INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #09: Remoting

Objectives:

To gain experience with:

· Creating Remoting Applications Programmatically
· Creating Remoting Applications Declaratively
· Creating an event generating remoting applications
· Differentiate between Server Activated Objects (SAO) and Client Activated Objects (CAO)
1.

Remoting Basics

Remoting is the ability to call a method of an object that is on a different application domain as if it were in the current application domain.

There are two ways an object in one application domain can be made available to another application domain.

(a) Marshall by value (MBV): Serialize the object, transport it to the other domain using streams. At the other end, the object is de-serialized and used.

(b) Marshall by reference (MBR): In this case, the client communicates with the remote object through a proxy, but the object itself remains in its application domain. To the client, the proxy appears as if it is the actual object. However, for each call made to the proxy, the proxy passes the call to the remote object using a communication channel, obtain a result from the remote object and pass same to the client.

[image: image1.png]Client

Server

Client
Application

methad call

Proxy class

Server
Application

C

Gommunication Channel

In this lab, we are concerned with MBR type of remoting.
2.

Creating an MBR Remoting application Programatically
To create an MBR remoting application, the following elements are required.

· A remotable class

· A remoting server

· A remoting client

 Remotable class

This is a class whose methods can be accessed from another application domain. To construct such a class, you need to extend the MashalByRefObject class, which is in the System namespace.

The following is an example of a remotable class.

	using System;

public class MathClass:MarshalByRefObject {

public double Add(double a, double b) {

return a + b;

}

public double Subtract(double a, double b) {

return a - b;

}

public double Multiply(double a, double b) {

return a * b;

}

public double Divide(double a, double b) {

if (b == 0)

return 0;

else

return a/b;

}

}

Note that you need to compile this class into a DLL.

Remoting Server

This is an application that provide remote access to instance(s) of the remotable class. Such an application must do three things as follows:

a. Create a communication channel: This can be done with either the TcpChannel class of System.Runtime.Remoting.Channels.Tcp namespace, or using the HttpChannel class of System.Runtime.Remoting.Channels.Http namespace.

b. Register the communication channel created in (a) with the remoting channel services. This is done by passing the channel to the static method, RegisterChannel, of the ChannelServices class, which is in the System.Runtime.Remoting.Channels namespace.

c. Register the remotable class with the remoting server. This is done by using the static method, RegisterWellKnownServiceType of the RemotingConfiguration class, of the System.Runtime.Remoting namespace. This method takes three arguments:

· The type of the remotable class

· A URI identifier for the class, and

· Object creation mode.

Possible modes are: SingleCall and Singleton, both of which are fields of the WellKnownObjectMode class.

· SingleCall means a separate instance of the remotable class will be created for each call to the remotable class.

· Singleton mode means, a single instance will be used for different calls for all clients. Singleton is useful if you wish to retain the state across different calls.

The following example creates a remoting server for our MathClass:

	using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

public class MathServer {

public static void Main() {

HttpChannel channel = new HttpChannel(9095);

ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(MathClass), //type of Remotable class

 "MyMathServer", //URI – user defined

 WellKnownObjectMode.SingleCall); //Mode

Console.WriteLine("Press <enter> to exit...");

Console.ReadLine();

}

}

Note here that you need to store the MathClass.dll in the same folder as the MathServer.exe

Remoting Client

This is the application that accesses the methods of the remote object through the remoting server.

Such an application again need to do three things to communicate with the remote object:

a. Create a channel. This must be of the same type as that of the remoting server.

b. Register the communication channel created in (a) with the remoting channel services.

c. Creating an instance of the proxy class. The proxy class is like an alias to the remotable class, so all calls to the remotable class are made through the proxy class. Here we have two options:

i. We use the RegisterWellKnownClientType of the RemotingConfiguration class. This takes the type of the remote class and its URI as arguments. Example:

RemotingConfiguration.RegisterWellKnownClientType(

 typeof(MathClass), //type of Remotable class

 "http://localhost:9095/MyMathServer"); //server URI

MathClass math = new MathClass();
ii. Alternatively, we can use the getObject method of the Activator class, which is in the System namespace. Example:

 MathClass math = (MathClass) Activator.GetObject(

typeof(MathClass), "http://localhost:9095/MyMathServer");

Note that in both options (i) and (ii), we need the type of the MathClass for the statements to compile. Thus, we need the MathClass.dll on both the server and the client side.
The Client:
	using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

public class MathClient {

public static void Main(string[] args) {

HttpChannel channel = new HttpChannel();

ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterWellKnownClientType (

 typeof (MathClass), // Remotable class

 "http://localhost:9095/MyMathServer" // URL of remotable class

);

MathClass math = new MathClass();

if (math == null)

Console.WriteLine("Could not locate Server");

else
{

int a = 10; int b = 5;

Console.WriteLine("{0} + {1} = {2}", a, b, math.Add(a, b));

Console.WriteLine("{0} - {1} = {2}", a, b, math.Subtract(a, b));

Console.WriteLine("{0} * {1} = {2}", a, b, math.Multiply(a, b));

Console.WriteLine("{0} / {1} = {2}", a, b, math.Divide(a, b));

Console.ReadLine();

}

}

}

3.
Declarative Configuration of Servers and Clients

That last example shows how to create remoting application programmatically – i.e. by hard-coding the configuration of the server and the client.

The disadvantage of this approach is that if the server is moved to another machine, then the source code must be modified and recompiled.

An alternative approach is to specify the configuration information in text file using XML.
The server and the clients are then written so that they read the configuration information from the XML text files. If there is any change, the text files can be easily modified.

This type of configuration is called declarative configuration.

The following shows how to specify the configuration information in both the server and the client.

//File: MathServer2.config

	<configuration>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel ref="http" port="9090">

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 <service>

 <wellknown mode="Singleton" type="MathClass, MathLibrary"

 objectUri="MyMathServer" />

 </service>

 </application>

 </system.runtime.remoting>

</configuration>

Note: If MathClass is in a namespace, Math, then you must include it in the type specification as: type="Math.MathClass, MathLibrary"

This is particularly important for users of Visual studio where namespace is always created by default.

The above configuration is fairly general. For the most part, you only need to change the port number and service part to reflect your remotable object.

The channel can be http or tcp. Tcp channels uses binary formatting by default, which is faster.

http by default uses soap (Simple Object Access Protocol) format. Soap is more verbose than binary, making it less efficient.

The advantage of http channel is that it can easily pass across firewalls.

A common compromise is to use http with binary format as shown in the above example.

With the above configuration, the MathServer program reduces to few lines as shown below:

	using System;

using System.Runtime.Remoting;

public class MathServer

{

public static void Main() {

RemotingConfiguration.Configure("MathServer2.config");

Console.WriteLine("Math Server started, press Enter to terminate...");

Console.ReadLine();

}

}

Note: You need to manually copy the DLL file to the location of the exe file for the server.

//File: MathClient2.config

	<configuration>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel ref="http" port="0">

 <clientProviders>

 <formatter ref="binary" />

 </clientProviders>

 </channel>

 </channels>

 <client>

 <wellknown type="MathClass, MathLibrary"

 url="http://localhost:9090/MyMathServer" />

 </client>

 </application>

 </system.runtime.remoting>

</configuration>

Again the only part that you may need to change is the client part.

	using System;

using System.Runtime.Remoting;

public class MathClient

{

public static void Main(string[] args)

{

RemotingConfiguration.Configure("MathClient2.config");

MathClass math = new MathClass();

if (math == null)

Console.WriteLine("Could not locate Server");

else

{

int a = 10; int b = 5;

Console.WriteLine("{0} + {1} = {2}", a, b, math.Add(a, b));

Console.WriteLine("{0} - {1} = {2}", a, b, math.Subtract(a, b));

Console.WriteLine("{0} * {1} = {2}", a, b, math.Multiply(a, b));

Console.WriteLine("{0} / {1} = {2}", a, b, math.Divide(a, b));

Console.ReadLine();

}

}

}

4
Server-Activated Objects, SAO vs Client-Activated Objects, CAO
So far we have seen two modes of creating a remotable object: SingleCall and Singleton. Both of these modes are server activated. They are server activated because when a client creates an instance of the remote object, that instance is not created immediately on the server side until a method is actually called.

Another mode available is client-activated. In this mode, an object is created the moment the client uses new to create the object.

Client-activated mode provides two advantages.

· First, it can be used to call a non-default constructor of the remote class. This is not possible in server-activated modes.

· Secondly, it provides a compromise in terms of life-time, between SingleCall and Singleton. In client-activated mode, the object created is unique for each client, moreover, the state of the object is maintained across multiple method calls as long as the client has a reference to the object.

	using System;

public class StopWatch : MarshalByRefObject {

 DateTime start = DateTime.Now;

 public void Start () {

 start = DateTime.Now;

 }

 public int Stop () {

 return (int) ((DateTime.Now - start).TotalMilliseconds);

 }

}

//StopWatchServer.config

	<configuration>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel ref="http" port="8080" />

 </channels>

 <service>

 <activated type="StopWatch, StopWatchLibrary"/>

 </service>

 </application>

 </system.runtime.remoting>

</configuration>

	using System;

using System.Runtime.Remoting;

class StopWatchServer {

static void Main () {

 RemotingConfiguration.Configure("StopWatchServer.config");

 Console.WriteLine ("Press <enter> to terminate...");

 Console.ReadLine ();

 }

}

// StopWatchClient.config

	<configuration>

 <system.runtime.remoting>

 <application>

 <client url="http://localhost:8080">

 <activated type="StopWatch, StopWatchLibrary"/>

 </client>

 <channels>

 <channel ref="http" port="0">

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full"/>

 </serverProviders>

 </channel>

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

	using System;

using System.Runtime.Remoting;

class StopWatchClient {

 static void Main () {

 RemotingConfiguration.Configure("StopWatchClient.config");

 StopWatch sw = new StopWatch ();

 sw.Start ();

 Console.WriteLine ("Press Enter to show elapsed time...");

 Console.ReadLine ();

 Console.WriteLine (sw.Stop () + " millseconds");

Console.ReadLine();

 }

}

Notice the difference in the configuration of client activated modes. The property, activated, is used for both client and server. Also there is no need for URI in the server.

5.
Object life time & Lifetimes Leases

The lifetime of a Singleton server-activated object and that of a client-activated object are controlled by leases.

A lease is an object that implements the ILease interface defined in the System.Runtime.Remoting.Lifetime namespace.

The ILease interface has the following properties:

	Property
	Description

	InitialLeaseTime
	Length of time following activation that the object lives if it receives no method calls

	RenewOnCallTime
	Minimum value that the CurrentLeaseTime is set to each time the object receives a call

	CurrentLeaseTime
	Amount of time remaining before the object is deactivated if it does not receive a method call

The default for InitialLeaseTime is 5 minutes, and the default for RenewOnCallTime is 2 minutes. However, you can override these defaults using either declarative configuration or programmatically as shown by the following:

	using System;

using System.Runtime.Remoting.Lifetime;

public class RemotableClass : MarshalByRefObject {

 public override object InitializeLifetimeService () {

 ILease lease = (ILease) base.InitializeLifetimeService ();

 if (lease.CurrentState == LeaseState.Initial) {

 lease.InitialLeaseTime = TimeSpan.FromMinutes (20);

 lease.RenewOnCallTime = TimeSpan.FromMinutes (10);

 }

 return lease;

 }

 ...

}

	or

	<configuration>

 <system.runtime.remoting>

 <application>

 <lifetime leaseTime="20M" renewOnCallTime="10M" />

 </application>

 </system.runtime.remoting>

</configuration>

Other suffixes you can use are : D for days, H for hours or S for seconds (the default).

To make an object to remain-active continuously, you can override the InitializeLifeTimeServices to return null as follows:

	using System;

public class Foo : MarshalByRefObject {

 public override object InitializeLifetimeService ()

 {

 return null;

 }

 ...

}

6.

Event generating remotable objects.

In addition to calling methods of a remotable objects, a client can also register with an event of a remotable object so that it is notified when such an event occurs.

In this way, it is easy to create a broadcasting system using remoting. All clients register with the remote object’s events. Each time the event occurs – example receiving a message from a client, all registered clients are notified.

To achieve this, we need to make the following additional settings:

· In addition to the DLL for the remotable object, the server must also have the code of the client. It needs this to bind its event with the method defined in the client which is used to register for the event.

· The method that is invoked by the server when the event occurs should be tagged with the [OneWay] attribute. This is a shorthand for OneWayAttribute, which is defined in the System.Runtime.Remoting.Messaging namespace.

Calls to one way methods execute asynchronously. Moreover, the caller will not be notified of the result of the call. Such methods are called fire-and-forget.

Example:

The following shows how to write a simple chat system using event-generating remote object.

The remotable class:

	using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Messaging;

public delegate void MessageHandler(string msg);

public class ChatClass : MarshalByRefObject

{

public event MessageHandler MessageSender;

 public override object InitializeLifetimeService ()

 {

 return null;

 }

[OneWay]

public void SendMessage(string msg) {

if (MessageSender != null)

MessageSender(msg);

}

}

The Chat Client:

	using System;

using System.Windows.Forms;

using System.Runtime.Remoting;

using System.ComponentModel;

namespace MyFormProject

{

public class ChatClient : System.Windows.Forms.Form

{

private System.Windows.Forms.TextBox inBox;

private System.Windows.Forms.Button sendBt;

private System.Windows.Forms.GroupBox groupBox;

private System.Windows.Forms.GroupBox groupBox2;

private System.Windows.Forms.TextBox outBox;

private MessageHandler handler;

private ChatClass chatObject;

public ChatClient()

{

InitializeComponent();

 try {

 RemotingConfiguration.Configure ("ChatClient.config");

 chatObject = new ChatClass();

 handler = new MessageHandler(OnNewMessage);

 chatObject.MessageSender += handler;

 }

 catch (Exception ex) {

 MessageBox.Show (ex.Message);

 Close ();

 }

}

void InitializeComponent() {

//deleted

}

[STAThread]

public static void Main(string[] args)

{

Application.Run(new ChatClient());

}

public void OnSendClicked(object sender, System.EventArgs e)

{

chatObject.SendMessage(outBox.Text);

}

public void OnNewMessage(string msg) {

inBox.Text += msg + "";

}

 protected override void OnClosing (CancelEventArgs e)

 {

 // Disconnect event handler before closing

 base.OnClosing (e);

 chatObject.MessageSender -= handler;

 }

}

 }

7.
Tasks:

1.
Write a remoting application that can be used to count votes in an election. The application should consist of the following components:

· A remotable object, VoteCounter, in a DLL file named, VoteCounterLibrary. The object should have a method Add(int count), that can be used to add votes; and a property, Count, that can be used to set and get the count.

· A server, VoteCounterServer, that can be used to share the object remotely. The object should have indefinite lease time.

· A client, VoteCounterClient, with an interface similar to the following, that can be used to access the remote object.

[image: image2.png]Better Vote Counter

Votes to Add: 3 Icrement | Reset |

Total Votes Counted: [53

2.
In task one, the total votes counted will not be updated until a client makes a call to the server. Improve the application so that each time the votes are updated by a client, all other clients are informed about the update. Name your files as: BetterVoteCounterLibrary, BetterVoteCounterServer and BetterVoteCounterClient.

Note: In both tasks 1 and 2, configure your servers and clients declaratively.

PAGE
9

