Lecture 01: Introduction to C#

Objectives:

· Learn about the .NET Framework and its relation to C#

· Understand the Structure of a C# program – namespace, classes & methods

· Learn about the two categories of data-types – value types and reference types

· Study some basic standard classes: Console, Object and String
1.
The .NET Framework

The .NET Framework is a collection of Software development tools (similar to JDK) that can be used to write, debug, compile and execute programs.

[image: image1.png]Managed

J» o VBNET e Java
Microsoft Intermediate Language
ey Byte Codes
Code Type Garbage
ol i Securty Garbage Collector Securiy
Runtime Services Auntime Services
Windows OS Mac Windos, Unix Linux

0s

It consists of :

· a collection of languages (Visual C# .NET, Visual C++ .NET, Visual Basic .NET, Visual J# .NET)

· compilers, debuggers and other tools.

· Common Language Runtime (CLR – similar to JVM)

When you write a program using C# (or any .NET language), it must first be compiled into an intermediate common language, MSIL (similar to byte codes). Although the resulting file is an EXE, it can only run on a machine that has the CLR installed.

On a machine that has CLR installed, a compiled C# program executes using a JIT. This translates the code from MSIL into machine language (similar to Java interpreter).

You can download the .NET Framework SDK (108MB) freely on this Link.

Note: You must install the .NET Framework Redistributable Package version 1.1 prior to installing the .NET Framework SDK.

Once you have the SDK installed, you can use any editor to write your C# programs. One such good editor (actually an IDE) that is free is SharpDevelop (7.2MB).
A good advantage of this IDE is that it allows you to handle both single files and projects. It also offers code completion and a limited form design features.

An alternative is to get Visual Studio .NET. This comes with the SDK and a Sophisticated IDE (6 CDs) that allows you to develop applications in C# and many other .NET languages.
An advantage here is that you have everything you would need to develop a .NET application whether in C#, Visual C++, or Visual Basic.
One disadvantage is that you must write your application as a project even if it is a simple HelloWorld example. It is also a bit complex to install.

2.
Structure of a C# Program

	using System;

namespace Greeting

{

class SalamShabab

{

public static void Main(string[] args)

{

Console.WriteLine("Salam Shabab");

}

}

}

NameSpaces:

· Classes (also Interfaces, Structs and Enums) are organized hierarchically into namespaces (packages in Java).

· The keyword, namespace, is used to declare a namespace and a pair of braces are used to enclosed all members of a namespace.

· The using keyword is used to indicate that a reference is being made to members of other namespaces. Alternative to the “using” keyword is to use fully qualified name, as is:

System.Console.WriteLine(“Salam Shabab”);

· If a class is not enclosed in a namespace, then it is assumed to be part of a global namespace, which has no name.

· Note: Unlike Java, namespaces are not in any way linked to the directory structure on the file system.

Some of the most important namespaces in the CLR that we shall be encountering are:

	NameSpace
	Description

	System
	Contains classes that implement basic functionalities like Console I/O, mathematical operations, data conversions etc.

	System.IO
	Contains classes used for file I/O operations.

	System.Net
	Contains classes that provide access to Windows network functions.

	System.Net.Sockets
	Contains classes the provides access to windows socket interface

	System.Collections
	Contains classes that implement collections of objects such as linked list, queue, hashtable etc.

	System.Drawing
	Contains classes that provide basic graphics functionalities.

	System.Windows.Forms
	Contains classes for Windows GUI applications

	System.Threading
	Contains classes that are used for multithreading programming.

	System.Web
	Classes that implement HTTP protocol to access web pages.

Classes:

As in Java, a class is declared using the class keyword, and all members of a class must be enclosed within a pair of braces. We discuss more about classes later.

The Main Method:

The Main method is the entry point of a C# application. Like in Java, it must be static. However, in C# it can take three different forms as follows:
public static void Main()

public static void Main(string[] args)

public static int Main(string[] args)

Notice that the first version takes no arguments, the last returns int, and the second is equivalent to what obtains in Java.

Console I/O:

The Console class of the System namespace provides a number of static methods for console IO. Example1 uses the WriteLine method to print the greeting message. There is also a Write method. These two methods are overloaded to take different and variable parameters. The Console class also provided the following methods for reading.

public static int Read() : reads a character
public static string ReadLine(); : reads a line as a string
Naming Conventions:

As we can observe from example1, the naming conventions are a litle different from java naming conventions, although both languages use mixed case when an identifier involves more than one word, eg. WriteLine.

In C#, the convention is to start the name of Namepaces, Classes, Interfaces, Structs, Enums, Properties and Methods with capital letters. Only names of variables start with small letters. Note in particular, that the Main method must start with a capital letter.

3. Value Types:

As in Java, variables in C# are of two types, namely, value types (primitive types) and reference types. A variable of reference type holds the address of an object. A variable of value type holds an actual value. C# has more value types than Java as the following table shows.

	C# Type
	.Net Framework (System) type
	Signed?
	Bytes Occupied
	Possible Values

	sbyte
	System.Sbyte
	Yes
	1
	-128 to 127

	short
	System.Int16
	Yes
	2
	-32768 to 32767

	int
	System.Int32
	Yes
	4
	-2147483648 to 2147483647

	long
	System.Int64
	Yes
	8
	-9223372036854775808 to 9223372036854775807

	byte
	System.Byte
	No
	1
	0 to 255

	ushort
	System.Uint16
	No
	2
	0 to 65535

	uint
	System.UInt32
	No
	4
	0 to 4294967295

	ulong
	System.Uint64
	No
	8
	0 to 18446744073709551615

	float
	System.Single
	Yes
	4
	Approximately ±1.5 x 10-45 to ±3.4 x 1038 with 7 significant figures

	double
	System.Double
	Yes
	8
	Approximately ±5.0 x 10-324 to ±1.7 x 10308 with 15 or 16 significant figures

	decimal
	System.Decimal
	Yes
	12
	Approximately ±1.0 x 10-28 to ±7.9 x 1028 with 28 or 29 significant figures

	char
	System.Char
	N/A
	2
	Any Unicode character (16 bit)

	bool
	System.Boolean
	N/A
	1 / 2
	true or false

As is Java, each of these types is associated with a wrapper class that can be used to box it (or wrap it) into object.

However, unlike in java, boxing is automatic. If a value type is used where a reference type is expected, the associated reference type is automatically assumed. For example, the following is a valid statement:

 Object obj = 3; //equivalent to: Object obj = new Int32(3);

Unboxing however, is not implicit. We need an explicit casting to achieve it:

int n = (int) obj.

Note that we can also call methods on value types. The method of the corresponding wrapper class is automatically called:

Console.WriteLine(3.GetHashCode());

Example 2:

	using System;

namespace DataTypes

{

class ReadingData

{

public static void Main(string[] args)

{

Console.Write("Enter an integer : ");

int i1 = int.Parse(Console.ReadLine());

Console.Write("Enter another integer: ");

int i2 = int.Parse(Console.ReadLine());

Console.WriteLine("Sum: "+i1 + " + " + i2 + " = " + (i1 + i2));

Console.Write("Enter a double : ");

double d1 = Double.Parse(Console.ReadLine());

Console.Write("Enter another double: ");

double d2 = Double.Parse(Console.ReadLine());

Console.WriteLine("Product: {0} x {1} = {2}", d1, d2, (d1 * d2));

Console.ReadLine();

}

}

}

Note that each wrapper class has a Parse method that can be used to covert a string to a corresponding value type and this method can be called either on the value type or on the wrapper class.

Note also that in a WriteLine statement, in addition to using the plus operator to concatenate many strings into one, we can use a sequence of numbers 0, 1, etc., enclosed in braces as place holders for expressions. The string is then followed by the expressions corresponding to the sequence of numbers.

4. Some Important Classes:

The object class:

In C#, every class is either directly or indirectly, a subclass of the object class. In fact, technically, even the value types inherit from the object class, since they exhibit the behaviors of their wrapper classes.

Notice that the object class can be spelt with small or capital O (Object/object).

The following are some of the methods of the object class, which all other classes inherits.

	bool Equals(object)

static bool Equals(object, object)
	Determines whether two Object instances are equal.

	int GetHashCode()
	Serves as a hash function for a particular type, suitable for use in hashing algorithms and data structures like a hash table.

	Type GetType()
	Gets the Type of the current instance.

	static bool ReferenceEquals(object, object)
	Determines whether the specified Object instances are the same instance.

	String ToString()
	Returns a String that represents the current Object.

Note: As in Java, we may need to override the Equals and ToString methods in our classes.

The string class:

The String class in C# is almost identical to String in Java. Objects of type string are immutable, can be created with or without using new, and can be concatenated using the plus operator.

Again, note that string can be spelt with lower of upper case letter S (String/string).

The following are some of the methods of the String class. You may need to check their details in the CLR documentation.
	static int Compare(s1, s2)
	Overloaded. Compares two specified String objects.

	int CompareTo(string)
	Overloaded. Compares this instance with a specified object.

	static string Copy(string)
	Creates a new instance of String with the same value as a specified String.

	bool EndsWith(string)
	Determines if the end of this instance matches the specified String.

	bool Equals(object)
	Overloaded. Overridden. Determines whether two String objects have the same value.

	CharEnumerator GetEnumerator()
	Retrieves an object that can iterate through the individual characters in this instance.

	int IndexOf(char)
int IndexOf(string)
	Overloaded. Reports the index of the first occurrence of a String, or one or more characters, within this instance.

	String Insert(int, string)
	Inserts a specified string at a specified index of this string. Returns the updated string.

	int LastIndexOf(char)
int LastIndexOf(string)
	Overloaded. Reports the index position of the last occurrence of a specified Unicode character or String within this instance.

	String PadLeft(int)
String PadLeft(int, char)
	Overloaded. Right-aligns the characters in this instance, padding on the left with spaces or a specified Unicode character for a specified total length.

	String PadRight(int)
String PadRight(int, char)
	Overloaded. Left-aligns the characters in this string, padding on the right with spaces or a specified Unicode character, for a specified total length.

	String Remove(int index, int count)
	Deletes a specified number of characters from this instance beginning at a specified position.

	String Replace(char, char)
String Replace(string, string)
	Overloaded. Replaces all occurrences of a specified Unicode character or String in this instance, with another specified Unicode character or String.

	String[] Split(char[])
	Overloaded. Identifies the substrings in this instance that are delimited by one or more characters specified in an array, then places the substrings into a String array.

	bool StartsWith(string)
	Determines whether the beginning of this instance matches the specified String.

	String Substring(int start)
String Substring(int start, int count)
	Overloaded. Retrieves a substring from this instance.

	char[] ToCharArray()

	Overloaded. Copies the characters in this instance to a Unicode character array.

	String ToLower()
	Overloaded. Returns a copy of this String in lowercase.

	String ToString()
	Overloaded. Overridden. Converts the value of this instance to a String.

	String ToUpper()
	Overloaded. Returns a copy of this String in uppercase.

	String Trim()
String Trim(char[])
	Overloaded. Removes all occurrences of a set of specified characters from the beginning and end of this instance.

	String TrimEnd(char[])
	Removes all occurrences of a set of characters specified in a Unicode character array from the end of this instance.

	String TrimStart(char[])
	Removes all occurrences of a set of characters specified in a Unicode character array from the beginning of this instance.

Example 4: The following example takes a full path and breaks it into various components.

	using System;

public class FilenameProcessor {

public static void Main(String[] args) {

String fullName = "d:/workarea/lab02/MoveRectangle.java";

char separator = '/';

int dotPosition = fullName.IndexOf('.');

int lastSlashPosition = fullName.LastIndexOf(separator);

Console.WriteLine("The full name is: "+fullName);

String path = fullName.Substring(0, lastSlashPosition);

Console.WriteLine("The path is : "+path);

String fileName = fullName.Substring(lastSlashPosition+1,

 dotPosition-lastSlashPosition-1);

Console.WriteLine("The file name is : "+fileName);

String fileExtension = fullName.Substring(dotPosition+1);

Console.WriteLine("The extension is : "+fileExtension);

}

}

Note that the second argument in the method, String substring(int start, int count), is the number of characters to extract, starting from the first argument.

If your application makes frequent changes to string objects, such as insertion, and replacement of characters, then it may be more efficient to use the StringBuilder class (similar to StringBuffer in Java) which is mutable.

