INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #10: SMTP

Objectives:

To gain experience with:

· Internet E-Mail Format Protocol (RFC 822)
· Simple Mail Transfer Protocol, SMTP (RFC 821)
· Sending mail to SMTP servers directly using Telnet
· Writing an SMTP client to send messages including attachments.
1. Internet Mail Format Protocol (RFC 822)
The RFC 822 describes the structure and content of e-mail messages.

	Headers

	Blank-Line

	Body

The headers control how the message is processed, by specifying the recipients, describing the contents of the message, and providing information about processing done on the message as it was delivered.

Headers:

Headers are similar to http headers, consiting of header-name and values

<header name>: <header value>

Like all RFC 822 lines, headers must be no more than 998 characters; and are recommended to be no more than 78 characters, for readability.

A header can span more than one line, but each continuation line must begin with a “white space” character, such as a space or <Tab>

Example:

To: person1@domain1.org, person2@domain2.com
person3@domain3.net, person4@domain4.edu

The following table lists the headers defined by RFC 822. They are organized into different groups.

	Field Group
	Field Name
	Appearance
	Description

	Origination Date
	Date:
	Mandatory
	Indicates the date and time that the message was made available for delivery by the mail transport system.

	Originator Fields
	From:
	Mandatory
	The e-mail address of the user sending the message. This should be the person who was the source of the message itself.

	
	Sender:
	Optional
	The e-mail address of the person who is sending the electronic mail, if different from the message originator. For example, if person B is sending an e-mail containing a message from person A on A's behalf.

	
	Reply-To:
	Optional
	Used to tell the recipient of this message the address the originator would like the recipient to use for replies. If absent, replies are normally sent back to the From: address.

	Destination Address Field
	To:
	Normally present
	A list of primary recipients of the message.

	
	Cc:
	Optional
	A list of recipients to receive a “copy” of the message.

	
	Bcc:
	Optional
	Contains a list of recipients to receive a “blind carbon copy”. These people receive a copy of the message without other recipients knowing they have received it.

	Identification Fields
	Message-ID:
	Should be present
	Provides a unique code for identifying a message; normally generated when a message is sent.

	
	In-Reply-To:
	Optional, normally present for replies
	When a message is sent in reply to another, the Message-ID: field of the original message is specified in this field.

	
	References:
	Optional
	Identifies other documents related to this message, such as other e-mail messages.

	Informational Fields
	Subject:
	Normally present
	Describes the subject or topic of the message.

	
	Comments:
	Optional
	Contains summarized comments about the message.

	
	Keywords:
	Optional
	Contains a list of comma-separated keywords that may be of use to the recipient.

	Resent Fields
	Resent-Date:
Resent-From:
Resent-Sender:
Resent-To:
Resent-Cc:
Resent-Bcc:
Resent-Message-ID:
	Each time a message is resent, a resent block is required
	These are special fields used only when a message is re-sent by the original recipient to someone else, a process called forwarding.

	Trace Fields
	Received:
Return-Path:
	Inserted by e-mail system
	These fields are inserted by computers as they process a message and transport it from the originator to the recipient.

2. Simple Mail Transfer Protocol (SMTP) – RFC 821
SMTP is the protocol used in exchanging internet e-mails between two Mail Transfer Agents (MTAs) or simply known as mail-servers.

It is also the protocol used by Mail User Agents (MUAs) to forward mails to a local MTA for onward transmission to remote MTAs.

[image: image1.png]E-Mail System
ool database MaxlD(e}lnggent Remote MTAs

POP/IMAP|
v

SMTP
Mail User Agent || Mail Transfer Agent

QMUA) Q4TA) %

=

An SMTP server is normally implemented using TCP and it uses the well-known port 25.

Once a client connects to an SMTP server, the server responds by sending a welcome message. The client can then communicate with the server using one of the following standard commands:

Basic SMTP Commands

	HELO sendinghostname
	Initiates SMTP conversation. The host connecting to the remote SMTP server identifies itself by it's fully qualified host name.

	MAIL From:<source address>
	This is the start of an email message. The source email address is what will appear in the "From:" field of the message.

	RCPT To:<destination address>
	This identifies the recipient of the email message. This command can be repeated multiple times for a given message in order to deliver a single message to multiple recipients.

	DATA
	This indicates the start of the email message body. The stream of data is terminated by a "." on a line by itself.

	QUIT
	This terminates an SMTP connection. Multiple email messages can be transferred during a single connection. To start another email message in the same session, simply issue another "MAIL" command.

	Other commands are: VRFY, EXPN, NOOP, RSET, HELP, etc.

SMTP Extension (RFC 2554)

Due to the problem of spam mails, SMTP has been extended to provide authentication. This is done by adding the AUTH LOGIN command.

This is used to supply username and password (in Base64 encoding).

Both the ITC mail server (smtp.kfupm.edu.sa) and CCSE mail server (mailer.ccse.kfupm.edu.sa) require authentication.

Reply Codes:

For each Command sent to an SMTP server, the sever sends back a single reply consisting of a 3 digit code and a text comment.

As with HTTP, the first digit is important as it denotes the status of the request.
2yz Positive Completion reply : The requested action has been successfully completed. A new request may be initiated.

3yz Positive Intermediate reply : The command has been accepted, but the requested action is being held pending receipt of further information.

4yz Transient Negative Completion reply : The command was not accepted and the requested action did not occur. However, the error condition is temporary and the action may be requested again.

5yz Permanent Negative Completion reply :The command was not accepted and the requested action did not occur. The sender-SMTP is discouraged from repeating the exact request.

Sample Codes and their meaning:

	211
	System status, or system help reply

	 220
	Service ready

	 221
	Service closing transmission channel

	 250
	Requested mail action okay, completed

	 251
	User not local; will forward to

	 354
	Start mail input; end with .

	 421
	Service not available, closing transmission channel.

	 450
	Requested mail action not taken: mailbox unavailable. [E.g., mailbox busy]

	 451
	Requested action aborted: local error in processing

	 452
	Requested action not taken: insufficient system storage

	 500
	Syntax error, command unrecognized.

	 501
	Syntax error in parameters or arguments

	 502
	Command not implemented

	 503
	Bad sequence of commands

	 504
	Command parameter not implemented

	 550
	Requested action not taken: mailbox unavailable. [E.g., mailbox not found, no access]

	 551
	User not local

	 552
	Requested mail action aborted: exceeded storage allocation

	 553
	Requested action not taken: mailbox name not allowed.

	 554
	Transaction failed

Note: The reply text may be longer than a single line; In that case, every line, except the last, must begin with the reply code, followed immediately by a hyphen, "-" (minus), followed by text. The last line will begin with the reply code, followed immediately by <SP>, optionally some text, and <CRLF>.

123-First line

123-Second line

123-234 text beginning with numbers

123 The last line

3. Sample SMTP Session:

The following is a sample client-server conversation. The text in blue is the client input.

Note: To test this sample, you need to use the provided program, Base64Converter to convert you username and password to Base 64 encoding.
	telnet smtp.kfupm.edu.sa 25

220 smtp.kfupm.edu.sa ESMTP ITC-KFUPM MAIL Server ready at Thu, 27 Nov 2003 17:2

2:13 +0300 - SPAM Prohibited

helo localhost

250 smtp.kfupm.edu.sa Hello ics-bmghandi.pc.ccse.kfupm.edu.sa [196.1.65.143], pleased to meet you

auth login

334 VXNlcm5hbWU6

Z21iYXNoaXI=

334 UGFzc3dvcmQ6

c3dlMzQ0MDMx

235 2.0.0 OK Authenticated

MAIL FROM: gmbashir@kfupm.edu.sa

250 2.1.0 gmbashir@kfupm.edu.sa... Sender ok

RCPT TO: bmghandi@yahoo.co.uk

250 2.1.5 bmghandi@yahoo.co.uk... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

From: Bashir Ghandi <gmbashir@kfupm.edu.sa>

Subject: Testing SMTP Server at KFUPM

This is just to test the SMTP server at KFUPM.

Please ignore this mail.

Thanks,

Bashir.

.

250 2.0.0 hAREMDql018976 Message accepted for delivery

quit

221 2.0.0 smtp.kfupm.edu.sa closing connection

Connection to host lost.

4. C# classes for handling e-mails

C# provides three classes in the System.Web.Mail namespace for handling mails, namely: SmtpMail, MailMessage and MailAttachment.

However, SmtpMail class does not support ESMTP which is required by most SMTP servers. We shall use the other two classes and instead SmtpMail, we develop our own class to interact with that SMTP servers.
MailMessage class

This class is used to represent a mail message as an object. It has a number of properties which can be used to construct the message. Some of these are:

	String From
	Gets or sets the from address

	String To
	Gets or sets the semicolon-delimited list of to addresses

	String Subject
	Gets or sets the string for the subject

	String Cc
	Gets or sets the semicolon-delimited list of cc addresses

	String Bcc
	Gets or sets the semicolon-delimited list of bcc addresses

	String Body
	Gets or sets the body of the message

	IList Attachments
	Specifies a collection of one or more attachments objects to add to the message

To construct a mail message, we only need to create an instance of MailMessage using its default constructor and then assign values to its properties.

MailAttachement class

This class is used to represent a mail attachement as an object. It has two constructors as follows:

MailAttachment(string filename)

MailAttachment(string filename, MailEncoding ecncoding)

The first constructor uses UUEncoding by default, while the second allows the desired encoding to be specified. The options are: MailEncoding.Base64 for MIME encoding and MailEncoding.UUEncode for uuencoding.

We shall use the Base64 encoding.

Simple SmtpClient DLL

The idea of SmtpClient class is to provide a high-level class that a user can use to send his message.

The user should only need create instance of the class, supplying the login-details for his SMTP server and then call the send method to send his message. He does not need to know about SMTP protocol.
Note that the SmtpClient class shown below assumes that a MailMessage may contain MailAttachments. However, to understand how Attachements are handled, we must study MIME protocol. MIME is discussed in next lab.

	using System;

using System.Text;

using System.IO;

using System.Net.Sockets;

using System.Net;

using System.Web.Mail;

namespace SMTP

{

public class SmtpClient

{

private string smtpServer;

private string username;

private string password;

public SmtpClient(string server)

{

smtpServer = server;

}

public SmtpClient(string server, string user, string pass)

{

smtpServer = server;

username = user;

password = pass;

}

private enum SMTPResponse: int

{

CONNECT_SUCCESS = 220,

GENERIC_SUCCESS = 250,

DATA_SUCCESS = 354,

QUIT_SUCCESS = 221,

EXCHANGE_SUCCESS = 334,

LOGIN_SUCCESS = 235

}

private void SendData(Socket s, string msg)

{

byte[] data = Encoding.ASCII.GetBytes(msg);

s.Send(data , 0, data.Length, SocketFlags.None);

}

private bool CheckResponse(Socket s, SMTPResponse expectedResponse)

{

string sResponse;

int response;

byte[] bytes = new byte[1024];

int size = s.Receive(bytes, 0, bytes.Length, SocketFlags.None);

sResponse = Encoding.ASCII.GetString(bytes,0, size);

response = int.Parse(sResponse.Substring(0,3));

if(response != (int)expectedResponse)

return false;

return true;

}

public bool Send(MailMessage message)

{

IPHostEntry IPhst = Dns.Resolve(smtpServer);

IPEndPoint endPt = new IPEndPoint(IPhst.AddressList[0], 25);

Socket s= new Socket(AddressFamily.InterNetwork, SocketType.Stream,ProtocolType.Tcp);

s.Connect(endPt);

if(!CheckResponse(s, SMTPResponse.CONNECT_SUCCESS))

{

s.Close();

return false;

}

SendData(s, "HELO "+Dns.GetHostName()+"\r\n");

if(!CheckResponse(s, SMTPResponse.GENERIC_SUCCESS))

{

s.Close();

return false;

}

 //if authentication is required

if (username != null)

{

SendData(s, "AUTH LOGIN\r\n");

CheckResponse(s, SMTPResponse.EXCHANGE_SUCCESS);

SendData(s, Convert.ToBase64String(Encoding.ASCII.GetBytes(username))+"\r\n");

CheckResponse(s, SMTPResponse.EXCHANGE_SUCCESS);

SendData(s, Convert.ToBase64String(Encoding.ASCII.GetBytes(password))+"\r\n");

if(!CheckResponse(s, SMTPResponse.LOGIN_SUCCESS))

{

s.Close();

return false;

}

}

SendData(s, "MAIL From: "+message.From+"\r\n");

if(!CheckResponse(s, SMTPResponse.GENERIC_SUCCESS))

{

s.Close();

return false;

}

string[] Tos= message.To.Split(new char[] {';'});

foreach (string To in Tos)

{

SendData(s, "RCPT TO: " +To+ "\r\n");

if(!CheckResponse(s, SMTPResponse.GENERIC_SUCCESS))

{

s.Close();

return false;

}

}

if(message.Cc!=null)

{

Tos= message.Cc.Split(new char[] {';'});

foreach (string To in Tos)

{

SendData(s, "RCPT TO: " +To+ "\r\n");

if(!CheckResponse(s, SMTPResponse.GENERIC_SUCCESS))

{

s.Close();

return false;

}

}

}

StringBuilder data=new StringBuilder();

data.Append("From: " + message.From + "\r\n");

Tos= message.To.Split(new char[] {';'});

data.Append("To: ");

for(int i=0; i< Tos.Length; i++)

{

data.Append(i > 0 ? "," : "");

data.Append(Tos[i]);

}

data.Append("\r\n");

if(message.Cc!=null)

{

Tos= message.Cc.Split(new char[] {';'});

data.Append("Cc: ");

for(int i=0; i< Tos.Length; i++)

{

data.Append(i > 0 ? "," : "");

data.Append(Tos[i]);

}

data.Append("\r\n");

}

data.Append("Date: ");

data.Append(DateTime.Now.ToString("ddd, d M y H:m:s z"));

data.Append("\r\n");

data.Append("Subject: " + message.Subject+ "\r\n");

data.Append("X-Mailer: SMTPDirect v1\r\n");

string MsgBody = message.Body;

if(!MsgBody.EndsWith("\r\n"))

MsgBody+="\r\n";

//***************begin process attachments*************

if(message.Attachments.Count>0)

{

data.Append("MIME-Version: 1.0\r\n");

data.Append("Content-Type: multipart/mixed; boundary=unique-boundary-1\r\n");

data.Append("\r\n");

data.Append("This is a multi-part message in MIME format.\r\n");

StringBuilder sb = new StringBuilder();

sb.Append("--unique-boundary-1\r\n");

sb.Append("Content-Type: text/plain\r\n");

sb.Append("Content-Transfer-Encoding: 7Bit\r\n");

sb.Append("\r\n");

sb.Append(MsgBody + "\r\n");

sb.Append("\r\n");

foreach(object obj in message.Attachments)

{

MailAttachment a = obj as MailAttachment;

byte[] binaryData;

if(a!=null)

{

FileInfo f = new FileInfo(a.Filename);

sb.Append("--unique-boundary-1\r\n");

sb.Append("Content-Type: application/octet-stream; file=" + f.Name + "\r\n");

sb.Append("Content-Transfer-Encoding: base64\r\n");

sb.Append("Content-Disposition: attachment; filename=" + f.Name + "\r\n");

sb.Append("\r\n");

FileStream fs = f.OpenRead();

binaryData = new Byte[fs.Length];

long bytesRead = fs.Read(binaryData, 0, (int)fs.Length);

fs.Close();

string base64String = System.Convert.ToBase64String(binaryData, 0,binaryData.Length);

for(int i=0; i< base64String.Length ;)

{

int nextchunk=100;

if(base64String.Length - (i + nextchunk) <0)

nextchunk = base64String.Length -i;

sb.Append(base64String.Substring(i, nextchunk));

sb.Append("\r\n");

i+=nextchunk;

}

sb.Append("\r\n");

}

}

sb.Append("--unique-boundary-1--\r\n");

MsgBody=sb.ToString();

}

//*************end process attachments***********

SendData(s, ("DATA\r\n"));

if(!CheckResponse(s, SMTPResponse.DATA_SUCCESS))

{

s.Close();

return false;

}

data.Append("\r\n");

data.Append(MsgBody);

data.Append(".\r\n");

data.Append("\r\n");

data.Append("\r\n");

SendData(s, data.ToString());

if(!CheckResponse(s, SMTPResponse.GENERIC_SUCCESS))

{

s.Close();

return false;

}

SendData(s, "QUIT\r\n");

CheckResponse(s, SMTPResponse.QUIT_SUCCESS);

s.Close();

return true;

}

}

}

5. Simple Mail Application:

The following example makes use of the SmtpClient class to implement a simple mailing application.

	using System;

using System.Windows.Forms;

using System.Web.Mail;

using SMTP;

namespace MyFormProject

{

class SimpleMailer : System.Windows.Forms.Form

{

private System.Windows.Forms.TextBox passBox;

private System.Windows.Forms.Button btSend;

private System.Windows.Forms.Label label6;

private System.Windows.Forms.Label label5;

private System.Windows.Forms.Label label4;

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label label;

private System.Windows.Forms.TextBox toBox;

private System.Windows.Forms.TextBox userBox;

private System.Windows.Forms.TextBox subjectBox;

private System.Windows.Forms.TextBox serverBox;

private System.Windows.Forms.TextBox message;

private System.Windows.Forms.TextBox fromBox;

public SimpleMailer() {

InitializeComponent();

}

void InitializeComponent() {

//deleted

}

[STAThread]

public static void Main(string[] args)
{

Application.Run(new SimpleMailer());

}

void btSendClick(object sender, System.EventArgs e)

{

MailMessage mail = new MailMessage();

mail.From = fromBox.Text;

mail.To = toBox.Text;

mail.Subject = subjectBox.Text;

mail.Body = message.Text;

SmtpClient client = new SmtpClient(serverBox.Text, userBox.Text, passBox.Text);

if (client.Send(mail))

MessageBox.Show("Mail Sent Successfully");

else

MessageBox.Show("Error Sending Message");

}

}

 }

6. Tasks:

1.
Run the provided ToBase64Converter program to convert your username and password to base64 format.

Now try using Telnet to send mail to yourself. You need to use the AUTH LOGIN command to login, providing it with your username and password in base64 format.

2.
Without using the SmtpClient class, write a console application that reads necessary input from the user including a single line message. The application then establishes a connection with the SMTP server and sends the message.

Notes:

· You can use the given InputBox.dll to read the password. It contains a class, InputBox, which has a static method, Show, that you can use as follows:

string password = InputBox.Show("Enter Password: ");

· To reduce the length of the code, write methods ReadInput, SendCommand and ReadResponse to read input from user, send commands to server and receive responses.

· You need to echo on the console all commands sent to the server and their corresponding responses except the password.

3.
Improve the SimpleMailer example so that it can send attachments. You need to provide a browse button which the user can click to browse and locate a file to add as attachment.

[image: image2.png]My Simple Mailer,

SMTPServer |malbr.cosekiupm.edusa

¥ Authentication Requied
Usemame] passward [
From: bmghandi@ccse kfupm.edu.sa
To: [BashitGhandi@yahoo.com
Subject: Testing Sendng Mai wih Attachment
Attachments: ~ [E\Documents and Selfings\cs\Wy Documenis\dosT i Add Altachements
EAD3T\swe344\ab2AE ramples\SWE 344 st
EAD3T\swe 344\ab0E rampleshsaudilag. gt

Selasm.
This s just test.

Thanks.
Bashi|

Note: You can use the OpenFileDialog class browse and select files to attach.

OpenFileDialog dlg = new OpenFileDialog();

dlg.Multiselect = true;

if (dlg.ShowDialog() == DialogResult.OK) {

string[] files = dlg.FileNames;

// display files using list box

}

PAGE
12

