INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #07: Multi-Client TCP Client-Server Applications

Objectives:

To gain experience with:

· Creating Multi-Client TCP Servers using:
· Threads,
· ThreadPool and
· Asynchronous methods.
1.

Creating Multi-Client Servers using the Thread class

Since TCP is connection-oriented, for a server to communicate with more than one client at the same time, it needs to handle each client in a separate thread.

To a achieve this, the server is partition into two parts, namely, connection acceptor and connection handler.

The connection acceptor is the main application (main thread) which runs in an infinite loop waiting for a client to connect.

Each time a client connects, the “connection acceptor” accepts the client and then creates an instance of the “connection handler” in a child thread to handle communication with this client.
The connection handler class must have a method that matches the signature of the ThreadStart delegate: void method()

Example 1:

The following example shows a multi-client echo client-server system.

	class MultiThreadedTcpServer

{

public static void Main(string[] args)

{

int port = 9070;

Socket server = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

IPEndPoint endpoint = new IPEndPoint(IPAddress.Any, port);

server.Bind(endpoint);

server.Listen(10);

Console.WriteLine("Waiting for clients on port " + port);

while(true) {

try {

Socket client = server.Accept();

ConnectionHandler handler = new ConnectionHandler(client);

Thread thread = new Thread(new

 ThreadStart(handler.HandleConnection));

thread.Start();

} catch(Exception) {

Console.WriteLine("Connection failed on port "+port);

}

}

}

}

class ConnectionHandler {

private Socket client;

private NetworkStream ns;

private StreamReader reader;

private StreamWriter writer;

private static int connections = 0;

public ConnectionHandler(Socket client) {

this.client = client;

 }

public void HandleConnection() {

try

{

ns = new NetworkStream(client);

reader = new StreamReader(ns);

writer = new StreamWriter(ns);

connections++;

Console.WriteLine("New client accepted: {0} active connections", connections);

writer.WriteLine("Welcome to my server");

writer.Flush();

string input;

while(true) {

input = reader.ReadLine();

if (input.Length == 0 || input.ToLower() == "exit")

break;

writer.WriteLine(input);

writer.Flush();

}

ns.Close();

client.Close();

connections--;

Console.WriteLine("Client disconnected: {0} active connections", connections);

} catch(Exception) {

connections--;

Console.WriteLine("Client disconnected: {0} active connections", connections);

}

}

}

The above server can be tested using any of the Tcp echo client discussed in lab 05.

2.

Creating Multi-Client Servers using the ThreadPool class

Firing a thread to handle each client without any control as we did in the above example can easily make a system to crash. This is because in a single-processor system, the more the number of threads, the less the time allocated for each thread, hence, the slower the system.

To help avoid this problem and also to void the overhead in creating and deleting threads, C# provides the ThreadPool class.

The ThreadPool class provides a set of reusable threads, which are maintained by the system, and which can be used to assigned tasks that is normally done by user threads.

ThreadPool allows a maximum of 25 threads at a time. Any request for a thread is enqueued until threads become available.

The following method of the ThreadPool class is used to assign task to a thread from the ThreadPool.

	static bool QueueUserWorkItem(WaitCallback callBack)

static bool QueueUserWorkItem(WaitCallback callBack, object state)
	Overloaded. Queues a method for execution. The method executes when a thread pool thread becomes available.

Exampe 2:

The following example modifies example 1 above to use ThreadPool.

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.Threading;

using System.IO;

class MultiThreadedTcpServer

{

public static void Main(string[] args)

{

int port = 9070;

Socket server = new Socket(AddressFamily.InterNetwork, SocketType.Stream,

 ProtocolType.Tcp);

IPEndPoint endpoint = new IPEndPoint(IPAddress.Any, port);

server.Bind(endpoint);

server.Listen(10);

Console.WriteLine("Waiting for clients on port " + port);

while(true) {

try {

Socket client = server.Accept();

ConnectionHandler handler = new ConnectionHandler(client);

ThreadPool.QueueUserWorkItem(new WaitCallback(handler.HandleConnection));

} catch(Exception) {

Console.WriteLine("Connection failed on port "+port);

}

}

}

}

	class ConnectionHandler {

private Socket client;

private NetworkStream ns;

private StreamReader reader;

private StreamWriter writer;

private static int connections = 0;

public ConnectionHandler(Socket client) {

this.client = client;

 }

public void HandleConnection(Object state) {

try

{

ns = new NetworkStream(client);

reader = new StreamReader(ns);

writer = new StreamWriter(ns);

connections++;

Console.WriteLine("New client accepted: {0} active connections", connections);

writer.WriteLine("Welcome to my server");

writer.Flush();

string input;

while(true) {

input = reader.ReadLine();

if (input.Length == 0 || input.ToLower() == "exit")

break;

writer.WriteLine(input);

writer.Flush();

}

ns.Close();

client.Close();

connections--;

Console.WriteLine("Client disconnected: {0} active connections", connections);

} catch(Exception) {

connections--;

Console.WriteLine("Client disconnected: {0} active connections", connections);

}

}

}

Notice the change in the signature of the HandleConnection method. The object parameter is used to receive state information incase the second version of the QueueUserWorkItem method is used.
3.
Creating multi-client system using asynchronous methods

So far, our use of the Socket class has been limited to the blocking methods, namely, Accept, Connect, Send and Receive.

Similarly, our use of the FileStream and NetworkStream classes have been limited to the blocking methods, Read and Write.

Blocking can be undesirable in windows applications where controls are expected to be responsive while network communications are taking place.

So far we have solved the problem of blocking by using threads.

An alternative way of avoiding blocking, which is more efficient than using threads, is by using the asynchronous methods of the Socket and Stream classes.

Asynchronous methods split common tasks into two parts, one part is performed using Begin methods and the other by End methods.

The Begin methods start a task asynchronously – That is without blocking.

They take an instance of AsyncCallback delegate and an Object (used to pass state information) as an arguments. This is in addition to other arguments required by their synchronous peers.
When the task is finished, they invoke the delegate passed to them as argument.

The delegate in turn calls its registered method, which will then call the corresponding End method to complete the task and return any values resulting from completing the tasks.

The following are the asynchronous methods of the Socket and Stream classes tabulated based on the tasks they perform.

Socket Class:

	Tasks Started by
	Task
	Task ended by

	BeginAccept(…)
	To accept an incoming connection
	EndAccept(…)

	BeginConnect(…)
	To connect to a remote host
	EndConnect(…)

	BeginReceive(…)
	To receive data from a socket
	EndReceive(…)

	BeginReceiveFrom(…)
	To receive data from a host (UDP)
	EndReceiveFrom(…)

	BeginSend(…)
	To send data to a socket
	EndSend(…)

	BeginSendTo(…)
	To send data to a host (UDP)
	EndSendTo(…)

Stream Class (Note: These methods are inherited by FileStream and NetworkStream classes)

	Tasks Started by
	Task
	Task ended by

	BeginRead(…)
	To start reading from a stream
	EndRead(…)

	BeginWrite(…)
	To start writing to a file
	EndWrite(…)

To see how these methods are used, let as take the BeginAccept and EndAccept methods as example. Rest of the methods work in a similar manner.

The signatures of the BeginAccep and EndAccept methods are as follows:

IAsyncResult BeginAccept(AsyncCallback callBack, Object state)

Socket EndAccept(IAsyncResult result)

The BeginAccept method takes an instance of AsyncCallback delegate and an Object as parameters.

The Object instance is used to pass the state information to the Begin method, which can be retrieved back through the End method.

The BeginAccept method is said to complete its own part of the task when a client’s request for connection is received. At this point, the AsyncCallback delegate instance is invoked.

The AsyncCallback delegate expects as argument, a void method with one parameter of type IAsyncResult.

When the AsyncCallback delegate is invoked, it automatically calls this method, passing it the result of the BeginAccept method through the IAsyncResult parameter.

The IAsyncResult instance received by the method associated with the AsyncCallback delegate has a property, AsyncState which represents the state information passed to the BeginAccept method, using the Object parameter.

Example 3:

The following example uses asynchronous socket methods to implement a windows-based asynchronous TCP echo client and server.

	public class MultiClientAsyncEchoServer : System.Windows.Forms.Form {

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label label;

private System.Windows.Forms.TextBox statusBox;

private System.Windows.Forms.Button startServer;

private System.Windows.Forms.TextBox txtPort;

private System.Windows.Forms.ListBox resultBox;

private Socket server;

private byte[] data = new byte[1024];

private int connections = 0;

public MultiClientAsyncEchoServer(){

InitializeComponent();

}

void startServerClick(object sender, System.EventArgs e)
{

server = new Socket(AddressFamily.InterNetwork, SocketType.Stream,

 ProtocolType.Tcp);

int port = int.Parse(txtPort.Text);

IPEndPoint localEP = new IPEndPoint(IPAddress.Any, port);

server.Bind(localEP);

server.Listen(4);

startServer.Enabled = false;

server.BeginAccept(new AsyncCallback(OnConnected), null);

}

void OnConnected(IAsyncResult result)
{

Socket client = server.EndAccept(result);

connections++;

server.BeginAccept(new AsyncCallback(OnConnected), null);

try
{

statusBox.Text = ""+connections;

byte[] message = Encoding.ASCII.GetBytes("Welcome to my Server");

client.BeginSend(message, 0, message.Length, SocketFlags.None,

 new AsyncCallback(OnDataSent), client);

}

catch(SocketException)
{

CloseClient(client);

}

}

void OnDataSent(IAsyncResult result) {

Socket client = (Socket) result.AsyncState;

try
{

int sent = client.EndSend(result);

client.BeginReceive(data, 0, data.Length, SocketFlags.None,

 new AsyncCallback(OnDataReceived), client);

}

catch(SocketException) {

CloseClient(client);

}

}

void OnDataReceived(IAsyncResult result){

Socket client = (Socket) result.AsyncState;

try
{

int receive = client.EndReceive(result);

if (receive == 0) {

CloseClient(client);

return;

}

else {

string message = Encoding.ASCII.GetString(data, 0, receive);

resultBox.Items.Add(message);

byte[] echoMessage = Encoding.ASCII.GetBytes(message);

client.BeginSend(echoMessage, 0, echoMessage.Length, SocketFlags.None,

 new AsyncCallback(OnDataSent), client);

}

}

catch(SocketException) {

CloseClient(client);

}

}

public void CloseClient(Socket client) {

client.Close();

connections--;

statusBox.Text = ""+connections;

}

public static void Main() {

Application.Run(new MultiClientAsyncEchoServer());

}

void InitializeComponent() {

}

}

	namespace TcpApplications {

public class AsyncTcpClient : System.Windows.Forms.Form

{

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label label;

private System.Windows.Forms.ListBox resultBox;

private System.Windows.Forms.Button connect;

private System.Windows.Forms.Button send;

private System.Windows.Forms.TextBox connectionStatus;

private System.Windows.Forms.Label label4;

private System.Windows.Forms.TextBox txtIP;

private System.Windows.Forms.Button disconnect;

private System.Windows.Forms.TextBox txtPort;

private System.Windows.Forms.TextBox newText;

private byte[] data = new byte[1024];

private Socket client;

public AsyncTcpClient()

{

InitializeComponent();

}

void connectClick(object sender, System.EventArgs e)

{

try

{

connect.Enabled = false;

disconnect.Enabled = true;

send.Enabled = true;

connectionStatus.Text = "Connecting...";

client = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

int port = int.Parse(txtPort.Text);

IPEndPoint remoteEP = new IPEndPoint(IPAddress.Parse(txtIP.Text), port);

client.BeginConnect(remoteEP, new AsyncCallback(OnConnected), null);

}

catch (SocketException)

{

CloseConnection();

}

}

void OnConnected(IAsyncResult result)

{

Try {

client.EndConnect(result);

connectionStatus.Text = "Connected to: "+client.RemoteEndPoint;

client.BeginReceive(data, 0, data.Length,SocketFlags.None,

 new AsyncCallback(OnDataReceived), null);

}

catch (SocketException)

{

CloseConnection();

}

}

void OnDataReceived(IAsyncResult result)

{

try {

int receive = client.EndReceive(result);

string message = Encoding.ASCII.GetString(data, 0, receive);

resultBox.Items.Add(message);

}

catch (Exception) {

CloseConnection();

}

}

void disconnectClick(object sender, System.EventArgs e)

{

CloseConnection();

}

void sendClick(object sender, System.EventArgs e)

{

try

{

byte[] message = Encoding.ASCII.GetBytes(newText.Text);

newText.Clear();

client.BeginSend(message, 0, message.Length, SocketFlags.None,

 new AsyncCallback(OnDataSent), null);

}

catch (SocketException)

{

CloseConnection();

}

}

void OnDataSent(IAsyncResult result)

{

try

{

int sent = client.EndSend(result);

client.BeginReceive(data, 0, data.Length, SocketFlags.None,

 new AsyncCallback(OnDataReceived), null);

}

catch (SocketException)

{

CloseConnection();

}

}

public void CloseConnection() {

client.Close();

connectionStatus.Text = "Disconnected";

connect.Enabled = true;

disconnect.Enabled = false;

send.Enabled = false;

}

public static void Main()

{

Application.Run(new AsyncTcpClient());

}

void InitializeComponent() {

}

}

}

4.
Tasks:
1.
Use the Thread class to modify the TempConvertServer you developed in Lab05 to allow multiple clients. Save your source file as, MultiClientTempConverterServer.cs. Use the same TempConvertClient as in lab05 to test your server.

2.
Save your server in (1) as ThreadPoolTempConverterServer and modify it to use the ThreadPool class. Again you TempConvertClient of lab05 to test your server.
3.
Use Asynchronous methods to write an Multi-Client asynchronous server, AsyncTempConvertServer, and asynchronous client, AsyncTempConvertClient with the same functionalities as in (1) and (2) above. Note: Both server and client should be GUI applications.
PAGE
9

