Lecture 10: TCP Client-Server Programming II
Objectives:

· Learn about the Socket class

· Learn how to write a TCP server using the Socket class
· Learn how to write a TCP client using the Socket class
· Learn how to Handle Text in Socket applications
· Learn about some problems that can occur in TCP and how to handle them.

1.

The Socket class
Although many TCP/UDP client-server applications can be developed using the TcpListener, TcpClient (and UdpClient) classes, to really have full control on the behavior of such applications, one need to use the Socket class.
In particular, the Socket class must be used for applications involving protocols other than TCP/UDP and applications that require asynchronous communications.
This Socket class is in the System.Net.Sockets namespace. It is used to create a socket instance, which can then be used for network communication. The class has methods for creating both server and client sockets.

The constructor of the Socket class has the following format:

public Socket(AddressFamily af, SocketType st, ProtocolType pt)

Each parameter type in the above constructor is an enumeration type in the System.Net.Sockets namespace.

AddressFamily represent the addressing scheme being used for the communication.
Some of the values of this enumeration are: InterNetwork, InterNetworkV6, DataLink, AppleTalk, Ipx, etc.
InterNetwork represent IP v 4 addressing scheme, and our programs in this course will be centered around this address family.

SocketType represnts the type of socket being created, while ProtocolType indicates the type of protocol being used to transfer data on the socket.
In the InterNetwork address family, we have only the following combinations of SocketTypes and ProtocolTypes:

	Socket Type
	Protocol Type
	Description

	Dgram
	Udp
	Connection-less

	Stream
	Tcp
	Connection-oriented

	Raw
	Icmp
	Internet Control Message Protocol

	Raw
	Raw
	Plain IP packets

The following statement shows how to create a Socket instance:

Socket server = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

Methods:

The following are some of the methods of the Socket class. Some of these methods are used by Server sockets while others are for client sockets.

	Method
	Description
	Applicable to

	void Bind(IPEndPoint ep)
	binds a server socket to a local end-point
	Tcp Server

	void Listen(int max)
	listen for clients; max is the maximum number of clients to enqueue, while waiting for connection
	Tcp Server

	Socket Accept()
	connects to a client and returns a reference to the client’s socket
	Tcp Server

	void Connect(IPEndPoint)
	connects to a remote end-point
	Tcp Client

	int Receive(byte[] data)

int Receive(byte[] data, int size, SocketFlags sf)

int Receive(byte[] data, int offset, int size, SocketFlags sf)
	overloaded,: reads bytes from a socket
	Tcp server/client

	int Send(byte[])

int Send(byte[] data, int size, SocketFlags sf)

int Send(byte[] data, int offset, int size, SocketFlags sf)
	overloaded, sends bytes to a socket
	Tcp server/client

	void ReceiveFrom(byte[], ref EndPoint)
	overloaded, receives from a client at EndPoint
	Udp client

	void SentTo(byte[] ref EndPoint)
	overloaded, sends to a client at EndPoint
	Udp client

	void Shutdown(SocketShutdown how)
	Disables sends and receives on a socket
	All

	void Close()
	close a socket.
	All

The following figure shows how some of these methods may be called by a Tcp client-server application.

[image: image1.png]Server

Socket()
v
Bind()
v
Listen()
v
Accept()
v Client
Blocks until a
client connects Socket()
A v
Returns the reference
o the,client's socket +———>_Connect0
* v
Receive) [Sead()
* v
Send) [T | Receive)

* v

Close() Close()

2.

Creating a TCP Server Using the Socket class
The following example shows how to use the Socket class to create a server.

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class SimpleTcpSocketServer {

public static void Main() {

Socket server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9050);

server.Bind(localEP);

server.Listen(10);

Console.WriteLine("Waiting for Client...");

Socket client = server.Accept();

IPAddress clientAddress = ((IPEndPoint)client.RemoteEndPoint).Address;

Console.WriteLine("Got connection from "+clientAddress);

byte[] data = Encoding.ASCII.GetBytes("Welcome to my test server");

client.Send(data);

int dataSize = 0;

while(true) {

 data = new byte[1024];

dataSize = client.Receive(data);

if (dataSize == 0)

break;

Console.WriteLine(Encoding.ASCII.GetString(data,0, dataSize));

client.Send(data, dataSize, SocketFlags.None);

}

client.Close();

server.Close();

}

}

3.

Creating a TCP Client Using the Socket class
The following example shows how to use the Socket class to create a client.

	using System;

using System.Net;

using System.Net.Sockets;

using System.IO;

using System.Text;

class SimpleTcpSocketClient {

public static void Main() {

Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

IPEndPoint remoteEP = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 9050);

try {

socket.Connect(remoteEP);

}catch (SocketException e) {

Console.WriteLine("Unable to connect to server. ");

Console.WriteLine(e);

return;

}

byte[] data = new byte[1024];

int dataSize = socket.Receive(data);

Console.WriteLine(Encoding.ASCII.GetString(data, 0, dataSize));

String input = null;

while (true) {

Console.Write("Enter Message for Server <Enter to Stop>: ");

input = Console.ReadLine();

if (input.Length == 0)

break;

socket.Send(Encoding.ASCII.GetBytes(input));

data = new byte[1024];

dataSize = socket.Receive(data);

Console.WriteLine("Echo: "+ Encoding.ASCII.GetString(data, 0, dataSize));

}

Console.WriteLine("Disconnecting from Server..");

socket.Shutdown(SocketShutdown.Both);

socket.Close();

}

}

Notes:
You need to be aware that by default, the Receive() and Send() methods assume that the bytes array passed to them is full of data.
If some cells in the array are blanks, then you must specify the actual size of the data.
Also by default, these methods assume the data starts from index zero of the array. If this in not the case, then you must specify an offset value.

For example, in the SimpleTcpSocketServer class, two versions of the Send() methods were used.

In the first case, we used the version of the Send() method that takes only the bytes array.
This is because we are sure that the array returned by the GetBytes method in the preceding line has no empty cells.
However, in the second case, we have to use the version of Send() method that takes the size of the data.
This is because we are not sure whether the array returned by the preceding call to the Receive method is full of data or not.

In this case, we should use the version of Send that takes size of data and we should pass to it the actual size returned by the Receive() method.
Of course this value will only be correct if the Send() method is used properly in the client.

4. Handling Text in Socket applications
We saw that the TcpClient class has a method, GetStream(), that returns a NetworkSream instance, which can then be used to create StreamReader and StreamWriter instances. These instances simplify handling text files through their ReadLine() and WriteLine() methods.

Now does the Socket class has a method similar GetStream()? The answer is no. However, the NetworkStream class has a constructor that accepts a Socket instance as argument.
Thus, after accepting a connection from a client (in the case of server) or after connecting to a server (in the case of a client), the resulting socket can be used to create a NetworkStream instance, which can then be used to create StreamReader and StreamWriter instances as before.
The following example shows how to do this.

In the Server:

	Socket client = server.Accept();

IPAddress clientAddress = ((IPEndPoint)client.RemoteEndPoint).Address;

Console.WriteLine("Got connection from "+clientAddress);

NetworkStream stream = new NetworkStream(client);

StreamReader reader = new StreamReader(stream);

StreamWriter writer = new StreamWriter(stream);

In the Client:

	IPEndPoint remoteEP = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 9050);

try {

socket.Connect(remoteEP);

}catch (SocketException e) {

Console.WriteLine("Unable to connect to server. ");

Console.WriteLine(e);

return;

}

NetworkStream stream = new NetworkStream(socket);

StreamReader reader = new StreamReader(stream);

StreamWriter writer = new StreamWriter(stream);

5. Problems to be aware of in TCP Communication

Too Small Buffer Size:
In our simple example, a byte array of 1024 was used as the buffer size for the Send and Receive method calls.
This worked fine because the program was running in a controlled environment. That is both server and client know that the message size will not be more than this size.

In real world however, you may not know the size of the data. So what happens if more data arrives than the buffer size?

Message Boundary Problem:

Another problem with TCP communication is that due to its connection-oriented nature, messages are considered to form a continuous stream of bytes.

This is implemented using TCP internal buffers, which are used to store messages until they are Received/Sent by applications.

The following figure shows this set-up.

[image: image2.png]Server Client
dataz_| send() Receive()
datal | send()
dataz datal dataz datal
TCP Buffer TP buffer

The implication here is that TCP does not respect message boundaries. That is, there is no one-to-one correspondence between number/size of individual messages sent and the number/size of individual messages received.
Of course TCP pair will ensure that no data is lost. The problem is with applications. How will they know how many times they need to read before they collect the whole message?

Solutions:

1. For Text messages only, use ReadLine and WriteLine methods of the StreamReader and StreamWriter classes respectively.

The advantage here is that the WriteLine will insert end-of-line markers in the message and the ReadLine will read one line at a time until there is no more lines to read.

Notice here that the problem of too small buffer does not even arise in this case, since the ReadLine and WriteLine methods will take care of this.

2. Send the size of the message before sending the message. This is applicable for any type of data where Send and Receive methods are used for sending and Receiving.

The idea here is, since the receiver knows the total size of the data, it will read the data in a loop, each time taking note of the actual size returned by the Receive method and updating the amount so far read until the entire size is read.

A loop similar to the following is used.

int total = int.Parse(reader.ReadLine());
byte [] buffer = new byte[1024];

int recv = 0;

int sofar = 0;

while (sofar < total) {

recv = s.Receive(buffer);

process(buffer, recv);

sofar += recv;

}

