analyze the new
challenges and discuss the opportunities. Although
people from academia and industry have, in some
sense, quite different viewpoints of this problem, it is
our belief that the collaborated efforts will eventually
find ways to protect VLSI design IPs efficiently and
effectively.

6. Reference

[1] Virtual Socket Interface Alliance. “Fall Worldwide
Member Meeting: A Year of Achievement”, October 1997.

[2] A.B. Kahng, et al. “Watermarking Techniques for
Intellectual Property Protection”, 35th ACM/IEEE Design
Automation Conference Proceedings, pp. 776-781, June
1998.

[3] Virtual Socket Interface Alliance. “Intellectual Property
Protection White Paper: Schemes, Alternatives and
Discussion Version 1.0”, September 2000.

[4] International Technology Roadmap for
Semiconductors. http://public.itrs.net/Files/2001ITRS/

[5] Virtual Socket Interface Alliance. “Virtual Component
Identification Physical Tagging Standard (IPP 1 1.0)”, 2000.

[6] J. Lach, W.H. Mangione-Smith, and M. Potkonjak.
``FPGA Fingerprinting Techniques for Protecting
Intellectual Property," Proceedings of the IEEE 1998
Custom Integrated Circuits Conference, pp. 299-302, May
1998.

[7] E. Charbon. ``Hierarchical Watermarking in IC
Design," IEEE 1998 Custom Integrated Circuits Conference,
pp. 295-298, May 1998.

[8] D. Kirovski et al. ``Intellectual Property Protection by
Watermarking Combinational Logic Synthesis Solutions",
IEEE/ACM International Conference on Computer Aided
Design, pp. 194-198, November 1998.

[9] J. Lach, W.H.Mangione-Smith and M. Potkonjak,
“Robust FPGA Intellectual Property Protection Through
Multiple Small Watermarks”, 36th IEEE Conference on
Design Automation Conference, pp. 831-836, June 1999.

[10] A.L. Oliveira. “Robust Techniques for Watermarking
Sequential Circuit Designs", 36th ACM/IEEE Design
Automation Conference Proceedings, pp. 837-842, 1999.

[11] A. B. Kahng et al. “Copy Detection for Intellectual
Property Protection of VLSI Design”, Proc. IEEE/ACM Intl.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

Conference on Computer-Aided Design, pp. 600-604,
November, 1999.

[12] I. Hong and M. Potkonjak. ``Behavioral Synthesis
Techniques for Intellectual Property Protection", 36th
ACM/IEEE Design Automation Conference Proceedings, pp.
849-854, 1999.

[13] K.W. Yip and T.S. Ng, “Partial-Encryption Technique
for Intellectual Property Protection of FPGA-Based
Products”, IEEE Transactions on Consumer Electronics, pp.
183-190, February 2000.

[14] G. Qu and M. Potkonjak. “Fingerprinting Intellectual
Property Using Constraint-Addition”, 37th ACM/IEEE
Design Automation Conference Proceedings, pp. 587-592,
June 2000.

[15] A. B. Kahng, et al., “Constraint-Based Watermarking
Techniques for Design IP Protection”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pp. 1236-1252, October 2001.

[16] G. Qu. “Publicly Detectable Techniques for the
Protection of Virtual Components”, 38th ACM/IEEE Design
Automation Conference Proceedings, pp. 474-479, June
2001.

[17] G. Qu and M. Potkonjak. “Analysis of Watermarking
Techniques for Graph Coloring Problem”, IEEE/ACM
International Conference on Computer Aided Design, pp.
190-193, November 1998.

[18] M. Keating and P. Bricaud. “Reuse Methodology
Manual, For System-On-A-Chip Designs,” Second Edition,
1999.

[19] D. Kirovski, D. Liu, J.L. Wong, and M. Potkonjak.
“Forensic Engineering Techniques for VLSI CAD Tools",
37th ACM/IEEE Design Automation Conference
Proceedings, pp. 581-586, June 2000.

[20] F.L. Chan, M.D. Spiller, and A.R. Newton. "WELD -
An Environment for Web-Based Electronic Design", 35th
ACM/IEEE Design Automation Conference Proceedings, pp.
146-151, June 1998.

[21] A. Fin and F. Fummi. "A Web-CAD Methodolgoy for
IP-Core Analysis and Simulation", 37th ACM/IEEE Design
Automation Conference Proceedings, pp. 597-600, 2000.

[22] K. Hines and G. Borriello. “A Geographically
Distributed Framework for Embedded System Design and
Validation”, 35th ACM/IEEE Design Automation
Conference Proceedings, pp. 140-145, June 1998.

[23] http://www-
1.ibm.com/technology/news/2003/062403ondemand.shtml

[24] G. Qu, J. Wong, and M. Potkonjak. “Optimization-
Intensive Watermarking Techniques for Decision Problems”,
IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 23, No. 1, pp. 119–127, January
2004.

[25] A. Jain et al. “Zero Overhead Watermarking Technique
for FPGA Designs”, 13th IEEE /ACM Great Lakes
Symposium on VLSI (GLSVLSI’03), pp. 147-152, April
2003.

[26] E. Charbon and I. Torunoglu. “Copyright Protection of
Designs Based on Multi Source IPs”, IEEE/ACM
International Conference on Computer Aided Design, pp.
591-595, November 1999.

[27] Virtual Socket Interface Alliance. “Soft Intellectual
Property (IP) Tagging Standard Version 1.0 (IPP 4 1.0)”,
August 2004.

[28] L. Yuan, P. Pari, and G. Qu. “Soft IP Protection:
Watermarking HDL Source Codes”, 6th Information Hiding
Workshop (IHW’04), pp. 224–238, LNCS Vol. 3200,
Springer-Verlag, May 2004.

[29] L. Yuan, G. Qu, and A. Srivastava. “VLSI CAD Tool
Protection by Birthmarking Design Solutions”, 15th IEEE
/ACM Great Lakes Symposium on VLSI (GLSVLSI’05),
pp. 341–344, April 2005.

[30] L. Yuan and G. Qu. “Information Hiding in Finite State
Machine”, 6th Information Hiding Workshop (IHW’04), pp.
340–354, LNCS Vol. 3200, Springer-Verlag, May 2004.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

