
International Joint Conference on Neural Networks

Deductive and Inductive Learning in a
Connectionist Deterministic Parser

Kansan A. Faisal & Stan C. Kwasny

Center for Intelligent Computer Systems'
Department of Computer Science

Washington University, St. Louis, MO 63130

INTRODUCTION

Deterministic Parsing of Natural Language, as performed by PARSIFAL (Marcus, 1980), has shown that such a task
can be conducted under the somewhat severe restriction of the determinism hypothesis using a rule-based approach.
Others have independently extended PARSIFAL to the task of parsing ungrammatical sentences in PARAGRAM
(Chamiak, 1983), resolving lexical ambiguities in ROBIE (Milne, 1986), and acquiring syntax in LPARSIFAL
(Berwick, 1985).

Why have these researches chosen to focus on extensions with these rather narrow goals? The answer , in part, lies
in the general difficulty of the task and the limitations of conventional , symbolic means . We have found it
beneficial to combine these tasks into one implementation which is partly symbolic and partly sub-symbolic. The
results of our experiments hold implications for rule-based expert systems.
A Conrectionist Deterministic Parser (CDP) is under development (Kwasny & Faisal , 1989). CDP combines the
concepts and ideas from deterministic parsing together with the generalization and robustness of connectionist,
adaptive (neural) networks. A backpropagation neural network simulator , which features a logistic function that
computes values in the range of -1 to +1, is being used in this work. The ultimate goal is to produce a parser that
has some reasonable facility with language and does not fail on inputs that are only slightly different from the inputs
it is designed to process.

There are important advantages to constructing rule-based systems using neural networks (Gallant, 1988). Our
focus is on building a e®soectionist parser, but with more general issues in mind. How successfully can a connec-
tionist paver be conshucted and what are the advantages? Success clearly hinges on the careful selection of traia-
ing sequences . Our experiments have examined two different approaches and compared them.
-11M.. deductive" strasegy, aces rule "templates" derived from the rules of a deterministic grammar. It is deductive
in the sense that it is based on general knowledge in the form of rules although the resultant network is required to
process specific senteoa. The "inductive" strategy derives its training sequence from coded examples of sen-
tence processing. It is inductive in the sense that it is based on traces of the processing of specific sentences but is
required to generalize so a wider range of examples . The goal of deductive learning initially is to produce a network
which is capable of mimicking the rules on which training is based . The goal of inductive learning initially is to
produce a network which is capable of processing the sentences an which its training is based. Once that learning
has been accomplished , simulation experiments are done to examine certain generalization capabilities of the resuk-
ing networks.

Deductive training generally performs well on all generalization tasks and outperforms inductive training by scoring
generally higher on all experiments . Reasons for this include the specificity of the inductive training data as well as
the lack of a large anxamt of training data in the inductive case required to provide sufficient variety.

LEARNING A RULE-BASED GRAMMAR

A deterministic parse applies rules to a stack and buffer of constituents to generate and perform actions on those
structures . One of its primary features is that it does not backtrack , but proceeds forward in its processing never
building structures which are later discarded.

Training of CDP proceeds by presenting patterns to the network and teaching it to respond with an appropriate
action using backpsepagation (Rumelhart, et al, 1986). The input patterns represent encodings of the buffer posi-
tions and the top of the sack from the deterministic parser . The output of the network contains a series of units
representing actions so be performed during processing and judged in a winner -take-all fashion . Network conver-
gence is observed once the network can achieve a perfect score on the training patterns themselves and the am
measure has decreased to an acceptable level (set as a parameter).

I The Wonsan of the Cmw am McDonnell Douglas Corpomm and Southwestern Bell Telephone Company.

WCNN-90-WASH DC

FAISAL, KWASNY

Once the network is trained , the weights are stored in a file so that various experiments can be performed. Each
sentence receives a woes representing the overall average strength of responses during processing. The score for
each processing stop is computed as the reciprocal of the error for that step . The error is computed as the Euclidean
distance between the actual output and an idealized output consisting of a -1 value for every output unit except the
winning unit which has a +1 value. The errors for each step are summed and averaged over the number of steps.
The average strength is the reciprocal of the average error per step.
Deductive Lsarnitg . Each grammar rule is coded as a training template which is a list of feature values , but tem-
plates are not grouped into rule packets. In general , each constituent is represented by an ordered feature vector in
which one or more values is ON(+1) for features of the form and all other values are either OFF(-1) or DO NOT
CARE (?). A rule emplace is instantiated by randomly changing ? to +1 or -1 . Thus, each template represents
many training paw aad each training epoch is slightly different. During training, the network learns the inputs
upon which it can rely is constructing its answers and which inputs it can ignore.
The probability of a ? becoming a +1 or -1 is equal and set at 0.5. Each rule template containing is ?'s can generate
up to 20 training cues. Some rule templates have over 30 ?'s which means they represent approximately 109
unique training cases. his obviously impossible to test the performance of all these cases, so a zero is substituted
for each ? to provide testing patterns . Zero is used since it represents the mean of the range of values seen during
training.
A slightly modified version of the grammar from appendix C of Marcus (1980) was used as a basis for all deductive
training experiments in this paper. This appendix includes the mks specifically discussed by Marcus in building his
case for deterministic parsing and can be taken as representative of the mechanisms involved To assure good per-
formance by the network, training has ranged from 50,000 to 200,000 presentations cycling through training cases
generated from the rule templates.
Inductive Learning . Inductive leaning begins with training data derived as "sentence traces" of deterministic
parsing steps. Training proms by presenting patterns of these steps to the network and teaching it to respond with
an appropriate action . A small set of positive sentence examples were traced which resulted in 64 unique training
patterns. These were used for all inductive experiments in this paper.

This approach can be compared with LPARSIFAL which attempts to learn PARSIFAL rules from examples of posi-
tive evidence (i.e., grammatical sentences). LPARSIFAL starts with a small set of rules and gradually builds up
new rules. In effect, the system is inductively Waning the grammar rules from sentence examples. The target for
learning in LPARSIFAL is the PARSIFAL grammar. LPARSIFAL requires several hundred sentences to acquire
approximately 70% of the parsing rules originally hand-written for the Marcos parser. In our experiments , site net-
work exhibited better than 70% coverage of our rule -based grammar after training on a small number of traces.

NETWORK ARCHITECTURE
Patterns consist of a list of syntactic features , divided into four groups to match the three buffer positions and the top
of the a tack . Then an represented in a localist manner in the network with each syntactic featu re being repseenneed
by a unit. The choice of a localist representation allows the grammar to be represented in a very straightforward
manner end permits expermantatkin with sentence processing in a direct way.
In the set of experitteatadescribed here , the network has a three -layer architecture with 35 input units, 20 hidden
units, and 20 output aide. Each input pattern consists of three feature vectors from the buffer items and one stack
vector. Each vector activates 14 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates seven units representing the current node on the stack . In our simplified version of site
grammar, only two ins we coded from the buffer and thus 35 input units are sufficient . One hidden layer has pro-
ven sufficient in all of our experiments . The output layer represents the 20 possible actions that can be performed
on each iteration of processing . All weights in the network are initialized to random values between -0 .3 and +0.3.
During sentence processing , the network is presented with encodings of the buffer and the top of the stack. What
the model actually sees as input is not the raw sentence but a canonical representation of each word in the sentence
in a form that could be produced by a simple lexicon, although such a lexicon is not part of the model in its present
form. The network produces the action to be taken which is then performed . If the action creates a vacancy in the
buffer and if more of she sentence is left to be processed then the next sentence component is moved into the buffer.
The process then ropers until a stop action is performed, usually when the buffer becomes empty. Iteration over
the input stream is achieved in this fashion.

FAISAL, KWASNY

PERFORMANCE COMPARISON
CDP is capable of processing a variety of simple sentence forms such as simple declarative, simple passive, and
imperative sentences as well as yes-no questions . For test and comparison purposes, several sentences were coded
that would parse copy by the rules of the deterministic parser . Also, several mildly ungrammatical and lexically
ambiguous sentences was coded to determine if the network would generalize in any useful way. The objective
was to test if the syntactic context could aid in resolving such problems.

TABLE 1 : Grammatical Sentences Used In Tasting

Sentence Pam Deductive Avenge
Strength

Inductive Avenge
Strength

(1) Jahn should have scheduled the meeting . 283.3 84.7
(2) John has scheduled the meetng for Monday. 179.3 842
(3) Has John scheduled the meeting? 132.2 64.4
(4) John is scheduling the meeting . 294.4 83.5
(5) The boy did hit Jack. 2982 76.2
(6) Schedule the meeting . 2362 67.8
(7) May is kissed. 276.1 84.9
(a) Town hit(v) Mary. 485.0 803
(9) Tawn wll(aux)1,i1(v) Mary. 547.5 78.7

(10) Tbey an(v) 6sh(00 485.0 80.3
(11) They an(aux) 6sh(v). 598.2 76.8

Parsing Grammatical Sentences. Grammatical sentences, by our definition, are those which parse correctly in the
rule-based grammar from which we derived the training set. Table 1 shows several examples of grammatical son-
tences which are paned successfully along with their response strengths in both deductive and inductive learning.
Each example shows a relatively high average strength value , indicating that the training data has been learned.
Also, the deductive average strength value is higher than the corresponding inductive average strength.

TABLE 2 : Ungrammatical Sentences Used In Testing

Sentence Form Deductive Average
Suength

Inductive Average
Strength

(12) .John have should scheduled the meeting . 25.1 6.6
(13) $Hu John schedule the meeting? 38.1 18.2
(14) john is schedule the meeting. 4.7 4.9t
(1S) *Ike boy did hiningg Jack. 26.6 75#

Parsing Ungrammatical Sentences. An important test of the generalization capabilities of CDP is its response to
ungrammatical send. Such capabilities are strictly dependent upon the experiences of the network during soon-
ing since is deductive piping no relaxation rules were added to the original grammar to handle ungrammatical
cases and in inductive twining no ungrammatical sentences were used.

In this set of experiments a few ungrammatical sentences were tested that were similar to to training data and
within the scope of our escthding . Table 2 contains examples that have produced reasonable structures when
presented to our system along with their response strengths . Note that overall average strength is lower for uoram-
matical sentences when compared to similar grammatical ones.
In sentence (12), the structure produced was identical to that produced while parsing sentence (1), but with Iowa
strength in the inducive me. The only difference is that the two auxiliary verbs , have and should, were reversed.
Sentence (13) contains a disagreement between the auxiliary has and the main verb schedule and yet the comparable
grammatical sentence (3) parsed identically in both approaches , but with lower strength again in the inductive
approach.
Sentence (14) can be compared with sentence (4). In the deductive case , a structure similar to that built for sentence
(4) is indeed constructed. However, in the inductive case (marked with t), the network attempts to process 'is' as if
it were indicating the passive tense. Although this is incorrect for this sentence , it is not an unreasonable choice.
Sentence (15) can be compared with sentence (5), but there is not one clear choice in how the sentence should
appear if gram 1. The deductive -trained network processes sentence (15) as sentence (5), while the inductive
result (masked with $) shows the sentence processed as if it were progressive tense ('The boy is hitting Jack'). In
PARAGRAM , a nonsensical parse structure is produced for sentence (15), as reported by Charniak (p. 137).

WCNN-9O-WASH DC

FAISAL, KWASNY

TABLE 3: Lexically Ambiguous Sentences Used In Testing

Sentence Form
(Week in a are presented ambiguously)

Deductive Avenge

strength

Inductive Avenge
Strength

(16) <wib he go? 83.6 14.3
(17) Tons <wib hit Mary . 118.7 19.9
(11) T® chin may. 39.0 2.5
(19) They <cd ash. 4.5 2.6
(J0 They can <gub>. 172.2 4.9

Lexical Ambiguity . Is a timal set of experiments, the parser was tested for its ability to aid in the resolution of lexi-
cal ambiguity. Care aYCal sentences were presented , except that selected words were coded ambiguously to
represent an ambiguously shored word from the lexicon . These examples are shown in Table 3. Several of those
examples came from ROBIE.

Sentence (17) contains the word will coded ambiguously as an NP and an auxiliary , modal verb. In the context of
the sentence , it is dearly being used as a modal auxiliary and the parser treats it that way. A similar result was
obtained for sentence (18). In sentence (18), hit is coded to be ambiguous between an NP (as in playing cards) and
a verb. The network correctly identifies it as the main verb of the sentence. Sentence (19) presents can ambigu-
ously as an auxiliary , model, and main verb, while fish is presented uniquely as an NP. Can is processed as the main
verb of the sentence. Compare this example with sentence (10) of Table 1. Here, each word is presented unambi-
guously with can coded as a verb andfish coded as an NP. The same structure results in each case, with the average
strength level much higher in the unambiguous case. By codingfish ambiguously as a verb/NP and coding can
uniquely as an auxiliary, the result obtained is as shown for sentence (20), which is comparable to sentence (11).
In the cases shown , the lexically ambiguous words were disambiguated and reasonable structures resulted. Note
that the overall aver ge strengths were lower than comparable grammatical sentences discussed, as expected. Also,
the deductive average a* eagth value is higher that inductive average strength.

DISCUSSION
While deductive training exhibits better performance than inductive training for all tasks, there are tradeoffs in the
two approaches. live training requires rules as the basis for rule templates while inductive training requires a
large amount of data to be successful. Fortunately there is a middle ground which allows mixtures of the two train-
ing strategies. Training con be performed using rule templates as well as patterns based on sentence traces. In a
recent set of experimew in which the two types of training data were combined, the network was capable of gen-
eralizing in ways similar so deductive learning, but also showed particularly good performance on the specific cases
reflected in the inductive data.

What does this mew for expert systems? Where knowledge naturally exists in rule form and such rules can be reli-
ably stated, rule templates cos be formed which generate appropriate training cases. However, where knowledge
only exists in the form of anecdotal cases, it can be expressed in the form of inductive training patterns. As new
cases are discovered for which the rules do not apply, inductive data can be easily constructed and the network re-
trained. Contrast this with the typical rule-based expert system in which each new rule may require re-thinking an
entire set of existing rules.

Our work has shown the Trade-tradeoffs between deductive and inductive learning. Both have a place in the con-
struction of a neural network designed to perform a complex rule-based task such as parsing.

REFERENCES
Berwlak, Robed C. (1884 The Acgwaiioa of Sp acsic Knowledge. Cambridge: MIT Press.
Charnlak, E (1983). A Parwwith S ne hmg for Everyone. In King (Ed.X Parsing Manual Langiwge, New Yak: Academic Press.
Gallant, stsphsn 1. (1988. Cosaeaionia Expert Sya®s. Conunuaieations of tie ACM 31, 2, 152-169.
Kwasny, S.C., and Filial, KJL (1989). Compaitim and Leaning in a Connectiomist Deterministic Parser. Proceedings of tie 11th Anneal
Confess {Cognitive Sonae SoaSy, Am Arbor, Michigan.
Marcus, U. P. (1980% A Tieary of Syatactic RecognitionforNamrcal Language. Cambridge: bur Press.
MoCl karA J. L, & Reaessi et, D. E. (1988). Eglorationr in Paraad Distributed Processing: A Handbook of Models, Programs, and
Exercises, Cambridge: MIT hew.
Mine, R. (1988). Raadveeg Lariat Ambiguity in a Deterministic Parser. Computational Lingwirtks 12,1.12.
RumiNrrt, D. E, Hisses, ®., & Williams, R.J. (19884 Learning Internal Representations by Error Propagation. In Rumeihan A McCW-
Lad Pardkl DimibwdPreano g. Cambridge: MIT Press.

International Joint Conference on Neural Networks

Deductive and Inductive Learning in a
Connectionist Deterministic Parser

Kansan A. Faisal & Stan C. Kwasny

Center for Intelligent Computer Systems'
Department of Computer Science

Washington University, St. Louis, MO 63130

INTRODUCTION
Deterministic Parsing of Nat cal Language , as performed by PARSIFAL (Marcus, 1980), has shown that such a task
can be conducted under the somewhat severe restriction of the determinism hypothesis using a rule -based approach.
Others have independently extended PARSIFAL to the task of parsing ungrammatical sentences in PARAGRAM
(Charniak, 1983), resolving lexical ambiguities in ROBIE (Milne , 1986), and acquiring syntax in LPARSIFAL
(Berwick, 1985).

Why have these researchers chosen to focus on extensions with these rather narrow goals? The answer, in part, lies
in the general difficulty of the task and the limitations of conventional, symbolic means. We have found it
beneficial to combine these tasks into one implementation which is partly symbolic and partly sub-symbolic. The
results of our experiments hold implications for rule-based expert systems.
A Connectionist Deterministic Parser (CDP) is under development (Kwasny & Faisal , 1989). CDP combines the
concepts and ideas from deterministic parsing together with the generalization and robustness of comnectiomist,
adaptive (neural) networks. A backpropegation neural network simulator , which features a logistic function that
computes values in the range of -1 to +1 , is being used in this work. The ultimate goal is to produce a parser that
has some reasonable facility with language and does not fail on inputs that are only slightly different from the inputs
it is designed to process.

There are important advantages to constructing rule-based systems using neural networks (Gallant, 1988). Our
focus is on building a coauctionist parser, but with more general issues in mind . How successfully can a cormec-
tionist parser be constructed and what are the advantages ? Success clearly hinges on the careful selection of train-
ing sequences. Our experiments have examined two differernt approaches and compared them.
The "deductive" strategy uses rule "templates" derived from the rules of a deterministic grammar . It is deductive
in the sense that it is based on general knowledge in the form of rules although the resultant network is required to
process specific sentences . The "inductive" strategy derives its training sequence from coded examples of sen-
tence processing. It is inductive in the sense that it is based on traces of the processing of specific sentences but is
required to generalize m a wider range of examples . The goal of deductive learning initially is to produce a network
which is capable of mimicking the rules on which training is based . The goal of inductive learning initially is to
produce a network which is capable of processing the sentences on which its training is based. Once that learning
has been accomplished , simulation experiments are done to examine certain generalization capabilities of the result-
ing networks.

Deductive training generally performs well on all generalization tasks and outperforms inductive training by scoring
generally higher on all experiments . Reasons for this include the specificity of the inductive training data as well as
the lack of a large amount of training data in the inductive case required to provide sufficient variety.

LEARNING A RULE-BASED GRAMMAR
A deterministic parse ' applies rules to a stack and buffer of constituents to generate and perform actions on those
structures. One of as primary features is that it does not backtrack , but proceeds forward in its processing never
building structures which are later discarded.

Training of CDP proceeds by presenting patterns to the network and teaching it to respond with an appropriate
action using backpnpap tiorn (Rumelhart, et al, 1986). The input patterns represent encodings of the buffer po si-tions and the top of the stack from the deterministic parser. The output of the network contains a series of units
representing actions Is be performed during processing and judged in a winner -take-all fashion . Network conver-
gence is observed once the network can achieve a perfect score on the training patterns themselves and the error
measure has decreased torn acceptable level (set as a parameter).

t The npmsa s err the Cain ere McDonnell Douglas Co.paratian and Southwenem Hell Telephone Company.

IJCNN-90-WASH DC

FAISAL, KWASNY

Once the network is trained , the weights are stored in a file so that various experiments can be performed. Each
sentence receives a sows representing the overall average strength of responses during processing . The score for
each processing step is computed as the reciprocal of the error for that step . The error is computed as the Euclidean
distance between the actual output and an idealized output consisting of a -1 value for every output unit except the
winning unit which has a +1 value. The errors for each step are summed and averaged over the number of steps.
The average strength is the reciprocal of the average error per step.
Deductive Learnhp. Each grammar rule is coded as a training template which is a list of feature values, but tem-
plates we not grouped into rule packets . In general, each constituent is represented by an ordered feature vector in
which one or more values is ON(+1) for features of the form and all other values are either OFF(-1) or DO NOT
CARE (?). A rule template is instantiated by randomly changing ? to +1 or -1 . Thus, each template represents
many training pattern and each training epoch is slightly different . During training , the network learns the inputs
upon which it can rely in constructing its answers and which inputs it can ignore.

The probability of a ? becoming a +1 or -1 is equal and set at 0.5. Each rule template containing is ?'s can generate
up to 2" training cases . Some rule templates have over 30 ?'s which means they represent approximately 109
unique training cases . It is obviously impossible to test the performance of all these cases, so a zero is substituted
for each ? to provide testing patterns. Zero is used since it represents the mean of the range of values seen during
training.

A slightly modified version of the grammar from appendix C of Marcus (1980) was used as a basis for all deductive
training experiments is this paper. This appendix includes the rules specifically discussed by Marcus in building his
case for deterministic parsing and can be taken as representative of the mechanisms involved. To assure good per-
formance by the network, training has ranged from 50,000 to 200 ,000 presentations cycling through training casts
generated from the rule templates.

Inductive Learning . Inductive learning begins with training data derived as "sentence traces" of deterministic
parsing steps. Training proceeds by presenting patterns of these steps to the network and teaching it to respond with
an appropriate action . A small set of positive sentence examples were traced which resulted in 64 unique training
patterns . These wen used for all inductive experiments in this paper.
This approach can be compared with LPARSIFAL which attempts to learn PARSIFAL rules from examples of posi-
tive evidence (i.e., grammatical sentences). LPARSIFAL starts with a small set of rules and gradually builds up
new rules . In effect, the system is inductively learning the grammar rules from sentence examples. The target for
learning in LPARSIFAL is the PARSIFAL grammar. LPARSIFAL requires several hundred sentences to acquire
approximately 70% of the parsing rules originally hand -written for the Marcus parser. In our experiments, the net-
work exhibited better than 70% coverage of our rule -based grammar after training on a small number of traces.

NETWORK ARCHITECTURE
Patterns consist of a list of syntactic features , divided into four groups to match the three buffer positions and the top
of the stack. These an represented in a localist manner in the network with each syntactic feature being represented
by a unit The choice of a localist representation allows the grammar to be represented in a very straightforward
manner and permits experimentation with sentence processing in a direct way.
In the set of experiments described here, the network has a three -layer architecture with 35 input units, 20 hidden
units, and 20 output ueils. Each input pattern consists of three feature vectors from the buffer items and one stack
vector. Each vector activates 14 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates seven units representing the current node on the stack . In our simplified version of the
grammar, only two items we coded from the buffer and thus 35 input units are sufficient One hidden layer has pro-
ven sufficient in all of our experiments. The output layer represents the 20 possible actions that can be performed
on each iteration of processing. All weights in the network are initialized to random values between -0 .3 and +0.3.
During sentence prod, the network is presented with encodings of the buffer and the top of the stack. What
the model actually sees as input is not the raw sentence but a canonical representation of each word in the sentence
in a form that could be produced by a simple lexicon , although such a lexicon is not part of the model in its present
form . The network produces the action to be taken which is then performed . If the action creates a vacancy in the
buffer and if more of the sentence is left to be processed then the next sentence component is moved into the buffer.
The process then repeats until a stop action is performed , usually when the buffer becomes empty . Iteration over
the input stream is achieved in this fashion.

FAISAL, KWASNY

PERFORMANCE COMPARISON
CDP is capable of processing a variety of simple sentence forms such as simple declarative , simple passive, and
imperative sentences as well as yes-no questions. For test and comparison purposes , several sentences were coded
that would Parse corractly by the rules of the deterministic parser . Also, several mildly ungrammatical and lexically
ambiguous sentences wage coded to determine if the network would generalize in any useful way. The objective
was to teat if the syntactic context could aid in resolving such problems.

TABLE 1: Grammatical Sentences Used In Testing

Sentence Foam Deductive Avenge
&rength

Inductive Avenge
Sumngth

(1) John should have scheduled the meeting . 283.3 84.7
(2) John her scheduled the meeting for Monday . 179.3 84.2
(3) Has John scheduled the meeting? 132.2 64.4
(4) John is scheduling the meeting . 294.4 83.5
(5) The boy did hit Jack. 298.2 762
(6) Schedule the meeting . 236.2 67.8
(7) Mary is kissed 276.1 84.9
(8) Ten hh(v) Mary . 485.0 80.3
(9) Tee wal(aux) hit(v) Mary. 5475 78.7

(10) They m(v)ash(np)• 485.0 803
(11) They m(am) 6ah(v). 598.2 76.8

Parsing Grammatical Sentences. Grammatical sentences, by our definition, are those which parse correctly in the
rule-based grammar from which we derived the training set. Table I shows several examples of grammatical am-
tences which are Parsed successfully along with their response strengths in both deductive and inductive learning.
Each exastple shows a relatively high average strength value, indicating that the training data has been learned.
Also, the deductive average strength value is higher than the corresponding inductive average strength.

TABLE 2: Ungrammatical Sentences Used In Testing

Seetence Fore Deductive Avenge
Strength

inductive Avenge

strength
(12) .Jobe have should scheduled the meeting . 25.1 6.6
(13) *Hu John schedule the meeting? 38.1 18.2
(14) john is schedule the meeting . 4.7 4.9t
(15) The boy did hitting Jade 26.6 7.5$

Parsing Ungrammatical Sentences. An important test of the generalization capabilities of CDP is its response to
ungrammatical sentences. Such capabilities are strictly dependent upon the experiences of the network during train-
ing since in deductive raining no relaxation rules were added to the original grammar to handle ungrammatical
cases and in inductive training no ungrammatical sentences were used.

In this set of experiments a few ungrammatical sentences were tested that were similar to the training data and
within the scope of our encoding . Table 2 contains examples that have produced reasonable structures when
presented to our syssew along with their response strengths . Note that overall average strength is lower for wtgrem-
matical sentences when compared to similar grammatical ones.
In sentence (12), the structure produced was identical to that produced while parsing sentence (1), but with lower
strength in the inductive case. The only difference is that the two auxiliary verbs , have and should, were reversed.
Sentence (13) contains a disagreement between the auxiliary has and the main verb schedule and yet the comparable
grammatical sentence (3) parsed identically in both approaches, but with lower strength again in the inductive
approach.
Sentence (14) can be compared with sentence (4). In the deductive can , a structure similar to that built for sentence
(4) is indeed constructed However, in the inductive case (marked with t), the network attempts to process 'is' as if
it were indicating die passive tense . Although this is incorrect for this sentence , it is not an unreasonable choice.
Sentence (15) can be compared with sentence (5), but time is not one clear choice in how the sentence should
appear if grammadeaL The deductive-trained network processes sentence (15) as sentence (5), while the inductive
result (marked with t) slows the sentence processed as if it were progressive tense ('The boy is hitting Jack'). In
PARAGRAM, a nonsensical parse structure is produced for sentence (15), as reported by Charniak (p. 137).

IJCNN-90-WASH DC

FAISAL, KWASNY

TABLE 3 : Lexically Ambiguous Sentences Used In Testing

Sentence Porn
(Worth in o are presented ambiguously)

Deductive Avenge
Strength

Inductive Avenge
Strength

(16) <Will> he go? 83.6 14.3
(17) Tm<willa hit Mary. 11&7 19.9
(18) Tom chip Mary. 39.0 2.5
(19) They <cm> fish 4.5 2.6
(20) They an <fish>. 172.2 4.9

Lexical Ambiguity. In a final set of experiments, the parser was tested for its ability to aid in the resolution of lexi-
cal ambiguity . Grammatical sentences were presented , except that selected words were coded ambiguously to
represent an ambiguously stored word from the lexicon . These examples are shown in Table 3. Several of time
examples come from ROBIE.
Sentence (17) conies the word will coded ambiguously as an NP and an auxiliary , modal verb. In the context ofthe sentence , it is clearly being used as a modal auxiliary and the parser treats it that way . A similar result was
obtained for sentence (18). In sentence (18), hit is coded to be ambiguous between an NP (as in playing cards) and
a verb. The network correctly identifies it as the main verb of the sentence. Sentence (19) presents can ambigu-
ously as an auxiliary, modal, and main verb, whitefish is presented uniquely as an NP. Can is processed as the main
verb of the sentence . Compare this example with sentence (10) of Table 1. Here, each word is presented unambi-
guously with can coded as a verb and fish coded as an NP. The same structure results in each case, with the average
strength level much higher in the unambiguous case. By codingfish ambiguously as a verb/NP and coding can
uniquely as an auxiliary , the result obtained is as shown for sentence (20), which is comparable to sentence (11).
In the cases shown , the lexically ambiguous words were disambiguated and reasonable structures resulted. Note
that the overall average strengths were lower than comparable grammatical sentences discussed, as expected. Also,
the deductive average strength value is higher than inductive average strength.

DISCUSSION
While deductive training exhibits better performance than inductive training for all tasks , there are tradeoffs in the
two approaches . Deductive training requires rules as the basis for rule templates while inductive training requires a
large amount of data to be successful. Fortunately time is a middle ground which allows mixtures of the two train-
ing strategies . Training can be performed using rule templates as well as patterns based on sentence traces. In a
recent set of experiments in which the two types of training data were combined, the network was capable of gen-
eralizing in ways similar to deductive learning , but also showed particularly good performance on the specific cases
reflected in the inductive data.

What does this mean for expert systems? Where knowledge naturally exists in rule form and such rules can be reli-
ably sorted , rule templates can be formed which generate appropriate training cases . However, where knowledge
only exists in the farm of anecdotal cases , it can be expressed in the form of inductive training patterns. As new
cases are discovered for which the rules do not apply , inductive data can be easily constructed and the network re-
trained . Contrast this with the typical rule-based expert system in which each new rule may require re-thinking an
entire set of existing rules.

Our work has shown the Trade-tradeoffs between deductive and inductive learning . Both have a place in the con-
struction of a neural network designed to perform a complex rule -based task such as parsing.

REFERENCES
Berwick, Robed C. (14U). Tin Acquisition ofS3wactc Knowledge, Cambridge : MIT Press.
Charntek, E. (1993). A Pwrwah Something for Everyme . In King (EL). Parting Natwal Laagiwge, New Yost : Academic Paso.
Gallant, Stephan I. (198$. Ca ecsicnist Expen Systems . Cannumkations 'the ACM 31, 2, 152-169.
Kwaany, S.C., and Fataat, K.A. (1989). Canpetitiao and Learning in a Cmoectioout Dete nininic Parsec Proceedings of the 11th Annul
Confernce of Cognitive Selace Society, Am Arbor, Michigm.
Morose, M. P. (1980) AThsay of Syntactic Reeogni ion farNaturnl Language. Cambridge: MIT Press.
McCielard, J. L, & Raaaa9lan, D. E. (1988). E.gikratioae in Parallel Distribaed Processing : A Handbook of Models , Program, end
P-rerciw, Cambridge MIT Pont.
Milne, R. (1989). Reaelvksg finical Ambiguity in a Deterministic Parser. Compudatiorml Lbiguistks 12,1-12.
Rumeatert, D. E., Hates, d, a Wtlama, R.J. (1986). Learning Internal Regarmtxims by brae Prcpagrian . In Rumelhan A McCW-
Lod Parepel Dimibtcd Preonsiry . Cambridge: MIT teas.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

