INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #11: POP and MIME

Objectives:

To gain experience with:

· Receiving mails using POP
· Processing MIME messages.
1.
Overview of POP

The objective of the Post Office Protocol (POP) is to allow users to retrieve their mails from their mail servers to their local machines.

The POP server runs on a well-known port 110.

The protocol provides commands that the client use to communicate with the server.

For each command, the server responds with one of two responses called status indicators;:

“+OK” followed by some textual comments if the commands succeeds, or
“-ERR” followed by textual comments if the command fails.

	Command
	Responses
	Examples

	USER username
	+OK accept message
	USER bmghandi

+OK User name accepted, password please

	PASS password
	+OK welcome message, nn messages

-ERR reject message
	PASS xxxxxxxxx

+OK Mailbox open, 24 messages or

-ERR bad login

	QUIT
	+OK
	QUIT

+OK Server closing connection

	STAT
	+OK nn mm
	STAT

+OK 2 320

	LIST [msg#]
	+OK scan listing follows
-ERR no such message
	LIST
+OK 2 messages (320 octets)
1 120
2 200

...
LIST 2
+OK 2 200

	RETR msg#
	+OK message follows
-ERR no such message
	RETR 1
+OK 120 octets
< the POP3 server sends the entire message here >

	DELE msg#
	+OK message deleted
-ERR no such message
	DELE 2
+OK message deleted

	NOOP
	+OK no transaction
	NOOP
+OK

	RSET
	+OK
	RSET
+OK maildrop has 2 messages (320 octets)

	TOP msg# nn
	+OK top of msg
-ERR
	TOP 1 10
+OK
< first 10 lines of the header >

POP is a stateful protocol with three states as summarized below. At each state, only a subset of the commands can be issued.

State 1: No Connection:

The client needs to establishes a TCP connection with the POP server on port 110.

On successful connection, the server sends a welcome message and enters into the Authorization state.

State 2: Authorization State:

In this state, the client either sends a “QUIT” command to terminate the connection or issues the USER command, followed by the PASS command to login.

Once the login is successful, the server acquires an exclusive access lock on the maildrop, to prevent messages from being modified or removed before the session enters the UPDATE state.

If the lock is successfully acquired, the server responds with a positive status indicator.

If the maildrop cannot be opened for some reason (for example, a lock can not be acquired, the client is denied access.

After the POP3 server has opened the maildrop, it assigns a message number to each message sequentially [1,2,3,…], and notes the size of each message in bytes.

The server then enters into the Transaction State.

State 3: Transaction State:

In the transaction state, the user can issue any of the transaction commands [STAT, LIST, RETR, DELE, NOOP, RSET, TOP] repeatedly until he enters the QUIT command, which puts the server into the update state.

Notes:

· For multi-line responses, such as responses from LIST, RETR and TOP commands, the response lines ends with “.” on a line by itself.

· If a message is marked for deletion with a DELE command, then its message number is not a valid argument for any command. Also the message will not be shown as part of a response.

· While still in the Transaction State, messages marked for deletion can be unmarked by issuing a RSET command.

State 4: Update State:

When the client issues the QUIT command from the TRANSACTION state, the server enters the UPDATE state.

In this state, the server removes any message marked for deletion from the maildrop, then releases the exclusive-access lock on the maildrop and closes the TCP connection.

If a session terminates for some reason other than a client-issued QUIT command, the server does NOT enter the UPDATE state and MUST not remove any messages from the maildrop.

[image: image1.png]——{ (NocConnection) [*
Establish TCP Connection
Quitridle/Error
AUTHORIZATION —
Delete Marked Messages,
Release Resources, ‘Successful Authentication
Terminate Connection # Idle/Error
TRANSACTION

Done With Transactions;
Issue QUIT Command

UPDATE

The following is a sample POP3 conversation using telnet.

	telnet bareed.ccse.kfupm.edu.sa 110

+OK POP3 khuzama v2000.69 server ready

user bmghandi

+OK User name accepted, password please

pass xxxxxxxxxx //password in plain text
+OK Mailbox open, 24 messages

stat

+OK 24 3535201

list

+OK Mailbox scan listing follows

1 355411

2 3733

...//deleted

24 4590

.

top 10 5

+OK Top of message follows

Received: from khuzama.ccse.kfupm.edu.sa (localhost [127.0.0.1])

 by khuzama.ccse.kfupm.edu.sa (8.11.0/8.9.3) with ESMTP id

...//deleted

To: <bmghandi@ccse.kfupm.edu.sa>

Subject: SWE344 - Project proposal...

Message-ID: <1070190821.3fc9d0e5c948f@webmail.ccse.kfupm.edu.sa>

Date: Sun, 30 Nov 2003 14:13:41 +0300

From: "Al-Tawfiq, Hani" <st204920@ccse.kfupm.edu.sa>

MIME-Version: 1.0

Content-Transfer-Encoding: 8bit

User-Agent: IMP/PHP IMAP webmail program 2.2.0-pre13

X-Originating-IP: 212.93.193.82

Content-Type: text/plain

Content-Length: 838

Status: RO

Assalam Alaikum

Dear Mr. Ghandi

Eid Mubarak to you. I hope you enjoyed the vacation and I hope you are in good health

.

The following example shows how to write a simple POP client in C#

	using System;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.IO;

namespace MailApplications

{

class SimpleMailReader : System.Windows.Forms.Form

{

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Button btClose;

private System.Windows.Forms.ListBox messages;

private System.Windows.Forms.TextBox hostname;

private System.Windows.Forms.Label label4;

private System.Windows.Forms.Label label;

private System.Windows.Forms.TextBox status;

private System.Windows.Forms.TextBox password;

private System.Windows.Forms.TextBox username;

private System.Windows.Forms.Button btLogin;

private TcpClient client;

private NetworkStream ns;

private StreamReader reader;

private StreamWriter writer;

public SimpleMailReader()

{

InitializeComponent();

}

void btLoginClick(object sender, System.EventArgs e)

{

status.Text = "Checking for messages....";

btLogin.Enabled = false;

btClose.Enabled = true;

string response;

string from = null;

string subject = null;

int messageCount;

try {

client = new TcpClient(hostname.Text, 110);

ns = client.GetStream();

reader = new StreamReader(ns);

writer = new StreamWriter(ns);

response = reader.ReadLine(); //get welcome message

if (response.StartsWith("-ER")){

status.Text = "Unable to connect to server";

return;

}

IssueCommand("User "+username.Text);

IssueCommand("Pass "+password.Text);

response = IssueCommand("Stat");

string[] tokens = response.Split(' ');

messageCount = int.Parse(tokens[1]);

if (messageCount > 0)

status.Text = "You have " + messageCount+ " messages";

else

status.Text = " You have no messages";

for (int i = 1; i<=messageCount; i++) {

IssueCommand("top "+ i + " 0"); //get only the headers

while (true) {

response = reader.ReadLine();

if (response == ".")

break;

if (response.ToLower().StartsWith("from"))

from = response;

else if (response.ToLower().StartsWith("subject"))

 subject = response;

}

messages.Items.Add(i + " "+ from + " "+ subject);

}

}

catch(Exception) {

status.Text = "Unable to connect to server";

}

}

string IssueCommand(string command) {

string response = null;

try {

writer.WriteLine(command);

writer.Flush();

response = reader.ReadLine();

if (response.StartsWith("-ER"))

status.Text = "Unable to connect to server";

}

catch(SocketException) {

status.Text = "Unable to connect to server";

}

return response;

}

void btCloseClick(object sender, System.EventArgs e){

if (ns != null) {

reader.Close();

writer.Close();

ns.Close();

client.Close();

}

Close();

}

void OnGetMessage(object sender, System.EventArgs e) {

string title = (string) messages.SelectedItem;

ShowMessage sm = new ShowMessage(ns, title);

sm.ShowDialog();

}

void InitializeComponent() {

//deleted

}

[STAThread]

public static void Main(string[] args)
{

Application.Run(new SimpleMailReader());

}

}

 }

	using System;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.IO;

using System.Threading;

public class ShowMessage : System.Windows.Forms.Form {

private System.Windows.Forms.TextBox display;

 private NetworkStream ns;

StreamReader reader;

StreamWriter writer;

Thread handler = null;

int messageNumber = 0;

public ShowMessage(NetworkStream ns, string title)
{

InitializeComponent();

this.ns = ns;

reader = new StreamReader(ns);

writer = new StreamWriter(ns);

this.Text = title;

string[] tokens = title.Split(' ');

messageNumber = int.Parse(tokens[0]);

handler = new Thread(new ThreadStart(ReadMessage));

handler.Start();

}

void ReadMessage() {

writer.WriteLine("retr "+messageNumber);

writer.Flush();

string response = reader.ReadLine(); //read the status

response = reader.ReadLine();

string message = "";

while (response != ".") {

message += response + "";

response = reader.ReadLine();

}

display.Text = message;

handler.Abort();

}

void InitializeComponent() {

//deleted

}

 }

2.
Overview of MIME

The original SMTP protocol (RFC 821) and Message Format (RFC 822) were designed to construct mail and send it using only ASCII text.

This was soon found to be very limited since it cannot be used to send binary data or even text data in non-ASCII format.

The Multipurpose Internet Mail Extension (MIME) was designed to extend the capability of SMTP mail but without violating the SMTP standard itself.

That is, the mail is still sent using only ASCII text, but other types of data can be sent by first encoding them into ASCII characters and appending them to the mail.

Some common encoding methods are UUEncoding, BASE64Encoding and quoted-printable.

The MIME protocol provides additional headers that are included in the message body to identify the different parts of a mime-message.

There are six important headers that were introduced to identify MIME messages as follows.

· MIME-Version

· Content-Type

· Content-Transfer-Encoding

· Content-Disposition

· Content-ID

· Content-Description

1.1 MIME-Version:

This is a required header indicating that this message is composed using the MIME protocol.

MIME-Version: 1.0 is the only currently defined MIME-Version header allowed.

The MIME-Version header is a top-level header and does not appear in body parts unless the body part is itself an encapsulated fully formed message of content-type: message/rfc822.
1.2 Content-Type:

This header is used to specify the media (data) type and subtype in the body of a message and to fully specify the representation of such data.

The simple form of this header is: Content-type: type/subtype
e.g: Content-type: image/gif

 Content-type: text/plain; charset="iso-8859-1"

 Content-type:text/html; charset="iso-8859-1"

 Content-type: application/msword

There are seven main types defined, namely: text, image, audio, video, application, multipart and message. A number of sub-types are defined under each of these categories.

An email message may contain more than one of these simple content types at the same time. In that case, at the top of the document, the Content-type: multipart/mixed is used. The format is:

Content-type: multipart/mixed; boundary=”uniqueBoundary”

The body of the message is then divided along the “uniqueBoundary” where each simple content-type is preceded by :

--uniqueBoundary.

Following each boundary, the content type of the part represented in that boundary is specified using the simple format: Content-type: type/subtype

Other headers particular to the part are then specified.

The headers for a given part are then followed by a blank line and then the body of the part.
The end of the multipart document is indicated by:

--uniqueBounday--
An email message may also have alternative parts, where the MUA is expected to select one of the options to display. In that case, the multipart/alternative is used. The format is:

Content-type: multipart/alternative; boundary=”anotherUniqueBoundary”

The “anotherUniqueBoundary” is used to separate between the different alternatives in a similar manner to multipart/mixed.

It is also possible to have both multipart/mixed and multipart/alternative contents at the same time in a nested manner. In this case, the boundaries must be different.

1.3 Content-Transfer-Encoding:

The Content-Transfer-Encoding header describes what encoding is used to encode a particular part of the message body. e.g.: Content-Transfer-Encoding: base64
If a part does not have a Content-Transfer-Encoding header, the content of that part is assumed to be ASCII.

1.4 Content-Disposition:

This is used to provide information about how to present a message or message part by an MUA. The options are inline or attachment.

A bodypart should be marked `inline' if it is intended to be displayed automatically upon display of the message.

Bodyparts can be designated `attachment' to indicate that they are separate from the main body of the mail message, and that their display should not be automatic.

When a body part is to be treated as an attached file, the Content-Disposition header will include a file name parameter.

e.g: Content-Disposition: attachment; filename="saudiflag.gif"

1.5 Content-ID:

Content-ID headers are unique values that identify body parts, individually or as groups. They are necessary at times to distinguish body parts and allow cross-referencing between body parts.

1.6 Content-Description:

This is used to add descriptive text to non-textual body parts.

The following shows a sample of a MIME-message.

	Received: from khuzama.ccse.kfupm.edu.sa (localhost [127.0.0.1])

by khuzama.ccse.kfupm.edu.sa (8.11.0/8.9.3) with ESMTP id h4J8QuH07469

for <bmghandi@ccse.kfupm.edu.sa>; Mon, 19 May 2003 11:26:56 +0300 (Saudi Standard Time)

//deleted

Received: from soldier.ccse.kfupm.edu.sa(196.1.64.147) by ccsevs.ccse.kfupm.edu.sa via csmap

 id 28329; Mon, 19 May 2003 08:29:47 +0000 (UTC)

Received: from icsbmghandi (ics-bmghandi.pc.ccse.kfupm.edu.sa [196.1.65.143])

(authenticated bmghandi (0 bits))

by soldier.ccse.kfupm.edu.sa (8.11.1/8.11.1) with ESMTP id h4J8P6D00647

for <bmghandi@ccse.kfupm.edu.sa>; Mon, 19 May 2003 11:25:06 +0300 (Saudi Standard Time)

Message-ID: <002f01c31de0$57ce6610$8f4101c4@icsbmghandi>

From: "Bashir Mohammed Ghandi" <bmghandi@ccse.kfupm.edu.sa>

To: "Bashir Mohammed Ghandi" <bmghandi@ccse.kfupm.edu.sa>

Subject: Testing Attachement I

Date: Mon, 19 May 2003 11:26:27 +0300

MIME-Version: 1.0

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 6.00.2800.1106

X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1106

Content-Type: multipart/mixed;

boundary="NextPart_000_002B_01C31DF9.7CF57870"

Content-Length: 137705

This is a multi-part message in MIME format.

--NextPart_000_002B_01C31DF9.7CF57870

Content-Type: multipart/alternative;

boundary="NextPart_001_002C_01C31DF9.7CF57870"

--NextPart_001_002C_01C31DF9.7CF57870

Content-Type: text/plain;

charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Salaam,

This is testing attachement.

Please ignore.

Regards,

Bashir

--NextPart_001_002C_01C31DF9.7CF57870

Content-Type: text/html;

charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD>

<META http-equiv=3DContent-Type content=3D"text/html; =

charset=3Diso-8859-1">

<META content=3D"MSHTML 6.00.2800.1141" name=3DGENERATOR>

<STYLE></STYLE>

</HEAD>

<BODY bgColor=3D#ffffff>

<DIV>Salaam,</DIV>

<DIV> </DIV>

<DIV>This is testing =

attachement.</DIV>

<DIV>Please ignore.</DIV>

<DIV> </DIV>

<DIV>Regards,</DIV>

<DIV>Bashir</DIV></BODY></HTML>

--NextPart_001_002C_01C31DF9.7CF57870--

--NextPart_000_002B_01C31DF9.7CF57870

Content-Type: application/msword;

name="KeyboardShortcuts.doc"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="KeyboardShortcuts.doc"

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAACAAAAoQAAAAAAAAAA

EAAAowAAAAEAAAD+////AAAAAJ8AAACgAAAA//

//deleted

AAAAAAAAogEAAAAAAACiAQAAAAAAAKIBAAAAAAAAogEAABQAAAAAAAAAAAAAALYBAAAAAAAAfiwA

AAAAAAB+LAAAAAAAAH4sAAAAAAAAfiwAACwAAACqLAAADAIAALYBAAAAAAAAETYAAO4AAADCLgAA

AA

AAAAAAA=

--NextPart_000_002B_01C31DF9.7CF57870

Content-Type: image/gif;

name="doc1.gif"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="doc1.gif"

R0lGODlhlgBYALMAAABSSgBjWgBrUgBrYwBzUgB7YwhjYwhrYwh7YxBaUiFrY1KllKXOzt739//3

9////ywAAAAAlgBYAAAE/lDISau9OOvNu/9gKI5kaZ5oqq5s675wLM90bd94ru987//AoHBILBqP

//deleted

YC4EYZGnaLSBDQNYxi9QO+Id3DXMmFCVqEQBBjK0VsnHjbOc42yM5s7kQGKABndhiOS5mVm243hE

XwMtNcO8LtjKVs4Bdz/EMWS4UA2wjbSkJ03pSlv60pjOtKY3zelOe/rToA61qEdN6lKb+tScjgAA

ADs=

--NextPart_000_002B_01C31DF9.7CF57870

Content-Type: image/gif;

name="graph1.gif"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="graph1.gif"

R0lGODlhZgHdAPcAAAQCBISChERCRMTCxCQiJKSipGRiZOTi5BQSFJSSlFRSVNTS1DQyNLSytHRy

//deleted

0lcuD2gBQzZQAgB+YHsP+C/4LsDVCTSASzGIwKY0IIHLwc0FXquAZH1qkB3QYKD1vTBxHHWCLNUg

AwGwgAZ4KVCqGdnABwkogYJCgIIXYrjF1XGmgGdQgxBYQHgEQAEOCPA50rq4NgEBADs=

--NextPart_000_002B_01C31DF9.7CF57870--

3.
MIME Parser

You are given a Library file, MimeParser.dll, has been given to you under the Examples subfolder. You can study the details of the implementation (also given to you) at your time.

The purpose of the dll is to parse an e-mail message and decode the various parts into their original format.

The dll contains two classes, which have constructors, properties and methods are described below:

Attachement Class:

	Property: public string FileName
	Returns the Filename of this attachment

	Property: public byte[] Content
	Returns the content of this attachment as array of bytes

MimeParser class:

	Constructor: public MimeParser(StreamReader input)
	Creates an Instance of MimeParser given a StreamReader to the POP server. It assumes that a connection has already been made with the POP server, the RETR command has been issued and a positive response indicator has been read.

	Property: public MailMessage MainMessage
	Returns the main message (not attachment) in this e-mail message.

	Method: public bool HasMoreAttachment()
	Returns true if there are more attachements to be read from this e-mail message and false otherwise.

	Method: public Attachment NextAttachment()
	Returns the next attachment in this e-mail message.

To use the MIME parser above, you need to follow the following steps:

· Connect to a POP server and obtain a socket,

· Use the socket to create StreamReader and StreamWriter objects

· Use the StreamWriter to issue a RETR command to retrieve a particular message and read the response indicator line.

· Use the StreamReader object to create an instance of MimeParser.

· Finally, use the following public property and methods of the MimeParser instance shown below to obtain the Message and the Attachments that may be contained in the message.

public MailMessage MainMessage

public bool HasMoreAttachment()

public Attachment NextAttachment()
4. Tasks:
1. Use the MimeParser dll to modify the ShowMessage a class to create another class, BetterShowMessage, that processes a MIME message and displays its result similar to the following. The attachment files if any, should be saved on the disk.

[image: image2.png]From:

To

ce

Hussam~HZ' <hussamzz@ganab.com>

Attachments

brghandi@ccse kfupm edusa

Subiect [344 Project Proposal

Froposaldoc

Hussam Zahva 995172

T5 Wbyies Fiee Web-based and FOF3
Sign up now: htp:/ /s gawab com

2. Now modify the SimpleMailReader class so that it uses the BetterShowMessage class instead of the ShowMessage class.

PAGE
7

