international Joint Conference on Neural Networks

Deductive and Inductive Learning in a
Connectionist Deterministic Parser

Kanaan A. Faisal & Stan C. Kwasny

Center for Intelligent Computer Systems?
Department of Computer Science
‘Washington University, St. Louis, MO 63130

INTRODUCTION

Deterministic Parsing of Natural Language, as performed by PARSIFAL (Marcus, 1980), has shown that such a task
can be conducted under the somewhat severe restriction of the determinism hypothesis using a rule-based approach.
Others have independently extended PARSIFAL to the task of parsing ungrammatical sentences in PARAGRAM
(Charniak, 1983), resolving kexical ambiguities in ROBIE (Milne, 1986), and acquiring syntax in LPARSIFAL
(Berwick, 1985).

Why have these researchers chosen to focus on extensions with these rather narrow goals? The answer, in part, lies
in the general difficulty of the task and the limitations of conventional, symbolic means. We have found it
beneficial to combine these tasks into one implementation which is partly symbolic and partly sub-symbolic. The
results of our experiments hold implications for rule-based expert systems.

A Connectionist Deterministic Parser (CDP) is under development (Kwasny & Faisal, 1989). CDP combines the
and ideas from deterministic parsing together with the generalization and robustness of connectionist,
adaptive (neural) networks. A backpropagation neural network simulator, which features a logistic function that
computes values in the rsnge of ~1 to +1, is being used in this work. The ultimate goal is to produce a parser that
has some reasonable facility with language and does not fail on inputs that are only slightly different from the inputs
it is designed to process.
There are important advantages to constructing rule-based systems using neural networks (Gatlant, 1988). Our
focus is on building a ceanectionist parser, but with more general issues in mind. How successfuily can a connee-
tionist parser be constructed and what are the advantages? Success clearly hinges on the careful selection of train-
ing sequences. Our experiments have examined two different approaches and compared them.

The “‘deductive’ strasegy uses rule ““templates’” derived from the rules of a deterministic grammar. It is deductive
in the sense that it is based on general knowledge in the form of rules although the resultant network is required to
process specific scntences. The *‘inductive’” strategy derives its training sequence from coded examples of sen-
tence processing. It is inductive in the sense that it is based on traces of the processing of specific seatences but is
required to generalize 0 a wider range of examples. The goal of deductive learning initially is to produce a network
which is capable of mimicking the rules on which training is based. The goal of inductive learning initially is to
produce a network which is capable of processing the sentences on which its training is based. Once that learning
has been accomplished, simulation experiments are done to examine certain generalization capabilities of the result-
ing networks.

Deductive training generally perfarms well on all generalization tasks and outperforms inductive training by scoring
generally higher on all experiments. Reasons for this include the specificity of the inductive training data as well as
the lack of a large amount of training data in the inductive case required to provide sufficient variety.

LEARNING A RULE-BASED GRAMMAR

A deterministic parser applies rules t0 a stack and buffer of constituents to generate and perform actions on those
structures. One of its prismary features is that it does not backtrack, but proceeds forward in its processing never
building structures which sre later discarded.

Training of CDP procesds by preseating patterns to the network and teaching it to respond with an i
action using backpropagation (Rumethart, et al, 1986). The input patterns represent encodings of the buffer posi-
tions and the top of the stack from the deterministic parser. The output of the network contains a series of uaits
representing actions %o be performed during processing and judged in a winner-take-all fashion, Network conver-
gence is observed once the network can achieve a perfect score on the training patterns themselves and the erroe
measure has decreased to an acceptable level (set as a parameter).

! The spoasors of the Cester are McDonnell Douglas Corporation and Southwestemn Bell Telephone Company.

IJCNN-90-WASH DC

FAISAL, KWASNY

Oncethenetworkislrained.meweightsarcstoredinaﬁlesothatvm'iousexperimcmscanbeperfonned. Each
sentence receives a score representing the overall average strength of responses during processing. The score for
each processing step is computed as the reciprocal of the error for that step. The error is computed as the Euclidean
distance between the actual output and an idealized output consisting of a =1 value for every oulput unit except the
winning unit which has a +1 value. The errors for each step are summed and averaged over the number of steps.
The average strength is the reciprocal of the average error per step.

Deductive Learning. Each grammar rule is coded as a training template which is a list of feature values, but tem-
plates are not grouped isto rule packets. In general, each constituent is represented by an ordered feature vector in
whichoneornmvﬂnuisON(+1)forfeamresofmefonnandallothervaluesareeitherOFF(d)orDONOT
CARE (?). A rule template is instantiated by randomly changing ? to +1 or -1. Thus, each template represents
many training patterns and each training epoch is slightly different. During training, the network learns the inputs
upon which it can rely in constructing its answers and which inputs it can ignore.

The probability of a ? becoming a +1 or -1 is equal and set at 0.5. Each rule template containing » ?’s can generate
up to 2* training cases. Some rule templates have over 30 ?'s which means they represent approximately 10°
unique training cases. It is obviously impossible to test the performance of all these cases, 50 & zero is substituted
for each 7 wo provide testing patterns. Zero is used since it represents the mean of the range of values seen during
A slightly modified version of the grammar from appendix C of Marcus (1980) was used as a basis for all deductive
training experiments in this paper. This appendix includes the ruics specificaily discussed by Marcus in building his
case for deterministic parsing and can be taken as representative of the mechanisms involved. To assure goad per-
formance by the network, training has ranged from 50,000 to 200,000 presentations cycling through training cases
generated from the rule templates.

Inductive Learning. Inductive leaming begins with training data derived as “‘sentence traces’* of deterministic
parsing steps. Training proceeds by presenting patterns of these steps to the network and teaching it to respond with
an appropriate action. A small set of positive sentence examples were traced which resulted in 64 unique training
patterns, These were used for all inductive experiments in this paper.

This approach can be compared with LPARSIFAL which attempts to learn PARSIFAL rules from examples of posi-
tive evidence (i.c., grammatical sentences). LPARSIFAL starts with a small set of rules and gradually builds up
new rules. In effect, the system is inductively learning the grammar rules from sentence examples. The target for
leaming in LPARSIFAL is the PARSIFAL grammar, LPARSIFAL requires several hundred sentences to acquire
approximately 70% of the parsing rules originally hand-written for the Marcus parser. In our experiments, the net-
work exhibited better than 70% coverage of our rule-based grammar after training on a small number of traces.

NETWORK ARCHITECTURE

Pam:omsistofaﬁstefcymacﬁcfeatmdividedintofourgmupsmmatchﬂwthmebufferposiﬁonsandﬁemp
of the stack. These awe sepresented in a localist manner in the network with each syntactic feature being represenied
by a unit, The choice of a localist representation allows the grammar (o be represented in a very straightforward
manner and permits experimentation with sentence processing in a direct way.

In the sot of experiments deacribed here, the network has a three-layer architecture with 35 input units, 20 hidden
units, and 20 output umits. Each input pattern consists of three feature vectors from the buffer items and one stack
vector. Each vector sctivates 14 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates seven units representing the current node on the stack. In our simplified version of the
grammar, only two items are coded from the buffer and thus 35 input units are sufficient. One hidden layer has pro-
ven sufficient in all of our experiments. The output layer represents the 20 possible actions that can be performed
on each iteration of processing. All weights in the network are initialized 1o random values between ~0.3 and +0.3.

During sentence processing, the network is presented with encodings of the buffer and the top of the stack. What
the model actually sees as inpat is not the raw sentence but a canonical representation of each word in the seatence
in a form that coukl be peoduced by a simple lexicon, although such a lexicon is not part of the model in its preseat
form. The network produces the action to be taken which is then performed. If the action creates a vacancy in the
buffer and if more of the seatence is left 10 be processed then the next sentence component is moved into the buffer.
The process then repeats until a stop action is performed, usually when the buffer becomes empty. Iteration over
the input stream is achieved in this fashion.

LCNN-90-WASH DC

LI 3

FAISAL, KWASNY

PERFORMANCE COMPARISON

CDP is capable of prooessing a variety of simple sentence forms such as simple declarative, simple passive, and
imperative sentences as well as yes-no questions. For test and comparison purposes, several sentences were coded
that would parse cosrectly by the rules of the deterministic parser. Also, several mildly ungrammatical and lexically
ambiguous sentences wese coded to determine if the network would generalize in any useful way. The objective
was to test if the syniactic context could aid in resolving such problems.

TABLE 1: Grammatical Sentsnces Used In Testing

Sentence Form Deductive Average Inductive Average
- Strength Strength
(1) Jolm should have scheduled the meeting. 2833 84.7
(2) Jobm has scheduled the meeting for Monday. 179.3 84.2
(3) Has Join scheduled the meeting? 1322 644
4) Jobm is scheduling the meeting. 2944 835
(5) The boy did hit Jack. 2982 76.2
(6) Schedule the meeting. 2362 67.8
M Maryiskissed. 276.1 849
@ Tom hit(v) Mary. 485.0 80.3
() Tom will(aux) hit(v) Mary. 5475 78.7
(19} They can(v) fish{np). 485.0 803
(11) They can(aux) fish(v). 598.2: 76.8

Parsing Grammatical Sentences. Grammatical sentences, by our definition, are those which parse correctly in the
rule-based grammar from which we derived the training set. Table 1 shows several examples of grammatical sen-
tences which are parsed successfully along with their response strengths in both deductive and inductive learning.
Each example shows a relatively high average strength value, indicating that the training data has been learned.
Also, the deductive average strength value is higher than the corresponding inductive average strength.

TABLE 2: Ungrammatical Sentences Used in Testing

Sentence Form Deductive Average Inductive Aversge
Strength Strength
{12) *John have should scheduled the meeting. 25.1 6.6
{13) *Has John schedule the mecting? 38.1 18.2
(14) *Jobn is schedule the meeting. 4.7 4.9%
(15) *The boy did hitting Jack. 26.6 7.5%

Parsing Ungrammatioal Sentences. An important test of the generalization capabilities of CDP is its response 10
ungrammatical scncences. Such capabilities are strictly dependent upon the experiences of the network during tain-
ing since in deductive waining no relaxation rules were added to the original grammar to handle ungrammatical
cases and in inductive training no ungrammatical sentences were used.

In this set of experiments & few ungrammatical sentences were tested that were similar to the training data and
within the scope of owr sacoding. Table 2 contains examples that have produced reasonable structures when
presented 1o our system along with their response strengths. Note that overall average strength is lower for ungram-
matical sentences when compared to similar grammatical ones.

In sentence (12), the stracture produced was identical to that produced while parsing sentence (1), but with lower
strength in the inductive case. The only difference is that the two auxiliary verbs, have and should, were reversed.
Sen:ence(l3)oonnhudiugreemmtbetwecntheauxﬂiaryhasandtbcmainverbschedu!eandyetﬂwconm&le
grammatical sentence (3) parsed identically in both approaches, but with lower strength again in the inductive
approach.

Sentence (14) can be compared with sentence (4). In the deductive case, a structure similar to that built for sentence
{(4) is indeed constructad. However, in the inductive case (marked with), the network attempts to process ‘is” as if
it were indicating the passive tense. Although this is incorrect for this sentence, it is not an unreasonable choice.
Sentence (15) can be compared with seatence (5), but there is not one clear choice in how the sentence should
appear if grammatical. The deductive-trained network processes sentence (15) as sentence (5), while the inductive
result (marked with §) shows the sentence processed as if it were progressive tense (‘The boy is hitting Jack’). In
PARAGRAM, a nonsensical parse structure is produced for sentence (15), as reported by Chamiak (p. 137).

WCNN-90-WASH DC

FAISAL, KWASNY

TABLE 3: Lexically Ambiguous Sentences Used in Testing

Seatence Form Deductive Average Inductive Average
{Words in <> am presented ambiguously) Strength Strength
{16) <Will> he go? 836 14.3
(17) Tom <will> hit Mary. 118.7 19.9
(18) Tom <hit> Mary. %0 25
(19) They <can> fish. 45 2.6
(20) They can <fish>. 1722 49

Lexical Ambiguity. In 2 final set of experiments, the parser was tested for its ability to aid in the resolution of lexi-
cal ambiguity, Mmmmexwmﬂmsemdwordswmmdedambigmuﬂym
represent an ambiguously stored word from the lexicon. These examples are shown in Table 3. Several of these
examples come from ROBIE.

Sentence (17) contains the word will coded ambiguously as an NP and an auxiliary, modal verb. In the context of
the sentence, it is clearly being used as a modal auxiliary and the parser treats it that way. A similar result was
obtained for sentence (18). In sentence (18), hit is coded to be ambiguous between an NP (as in playing cards) and
averb. The network correctly identifies it as the main verb of the sentence. Sentence (19) presents can ambigu-
ously as an auxiliary, modal, and main verb, while fish is presented uniquely as an NP, Can is processed as the main
verb of the sentence. Compare this example with sentence (10) of Table 1. Here, each word is presented unambi-
guously with can coded as a verb and fish coded as an NP, The same structure results in each case, with the average
strength level much higher in the unambiguous case. By coding fish ambiguously as a verb/NP and coding can
uniquely as an auxiliary, the result obtained is as shown for sentence (20), which is comparable to sentence (1 1).

In the cases shown, the lexically ambiguous words were disambiguated and reasonable structures resulted. Note
that the overall average strengths were lower than comparable grammatical sentences discussed, as expected. Also,
the deductive average sweagth value is higher than inductive average strength.

DISCUSSION

While deductive training exhibits better performance than inductive training for all tasks, there are tradeoffs in the
two approaches. Deductive training requires rules as the basis for rule templates while inductive training requires a
large amount of data to be successful. Fortnately there is a middle ground which allows mixtures of the two train-
ing strategies. Training can be performed using rule templates as well as patterns based on sentence traces. In a
recentsetofexperhminwhichmetwotypesofnuiningdatawerecombined,ﬂlenetwmkwascapableof;m-
eralizing in ways similar 0 deductive learning, but also showed particularly good performance on the specific cases
reflected in the inductive data.

What does this mean for expert systems? Where knowledge naturally exists in rule form and such rules can be reli-
ably stated, rule templates can be formed which generate appropriate training cases. However, where knowledge
only exists in the form of anecdotal cases, it can be expressed in the form of inductive training patterns. As new
cases are discovered for which the rules do not apply, inductive data can be easily construcied and the network re-
trained. Contrast this with the typical rule-based expert system in which each new rule may require re-thinking an
entire set of existing rules.

Our work has shown the Trade-tradeoffs betweea deductive and inductive learning. Both have a place in the con-
struction of a neural aetwork designed to perform a complex rule-based task such as parsing.

REFERENCES
Berwlok, Robert C. (1088). The Acquisition of Syrtactic Knowledge, Cambridge: MIT Press.
Charniak, E (1983). A Parsar with Something for Everyone. In King (Bd.), Parsing Natural Language, New York: Academic Press.
Gatlant, Stephen [(1988). Connectionist Expert Systems. Communications of the ACM 31, 2, 152-169.
Kwasny, 8.C., and Falsal, K.A. (1989). Competition and Leaming in a Connectionist Detorministic Parver. Proceedings of the 11th Anwual
Conference of Cognitive Sciance Society, Atn Arbor, Michigan.
Marcus, M. P. (1080). A Theory of Syntactic Recognition for Natural Language. Cambridge: MIT Press.
MoClelland, J. L, & Rumalhert, D. E. (1988). Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and
Exercises, Cambridge: MTT Press.
Miine, R. (1986). Resolving Lexical Ambiguity in s Deterministic Parser. Computational Lingsistics 12, 1-12.
Rumelhart, D. E,, Hinlon, G, & Williams, R.J. (1986). Leaming Intemal Representations by Error Propagation. Fn Rumelhrt & McClel-
land Parallel Distributed Processing. Cambridge: MIT Press.

WCNN-80-WASH DC

International Joint Conference on Neural Networks

Deductive and Inductive Learning in a
Connectionist Deterministic Parser

Kanaan A. Faisal & Stan C. Kwasny

Center for Intelligent Computer Systems!
Department of Computer Science
Washington University, St. Louis, MO 63130

INTRODUCTION

Deterministic Parsing of Natural Language, as performed by PARSIFAL (Marcus, 1980), has shown that such a task
can be conducted under the somewhat severe restriction of the determinism hypothesis using a rule-based approach.
Others have independently extended PARSIFAL o the task of parsing ungrammatical sentences in PARAGRAM
(Charniak, 1983), resolving lexical ambiguities in ROBIE (Milne, 1986), and acquiring syntax in LPARSIFAL
(Berwick, 1985),

Why have these researchers chosen to focus on extensions with these rather narrow goals? The answer, in part, lies
in the general difficulty of the task and the limitations of conventional, symbolic means. We have found it
beneficial to combine these tasks into one implementation which is partly symbolic and partly sub-symbolic. The
results of our experiments hold implications for rule-based expert systems.

A Connectionist Deterministic Parser (CDP) is under development (Kwasny & Faisal, 1989), CDP combines the
concepts and ideas from deterministic parsing together with the generalization and robustness of connectionist,
adaptive (neural) networks. A backpropagation neural network simulator, which features a logistic function that
computes values in the range of —1 1o +1, is being used in this work. The ultimate goal is to produce a parser that
has some reasonable facility with language and does not £ail on inputs that are only slightly different from the inputs
it is designed to process.

There are important advantages to constructing rule-based systems using neural networks (Gallant, 1988). Our
focus is on building a cennectionist parser, but with more general issues in mind. How successfully can a connec-
tionist parser be constracted and what are the advantages? Success clearly hinges on the careful selection of train-
ing sequences. Our experiments have examined two different approaches and compared them.

The “deductive’ strategy uses rule *‘templates’ derived from the rules of a deterministic grammar. It is deductive
in the sense that it is based on general knowledge in the form of rules although the resuitant network is required to
process specific sentences. The *‘inductive’ strategy derives its training sequence from coded examples of sen-
tence processing, Ixisinductiveinﬂlesensedlatitisbasedonu'awsofﬂwmocessing of specific sentences but is
required to generalize 10 a wider range of examples. The goal of deductive learning initially is to produce & network
which is capable of mimicking the rules on which training is based. The goal of inductive learning initially is to
produce a network whichiscapableofpmcessingthesmwnc&smwhichitslminingisbased, Once that learning
has been accomplished, simulation experiments are done to examine certain generalization capabilities of the result-
ing networks.

Deductive training generally performs well on all generalization tasks and outperforms inductive training by scoring
generally higher on all experiments. Reasons for this include the specificity of the inductive training data as well ag
the lack of a large amount of training data in the inductive case required to provide sufficient variety,

LEARNING A RULE-BASED GRAMMAR

A deterministic parser applies rules to a stack and buffer of constituents to generate and perform actions on those
structures. One of its primary features is that it does not backtrack, but proceeds forward in its processing never
building structures which are later discarded.

Training of CDP proceeds by presenting patterns to the network and teaching it to respond with an appropriate
action using backpropagation (Rumelhart, et al, 1986). The input patterns represent encodings of the buffer posi-
tions and the top of the stack from the deterministic parser. The output of the network contains a series of units
representing actions 1o be performed during processing and judged in a winner-take-all fashion. Network conver-
gence is observed once the network can achieve a perfect score on the training patterns themselves and the error
measure has decreased to an acceptable level (set as a parameter),

1 The sponsors dlheCm-eMcDmmﬂDougluComamionmdSomhwcde]Tdepthmnpmy.

IJCNN-20-WASH DC

FAISAL, KWASNY

Once the network is trained, the weights are stored in a file so that various experiments can be performed. Each
sentence receives a score representing the overall average strength of responses during processing. The score for
each processing step is computed as the reciprocal of the exror for that step. The error is computed as the Euclidean
distance between the actual output and an idealized output consisting of a -1 value for every output unit except the
winning unit which has a +1 value. The errors for each step are summed and averaged over the number of steps.
The average strengh is the reciprocal of the average error per step.

Deductive Learning. Each grammar rule is coded as a training template which is a list of feature values, but tem-
plates are not grouped imto rule packets. In general, each constituent is represented by an ordered feature vector in
whichmwormorevdmisON(ﬂ)forfeamresofmeformandallomervalu&sareeitherOFF(d)orDONOT
CARE (?). A rule templade is instantiated by randomly changing ? to +1 or -1. Thus, each template represents
many training patterns and each training epoch is slighily different. During training, the network iearns the inputs
upon which it can rely in constructing its answers and which inputs it can ignose,

The probability of a ? becoming a +1 or -1 is equal and set at 0.5. Each rule template containing n ?’s can generate
up o 2* training cases. Some rule templates have over 30 ?°s which means they represent approximately 10°
unique training cases. It is obviously impossible 1o test the performance of all these cases, so a zero is substituted
for each ? w provide testing patterns. Zero is used since it represents the mean of the range of values seen during

tralning

A slightly modified version of the grammar from appendix C of Marcus (1980) was used as a basis for all deductive
training experiments in this paper. This appendix incldes the rules specifically discussed by Marcus in building his
case for deterministic parsing and can be taken as representative of the mechanisms involved, To assure good per-
formance by the network, training has ranged from 50,000 to 200,000 presentations cycling through training cases
generated from the rule iemplates.

Inductive Learning. Inductive learning begins with training data derived as *‘sentence traces™” of deterministic
parsing steps. Training proceeds by presenting pattems of these steps to the network and teaching it to respond with
an appropriate action. A small set of positive sentence examples were traced which resulted in 64 unique training
patterns. These were used for all inductive experiments in this paper.

This approach can be compared with LPARSIFAL which attempts to learn PARSIFAL rules from examples of posi-
tive evidence (i.c., grammatical sentences). LPARSIFAL starts with a small set of rules and gradually builds up
new rules. In effect, the system is inductively learning the grammar rules from sentence examples. The target for
leaming in LPARSIFAL is the PARSIFAL grammar. LPARSIFAL requires several hundred sentences 1o acquire
approximately 70% of the parsing rules originally hand-written for the Marcus parser. In our experiments, the net-
work exhibited better than 70% coverage of our rule-based grammar after training on a small number of traces.

NETWORK ARCHITECTURE

Panansoonsistofaliuofsymacticfeatmes,dividedintofourgmupsﬁomatchmeﬂueebuffu'positionsalﬂﬁewp
of the stack. These are represented in a localist manner in the network with each syntactic feature being repeeseated
by a unit, The choice of a localist representation allows the grammar to be represented in a very straightforward
manner and permits experimentation with sentence processing in a direct way.
Inthesetofexpaimudemﬁbedhere.thenetworkhasaﬂuee—layerarchitecmwith35inputun.its,20hidden
units, and 20 output units. Each input pattern consists of three feature vectors from the buffer items and one stack
vector. Each vector activates 14 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates seven units representing the current node on the stack. In our simplified version of the
grammar, only two items are coded from the buffer and thus 35 input units are sufficient. One hidden layer has pro-
ven sufficient in all of our experiments. The output layer represents the 20 possible actions that can be performed
on each iteration of processing. All weights in the network are initialized to random values between ~0.3 and +0.3.

During seatence processing, the network is presented with encodings of the buffer and the top of the stack. What
the model actually sees ag input is not the raw sentence but a canonical representation of each word in the sentence
inafomﬂmtcouldbep@duoedbyasimplelexicon,althoughsuchalexiconisnotpartofthemodelinitspresmt
form. The network produces the action to be taken which is then performed. If the action creates a vacancy in the
buffer and if more of the sentence is left to be processed then the next sentence component is moved into the buffer.
'Ihe;mcmthenrepeusunﬁlaswpacﬁmispafonned,usuailywhenthebufferbecomesempty. Iteration over
the input stream is achieved in this fashion.

WCNN-90-WASH DC

‘L

FAISAL, KWASNY

PERFORMANCE COMPARISON

CDP is capable of processing a variety of simple sentence forms such as simple declarative, simple passive, and
imperative seniences as well ag yes-no questions. For test and comparison purposes, several sentences were coded
that would parse correctly by the rules of the deterministic parser. Also, several mildly ungrammatical and lexically
ambiguous sentences wese coded to determine if the network would generalize in any useful way. The objective
was to test if the syntactic context could aid in resolving such problems.

TABLE 1: Grammatical Sentences Used in Testing

Sentence Form Deductive Average Inductive Average
- Strength Strength
{1} Jobn should have scheduied the moeting. 2833 84.7
(2) Joba has scheduled the meeting for Monday. 179.3 842
(3) Has John scheduled the meeting? 1322 64.4
(4) Jobm is scheduling the meeting. 2944 83.5
(5) The boy did hit Jack. 298.2 762
(6) Schedule the meeting. 236.2 67.8
M Mary iskissed. 276.1 849
(8) Tomm hit(v) Mary. 485.0 803
{9 Toms will(aux) hit{v) Mary. 5415 78.7
{1&) They can(v) fish(np). 485.0 80.3
{11) They can(aux) fish(v). 5982 16.8

Parsing Grammatical Sentences. Grammatical sentences, by our definition, are those which parse correctly in the
rule-based grammar from which we derived the training set. Table 1 shows several examples of grammatical sen-
tences which are parsed successfully along with their response strengths in both deductive and inductive learning.
Each example shows a relatively high average strength value, indicating that the training data has been leamned.
Also, the deductive average strength value is higher than the corresponding inductive average strength.

TABLE 2: Ungrammatical Sentences Usad In Testing

Sentence Form Deductive Average Inductive Average
Strength Strength
(12) *Jobm have should scheduled the meeting. 25.1 6.6
{13) *Has John schedule the meeting? 38.1 18.2
(14) *John is schedule the meeting. 4.7 4.9
(15) *The boy did hitting Jack. 26.6 7.5¢

Parsing Ungrammatical Sentences. An important test of the generalization capabilities of CDP is its response to
ungrammatical senteaces. Such capabilities are strictly dependent upon the experiences of the network during train-
mgﬁmem&ducﬁwnMgmmluaﬁmmkswmaddedmmemigindgmnmmhMemmmmaﬁcd
cases and in inductive training no ungrammatical sentences were used.
Inﬂﬁssetot‘expeﬁmmafewungmmmaﬁcalsemencesweretesteddlatwmsimilartomeuainingdataand
within the scope of our encoding. Table 2 contains examples that have produced reasonable structures when
presented o our system along with their response strengths. Noie that overall average strength is lower for ungram-
matical sensences whea compared to similar grammatical ones.

In senteace (12), the structure produced was identical to that produced while parsing sentence (1), but with lower
strength in the inductive case, The only difference is that the two auxiliary verbs, have and showld, were reversed.
Sentence (13) containg a disagreement between the auxiliary has and the main verb schedule and yet the comparable
grammatical senteace (3) parsed ideatically in both approaches, but with lower strength again in the inductive
approach.

Sentence (14) can be compared with sentence (4). In the deductive case, a structure similar to that built for sentence
(4) is indeed constructed. However, in the inductive case (marked with 1), the network attempts to process ‘is’ as if
it were indicating the passive tense. Although this is incorrect for this sentence, it is not an unreasonable choice.
Sentencc(lS)canbewedwithsmtence(S),butﬂ:misnotoncclearchoioeinhowmesemenceshould
appesr if grammatical. The deductive-trained network processes sentence (15) as sentence (5), while the inductive
result (marked with $) shows the sentence processed as if it were progressive tense (‘The boy is hitting Jack”). In
PARAGRAM, a nonseasical parse structure is produced for sentence (15), as reported by Charniak (p. 137).

JCNN-90-WASH DC

-l

o

W

FAISAL, KWASNY

TABLE 3: Lexically Ambiguous Sentences Used In Testing

Sentence Form Deductive Average Inductive Average
{Words in <> arc presented ambiguously) Strength Strength
(16) <Will> he go? 836 143
(17) Tom <will> hit Mary. 118.7 19.9
(18) Tom <hit> Mary, 39.0 25
(19) They <can> fish. 45 26
(20) They can <fish>. 1722 49

Lexical Ambiguity, Iaaﬁmlsctofe:q)erimems,mepmserwaswstedforitsabilitytoaidinﬂwrmluﬁonoﬂexi-
cal iguity. Grammatical sentences were presented, except that selected words were coded ambiguously to
represent an ambiguously stored word from the lexicon. These examples are shown in Table 3. Several of these
examples come from ROBIE.

Sentence(l7)oonuh|ﬂaewdwillcodedambiguouslyasanNPandanauxiﬁary. modal verb. In the context of
ttwsenmwe.itischnlybemgusedasanwdalauxﬂiaryandmeparsermatsitthatway. A similar result was
obtained for sentence (18). In sentence (18), Ait is coded to be ambiguous between an NP (as in playing cards) and
a verb. The network coerectly identifies it as the main verb of the sentence. Sentence (19) presents can ambigu-
ously as an auxiliary, modal, and main verb, while fis is presented uniquely as an NP. Can is processed as the main
verb of the sentence. Compare this example with sentence (10) of Table 1.” Here, each word is presented unambi-
guously with can coded as a verb and fish coded as an NP. The same structure resulis in each case, with the average
strength level much higher in the unambiguous case. By coding fish ambiguously as a verb/NP and coding can
uniquely as an auxiligry, the result obtained is as shown for sentence (20), which is comparable 10 sentence (11).

In the cases shown, the lexically ambiguous words were disambiguated and reasonable structures resulted. Note
that the overall average strengths were lower than comparable grammatical sentences discussed, as expected. Also,
the deductive average siwength value is higher than inductive average strength,

DISCUSSION

While deductive training exhibits better performance than inductive training for all tasks, there are tradeoffs in the
two approaches. Deductive training requires rules as the basis for rule templates while inductive training requires a
large amount of data te be successful. Fortunately there is a middle ground which allows mixtures of the two train-
ing strategies. Training eaa be performed using rule templates as well as patterns based on sentence traces. Ina
recent set of experiments in which the two types of training data were combined, the network was capable of gen-
eralizing in ways similar to deductive learning, but also showed particularly good performance on the specific cases
reflected in the inductive data.

What does this mean for expert systems? Where knowledge naturally exists in ryle form and such rules can be reli-
ably stated, rule templates can be formed which generate appropriate training cases. However, where knowledge
only exists in the form of anecdotal cases, it can be expressed in the form of inductive training patterns. As new
cases are discovered for which the rules do not apply, inductive data can be easily constructed and the network re-
trained. Conirast this with the typical rule-based expert system in which each new rule may require re-thinking an
entire set of existing rules.

Our work has shown the Trade-tradeoffs between deductive and inductive learning. Both have a place in the con-
struction of a neural network designed to perform a complex rule-based task such as parsing.

REFERENCES
Berwick, Robert C. (1885). The Acquisition of Syntactic Knowledge, Cambridge: MIT Press.
Charnisk, E (1983). A Parser with Something for Everyone. In King (Bd.), Parsing Natural Language, New York: Academic Press.
Gallant, Stephen |. (1988). Connectionist Expen Systems. Commumications of the ACM 31,2, 152-169.
Kwasny, 8.C.,, and Falaal, K.A. (1989). Competition and Leaming in a Connectionist Detenministic Parser. Proceedings of the 11th Amwual
Conference of Cognitive Scisnce Society, Ann Arbor, Michigan.
Marcus, M. P. {(1980). A Theory of Syntactic Recognition for Natural Language. Cambridge: MIT Press.
McClslland, J. L., & Rumalhart, . E. (1988). Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and
Exercises, Cambridge: MIT Press.
Milne, R. (1986). Resolving Lexical Ambiguity in a Deterministic Parser. Computational Linguistics 12, 1-12.
Rumethart, D. E., Hinton, G, & Willlams, R.J, (1986). Leaming Internal Representations by Error Propagation. In Rumelhart & McClel-
land Parallel Distribnted Processing. Cambridge: MIT Press.

WCNN-90-WASH DC

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

