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Abstract

In this paper, we propose to use support vector
machines for classification of bacterial growth
and non growth database and modeling the prob-
ability of growth. Unlike artificial neural net-
works paradigms, support vector machines use
the kernel functions and support vectors with
maximum margin, which allows a better perfor-
mance. As a practical application of the new
approach, support vector machines were investi-
gated for their quality and accuracy in classifi-
cation of growth/no-growth state of a pathogenic
Escherichia coli R31 in response to temperature
and water activity. A comparison with the most
common used statistics, machine learning, and
data mining schemes was carried out. The re-
sults shows that support vector machines clas-
sifier based on the Gaussian RBF Kernel was
found to do better than most of logistic regres-
sion, K-nearest neighbor, probabilistic networks,
and multilayer perceptron classifiers.

Keywords: Bacterial growth; Logistic regression; Support
Vector Machines; K-nearest neighbors,neural networks.

1. Introduction

The practical applications Problems involving classification
of outcome into one or more classes are plentiful in both
bioinformatics and microarray technology. For instance, the
classification of environmental factors, such as, temperature
(T), water activity (Aw), pH as leading to growth or no-
growth of a given microorganism is one but most common
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research problem in predictive microbiology [9, 18, 23, 20].
Generally, the existing classifiers attempt to answer ques-
tions like whether T" of 151C, Aw of 0.98, and pH of 4.5
would lead to growth of Escherichia coli O157 : H7, or
what the probability of growth of this pathogen would be
under such conditions.

Linear and nonlinear logistic regression has been used ex-
tensively for classification and estimation of the probability
of bacterial growth under a set of conditions, see [11] for
details. The authors in [18] derived a logistic regression
equation for determining the probability of growth of non-
pathogenic E. coli M23 as function of T', pH, Aw, and lac-
tic acid concentration. [20] also used logistic regression to
derive a nonlinear equation for estimating the probability of
growth of pathogenic E. coli R31 in response to 7" and Aw,
and [23] developed equations for growth of Listeria mono-
cytogenes as affected by 7', pH, NaCl, and lactic acid
concentration. [14] developed a logistic regression equa-
tion for estimating probability of growth of Saccharomyces
cerevisiae as affected by pH, Aw, and potassium sorbate
concentration.

Recently, Artificial neural networks (ANNs) are powerful
tools for solving a wide range of practical applications in
both forecasting and classification problems [5, 7, 12, 17,
19]. ANNSs are emerging powerful highly nonlinear compu-
tational techniques that have gained increasing popularity in
predictive microbiology due to their flexibility and high ac-
curacy in modeling complex data [2, 1]. Data pertaining to
growth of pathogenic E. coli R31 as affected by temperature
and water activity will be used to derive the various clas-
sifiers. In predictive microbiology, ANNs have been used
for modeling the complex timedependent bacterial growth
[2, 10, 21] or for predicting growth parameters such as lag
time and exponential growth rate [15, 12] as affected by ex-
trinsic biochemical and environmental conditions. The au-



thors in [2] proposed the feedforward neural networks based
on the backpropagation minimization criterion to the area of
predictive microbiology, along with applications to the es-
timation of bacterial growth parameters and growth curve
modeling and they found that feedforward neural networks
outperform the most traditional statistical classification ap-
proaches.

The primary objective of this study is to investigate the use
of support vector machines (SVMs) classifier based on the
theory of risk minimization and marginal distribution with
the Gaussian radial basis (RBF) Kernel for the classifica-
tion of bacterial growth and non-growth states as well as for
investigate the probability of growth as affected by chang-
ing operating conditions. A discussion of SVMs and their
underlying mathematics and statistical basis with the learn-
ing steps for both binary nonlinear separable and multicate-
gory of the one one-against-all SVMs classifier is presented
in Section 2. The proposed approach is then applied to
data pertaining to growth of a non-typeable Shiga toxin-
producing pathogenic strain of E. coli (R31) to demonstrate
the use of SVMs and the development of models. Finally,
the SVMs-based models derived are compared to linear
and nonlinear logistic regression (LR), K-nearest neighbor,
feedforward neural networks (FFNs) as well as probabilis-
tic networks (PN) classifiers developed from the same data,
and the advantages and disadvantages of the proposed ap-
proach are discussed. Finally, we learn the model parame-
ters as it is shown in details in Sections 2 and 3.

The paper is organized as follows: Section 2 is a brief back-
ground of neuron-fuzzy systems and their use. Section 3
describes the implementation and comparative studies using
the growth/no-growth state of a pathogenic Escherichia coli
R31 in response to temperature and water activity database
used for building and testing the support vector machines
classifier. The conclusions and recommendations are pre-
sented in Section 4.

2. Support Vector Machines

Without loss of generality, the pattern classification problem
can be restricted to consideration of the binary category, [8].
Consider D = {(x;,y:); x; € RP; y; € {—1,+1}; for
all ¢ = 1,...,n} is the training set of vectors, where x;
is the i* input vector. Here, we discuss the binary SVMs
classifier for non-linear separable data and one-against-all
support vector machines classifier. As it is known in both
machine learning and data mining literatures, the idea of
selecting the decision making function of the support vec-
tor machines is based on the risk function, which is the ex-
pected value of the loss due to classification given by the
risk functional R(\). Generally, for A € A and n > h, a typ-
ical uniform VC bound, which holds with probability 1 —n,

has the form R(\) < Remp(\) + \/h(log(%+1)7log(%),

- n

see [24, 25] for more details. The parameter A is called the

Vapnik-Chervonenkis dimension of a set of functions and it
describes the capacity of a set of functions to represent the
data set.

2.1 Non-Linear Separable Binary Data

The basic idea in support vector machine is to map the
inputs x to vectors ¢(x) in some high-dimensional fea-
ture space [24, 25]. Figure 1(a) and (b) showed an ex-
ample of binary and multi-class categories in two dimen-
sional space. The new decision hyper-planes have the form:
wTp(x) + b = 0, among all of it, the SVM solution is cho-
sen as the one with the largest margin, i.e., minimizes the
margin, %, subject to the constraints y; (w”¢(x) + b) >
1, fori = 1,...,n, where ¢ : R — R™ is the fea-
ture map, where the data points become linearly separa-
ble by a hyperplane defined by the pair w € R™; and
b € R. Figure 1(c) showed an example of the feature map
from two dimensional space to a three-dimensional one:

Qo(xl,l'g) = (l'%ﬂl?%, \/ixl 56'2).

Y = R?
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Figure 1. (a) binary category example in 2D,
(b) Multi-class categories in 2D, (c) Optimal
Non-Linear Separating Hyperplane in a 2—
dimensional space

Since the problem is not linearly separable, then “slack”
variables 7; > 0 are introduced which measure how much
the margin constraints are violated, then the new constraint
can be written as: y; (chp(xi) + b) >1—n; fore =
1,...,n. The amount of slack variables allowed can be
controlled; then a penalty term % Zf’:l nt' is added to the
objective function, where C, u > 0 are called the penalty
coefficients [4]. The common values of the parameter p
are 1 and 2, giving linear and quadratic slack penalties, re-
spectively. The binary SVM classification problem with the
quadratic slack penalty can be considered as the following



optimization problem:

Min J(w,b,m‘) = %WTW'F % 2771‘2’
=1
(1)

—ni; m > 0;

subject to
yi (who(x;) +b) >1

for i = 1,...,n. Recently [22] have replaced the in-
equality constraints by equality constraints, a squared er-
ror term, and then the corresponding Lagrangian function,
L(w, b, A, n,~) for the system ( 1), that is,

L=1g0 4 G nt — S

- Z Aifyi (W o(xi) +b) — 14 n;:},

i=1

2

where 0 < \; < C, and ~; are the associated Lagrangian
multipliers. The constant C' is the user-defined constant,
this constant C'is the regularizing parameter. It determines
the balance between the complexity of the network, charac-
terized by the weight vector w and the classification error
of the data. For the normalized input signals the value of
C is usually much bigger than 1 and adjusted by trials and
errors, see [4] for more details. In practical real application,
the dual quadratic optimization problem to the optimization
problem ( 1) needed to be calculated. This can be achieved
by computing the Kuhn, Tucker necessary conditions [13],
that is,

oL =

oL -
%ZO#W:;/\i,yiw(Xi);
oL
=0 C i—)\i:O;
on; = o
oL T
87)\,-:0 =Y (w ap(xi)+b)71+m:0.

This system can be written in a matrix format as:
yIA=0; w=HT )
CIn=A; Ho+Yb+1In=1.

By eliminating w and 7, we obtain:

0 |Y” b1 [0 3)
Y[HH +CIT | [ x| [ 1)
where Y = [yi,...,y.]7, A = AT H =
[y10(x1),...,yno(x,)]T, and 1 = [1,...,1]T. Thus,

we only need to compute the inverse of n X n matrix,
I' = (HHT + C~11I). Thus, we substitute for w and 7 in
the Lagrangian function, ( 2) with more simplification, the
dual form ! of the function to be optimized can be written

'w(A\) has to be maximized with constraints C > X; > 0 and

n
ZAiyi:0,foralli:1,2,...,n
j=1

as:

YA Yy (X X)), (4)

1j5=1

M:
M=

F()\) =

[ 1 7

with the constraints: > A;y; = 0, where 0 < \; < C,
i=1

and k(x;,%;) = ¢(x;)T ¢(x;) is symmetric positive def-

inite kernel function (satisfies the Mercer’s condition, [3].

Therefore, we optimize the following problem with respect

to \;:

n

'M:

Mm{zl)\l—% . 1)\ jyzy] (Xi7xj>}7
1= 7 Jj=
subject to (5)

j=1

where y; € {—1,1} is the class label. Once the solution has
been found, the decision can be constructed as:

F&) = sign (3 Myin(xax) £, (6)

i=1

We note that the kernel function k(x,y) for the function
©(x) in Figure 1 can be computed by squaring of their inner
product, that is,

kxy) = (e(x),¢(y))
= ((a%,23, V221 22), (v, 93, V2y1 y2))
= ((«fyf 2393, 221 221 42))
= (xy)*%

)

The most common kernel functions in literatures can be
summarized as follows:

e Linear: k(x;,X;) = (XZT Xj + 7)

e Polynomial: x(x;,%;) = ((5—|—fyx xj) ;

Gaussian (RBF): x(x;,x;) = exp (M)
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Sigmoid (MLP): k(x;,x;) = tansh (y(x;.x;) — 0),
with gain v and offset 9,

sin( 22 (x;—x;)

Fourier Series: k(x;,X;) =

2.2 One-Against-All SVMs classifier for Multi-
Classes
Dealing with multiclass pattern classification by support
vector machines, both combining several binary classifiers
or considering all classes at once is still an ongoing research
issue, see [22] for further details. Figure 2 shows the com-
mon topology for the statistical pattern recognition under
the support vector machine classifier. For the sake of sim-
plicity, we only introduced the “one - against-all” method.



See [22] for more information about the “directed acyclic
graph SVM” (DAGSVM) technique.

The One-Against-All SVMs classifier constructs ¢ sup-
port vector machine models, where ¢ is the number of
classes. The k' SVM is trained with all of the exam-
ples in the k' class with positive labels, and all other ex-
amples with negative labels. Thus, given n training set
D = {(x1,y1),---»(Xn,yn)}, where x; € R? for all
i=1,2,...,n,and y; € {0,1,...,c — 1} is the class of
x;. We use the symbol yf ) to refer to the it" output unit for
the class k, forall k = 0,1,...,¢c — 1. To handle the pat-
tern classification problem, we follow the same procedures
as in the binary case, the support vector machines uses the
least square technique in minimizing the activation function
J®) (wy, by, i 1) that is,

c—1 n c
Min {3 kzowkT, w + % Z 217712,1«}’

subject to 8)
k

v (whon(xi) +bi) > 1 -

ik >0i=1,...,n; k= .,c—l.

Figure 2 shows the most common least square SVM clas-

sifier architecture in the literature. In this graph, the results

are linearly combined by weights v;, found by solving a

n

quadratic program and compute: w; = > v; x;,where v; is
i=1

the support vectors, that is, (; = y; A; in the pattern classi-

fication; and v; = A7 — A; in the regression estimation). The

linear combination is fed into the decision function o(.) or

f(.) (in pattern classification, f(x) = sign(wx + b); and

in regression estimation, f(x) = wx + b).

| G(Zm, K(T,.\‘J)] |

The output

Dot Product
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&
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Figure 2. Architecture of SVM methods. The
input x € R? and the support vectors x;

The corresponding Lagrangian function for the class k,

L™ (Wi, br, mi ke, Ai k) can be formulated as:

L™ = J® (W, b, mi )

=3 S Aiwdy ) (wF on(xi) +be) — 1+ min), ©)
i=1k=1
forall k = 0,1,...,¢— 1, where 0 < \;, < C are the

associated Lagrangian multipliers. The dual quadratic op-
timization problem to the optimization problem ( 8) can be
computed from the necessary conditions of the Lagrangian
function in (9):

(k)
oL _ o jzmyz

by,
oL®)
aWk =0 = W = Z)\Zkyz )
(k)
oL =0 = CT]i,k — Aq',,k; = 0;
ik
L")
Fy =0 = y(k) (wkT or(xi) + bk) —1+nk=0
foralli =1,2,...,nand £k = 0,1,...,c — 1. By elimi-

nating wy, and 7; i, the above optimality conditions lead to
(n+1)? x (n + 1)? linear system of equations. Therefore,
we can determine the ¢ decision hyperplanes using the de-
cision functions: wg o(x) +bF, forallk =0,1,...,c— 1,
and hence, we can classify the object x to the class k, if
the class k has the largest value of the following decision
function:

class of x :Mlﬂ?x [arg (w;? p(x) + bk)] J

fork =0,1,...,c—1. Interestingly, when x(.) is a sigmoid
kernel function, the SVM model produces a multilayer per-
ceptron (MLP) discrimination function, but unlike the MLP
model, a "global optimum” is guaranteed since the SVM
model is formulated as a convex programming problem. On
the other hand, when x(, ) is a Gaussian kernel function,
the SVM model leads to an radial basis function network,
but unlike the RBF model, the centers and the weights are
found at the same time, see [5] for more details. Although
the SVM model has the above advantages over the MLP
and RBF models, it is basically only for two-class classifi-
cation, and the kernel functions are required to be to posi-
tive semi-definite matrices (Mercer’s condition, see [16] for
more details).

We note that for large number of observations, the matrix
in ( 3) can not be stored, where we need an iterative solu-
tion method. The author in [6] suggested a fast algorithm
o handle the computational complexity and running time
for the system (3) using the large scale conjugate gradient
algorithm. The conjugate gradient method for solving the
system AX = B with A € " x R” symmetric positive
definite and B € R” is given in details in [6]. The advan-
tage of the conjugate gradient method is that if the matrix A



is symmetric positive definite and it is written as: A = I+7,
where rank(7) = d, the conjugate gradient algorithm in [6]
converges in at most § + 1 steps.

Once the learning process in the support vector machines
has finished, the judgment and evaluation of the quality and
capability of the fitted model (validation step). To achieve
this step, we compute numerous of quality measures, such
as, Correct Classification Rate (CCR), Average Squared
Classification Error (ASCE), Time of execution, and Num-
ber of Parameters; where the best model is the one with
the highest CCR, see [5, 17, 7, 19] for more details. The
performance of the support vector machines classifier is in-
vestigated against K-nearest neighbor (KNN), feedforward
neural networks (FFN), probabilistic networks (PNN), and
linear/non-linear logistic regression (LR) classifiers using
both real-world applications and simulation studies. For
the sake simplicity, we recorded only these investigations
on growth/no-growth state of a pathogenic Escherichia coli
R31 in response to temperature and water with some of the
quality measures as it is shown in Section 3.

3 Implementation and Comparative Studies
3.1 Initialization

In this implementation and comparative study, the support
vector machines with the Gauessian kernel function is tested
using the growth and non growth state of a pathogenic Es-
cherichia coli R31 in response to temperature and water
database. This data set can be downloaded from UC-Irvine
2. In this implementation, we use both stratified Sampling
and cross-validation (internal and external validation) tech-
niques to make sure that we get the same proportion from
each group as in the original data. We repeat the estimation
and validation processes for 1000 times using MATLAB V7
under Pentium M personal computer, then compute all the
quality measures for the investigated classifiers. Next, we
summarize the results by computing the average, the stan-
dard deviation, and the coefficient of variation of each qual-
ity measure over these 1000 runs.

We draw a graph for the mean of CC'R versus its standard
deviation over the 1000 runs. This graph helps us to decide
which classifier is better in its performance. In this plot,
each classifier is represented by a symbol. A good classi-
fier should appear in the upper left corner of the graph. In
addition, corresponding to these graphs, we summarize the
results in Tables. In these Tables, the highest CCR’s are
given in boldface.

3.2 E. Coli Strain Database

We apply all eight classifiers to E. Coli Strain Data. This
data set is taken from [20], pertaining to the growth of an
E. Coli Strain R31 as affected by temperature and water

2URL: ftp://ftp.ics.uci.edu/pub/machine-learning-databases.”

activity. The data consist of experimental testing of a to-
tal of 179 cases. Each sample was scored positive ( i.e.,
growth occurred) if it showed an increase in turbidity or de-
posit in the base of the tube. If after 50 days there was nei-
ther turbidity nor deposit, a loop-full of culture was streaked
onto plate count agar to determine if any growth is present
[9]. For any temperature and water activity, combination,
growth was recorded as (y = 1) if it occurred and (y = 0)
if it did not. The data contains 103 growth cases and 76.
As we can see from the scatter plot of the data in Figure 3,
there is some overlap between the two groups.
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Figure 3. E. Coli Strain Data: The scatter plot
of water activity and the temperature

To evaluate the performance of each classifier on E. Coli
Strain data, we use 70% of the data for building the classi-
fication model (internal validation) and 30% of the data for
testing/validation (external validation). The training set has
124 observations ( 50 from group 1 and 74 from group 2),
and the validation set has 55 observations (27 from group
1 and 30 from group 2). We repeat the internal and exter-
nal validation processes for 1000 times. The corresponding
quality measures are shown in Table 1, the corresponding
graphs are shown in Figure 5, and the results are compared
with the one in [9] as well. In this application, numerous of
kernel functions is investigated with different input param-
eters, we recorded only the best ones with the best results.
Figure 4 shows the confusion matrix in both training and
testing, respectively.

Figure 5 shows a scatter plot, where each of the investigated
classifiers is represented by a symbol. The plot represents
the average of CCR versus its standard deviation. A good



Training confusion matrix

Figure 4. The confusion matrix in both train-
ing and testing for the SVMs classifier perfor-
mance

classifier should appear in the upper left corner of the graph.
Table 1 contains the summary of the classifiers quality mea-
sures. The high light CC'R are given in boldface.

For the internal validation purpose, we summarize the out-
put in Table 2. This table contains in the first two columns
the number of correct classified observations in each class,
and the last column contains the correct classification rate,
the highest value is in boldface. The remaining columns
contain the number of misclassified observations in each
class. We observe that the PPN classifier gives the lowest
average CCR value among the classifiers. The FFNN clas-
sifier has the highest value of CCR. Generally, this classi-
fier work well for internal validation in low dimensions. On
the other hand, it has the the highest execution time. The
support vector machines classifier is still one of the high-
est values of the average CCR. All other classifiers perform
more or less the same, with and multiple linear/nonlinear
regression, and K-nearest neighbor.

In the internal validation, we observe that all classifiers giv-
ing close percentage of the CCR, but the neur-fuzzy systems
performance is stable in the high dimensions. On the other
hand, to evaluate the performance of each classifier, we di-
vide the given data into testing and training sets. The re-
sults are summarized by computing average, standard devi-
ation, and the coefficient of variation of each quality mea-
sure over all runs. From Table 1 and Figure 5, we observe
that the three classifiers: logistic regression, support vector
machines, and probabilistic neural network have the small-
est average CCR. These are the worst performance among
all classifiers. The linear discriminant analysis classifier and
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radial basis functions networks are the second worst aver-
age CCR. The FFNN has by far the highest execution time.
This is mainly due to the large number of iterations. Yet,
it the has the third worst performance among all classifiers.
The support vector machines classifier is giving the highest
values of the average CCR.

4. Conclusion and Future Work

Based on the obtained analytical results, we observe that
the the support vector machines classifier with Gaussian
sigmoidal kernel outperforms both feedforward neural net-
works, linear/nonlinear regression, K-nearest neighbors,
and probabilistic networks classifiers in terms of bacte-
ria growth/non-growth accuracy and misclassification costs
and hence provide efficient alternatives to conduct food sci-
ence tasks. The results can also be applied in other industry
applications, such as, Micro-array Genomic, and biomedi-
cal industry.
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