PAGE
1

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Information and Computer Science Department

ICS 202: Data Structures
Fall 2008-2009
Final Exam, Thursday February 5, 2009.

Name:

ID#:

Instructions:

1. This exam consists of 15 pages, including this page, containing 6 questions.

2. You have to answer all 6 questions.

3. The exam is closed book and closed notes. No calculators or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

4. The questions are not equally weighed.

5. The maximum number of points for this exam is 260. The final exam will be considered out of 250.
6. You have exactly 180 minutes to finish the exam.

7. Make sure your answers are readable.

8. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order for me not to miss grading it.

9. Pages 16 and 17 are reference sheets that you can keep.

	Question
	Max

Points
	Points

	1
	45
	

	2
	35
	

	3
	45
	

	4
	40
	

	5
	40
	

	6
	55
	

	Total
	250
	

Q1 (45 points):

a. (18 points) Consider the following piece of code:
for (i=1; i <=
[image: image1.wmf]n

; i*=2) {

 for (j=1; j <= i2 ; j++)

 sum++; // MyStatement
}

return sum;
i. (15 points) Find the number of times MyStatement gets executed.
ii. (3 points) Express the number of times MyStatement gets executed in terms of big O() notation.

b. (27 points) Consider the MergeSort algorithm

Algorithm MergeSort(A, start, end) {

if (start < end) {

 middle = ((start + end)/2(;

 MergeSort(A,start,middle);

 MergeSort(A,middle+1,end);

 Merge(A,start,middle,end);

}

i. (2 points) What is a possible “method call” to this algorithm when attempting to use MergeSort to sort an array, A, consisting of n elements?

ii. (15 points) Assume that we want to analyze algorithm MergeSort in terms of the number of element comparisons carried out by the algorithm. Assume that the number of element comparisons that are carried out in the Merge algorithm for the method call Merge(A,start,middle,end) is equal to end – start + 1. Formulate the number of element comparisons carried out by the MergeSort algorithm as a recurrence relation, T(n), where n is the number of input elements in array A. You can safely assume that n is a power of 2.

(10 points) Solve the recurrence relation generated in part ii of this question.

Q2 (35 points):
a. (8 points) Write down the algorithm for building a max-heap using the bottom-up approach.

b. (12 points) Use the algorithm above in building a max-heap for the following array of elements:

18 , 22 , 13 , 15 , 19 , 17 , 24 , 20 , 8 , 30

c. (15 points) Consider the following B tree of order 5:

 SHAPE * MERGEFORMAT

Delete the keys 55 and 36, respectively, showing the tree after the end of each deletion operation. Make sure you show the intermediate steps.
Q3 (45 points) For the following graph below, answer the following questions:

 SHAPE * MERGEFORMAT

a. (22 points) Carry out Dijkstra's algorithm starting from vertex a, filling the table below, to find the shortest paths from vertex a to all other vertices of the graph.

	Pass:
	a
	b
	c
	d
	e
	f
	g
	h

	Initial
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Shortest Path Value
	
	
	
	
	
	
	
	

	Predecessor
	
	
	
	
	
	
	
	

b. (3 points) Using the above table, list the vertices of the shortest path from vertex a to vertex c.

 SHAPE * MERGEFORMAT

c. (20 points) Starting from vertex a, run the preorder depth first traversal algorithm showing its output, where the visitor method prints the label of the vertex. In the process, classify the edges of the graph into tree, back, forward and cross edges.

Q4 (40 points): An undirected graph is called a bipartite graph if its set of vertices V can be divided into two disjoint non-empty sets X and Y such that every edge connects a vertex in X to one in Y. For example, Graph G1 below is bipartite (X={a, b, c, f, g, h}, Y={d, e}), whereas G2 is not bipartite.
 SHAPE * MERGEFORMAT

a. (10 points) For the following graph, G3 with 10 vertices, show that it is a bipartite graph by finding the sets X and Y such that every edge connects a vertex in X to one in Y.

 SHAPE * MERGEFORMAT

b. (5 points) If we add the edge (c,f) to G3, does the graph G3 stay as a bipartite graph? Justify your answer.

c. (5 points) If we add the edge (e,f) to G3, does the graph G3 stay as a bipartite graph? Justify your answer.

d. (20 points) Develop an algorithm that takes as input an undirected graph G=<V, E> and produces as output Sets X and Y if the graph G is a bipartite graph. If the graph is not bipartite, an exception is raised with the message: “The graph is not bipartite”.
Hint: Consider changing the breadth first traversal algorithm.

Q5 (40 points):.
a. (3 points) What is the objective of using hashing in indexing of keys?

b. (4 points) Mention two properties of a good hash function.

c. (8 points) Assume that you need to hash the student records in the university by their full names, consisting of 40 characters each. Propose a good hash function to use. Explain the function clearly and justify the reason for choosing it.

d. (12 points) Use separate chaining, in which

h(key) = key % 11
to insert the keys

31, 32, 29, 18, 19, 26, 15, 41, 24, 28

into an initially empty hash table of size 11. Show all computations, including the computations to insert the last key.

e. (13 points) Use quadratic probing, in which

h(key) = key % 11 and c(i) = ±i2,

to insert the keys

31, 32, 29, 18, 19, 26, 15, 41, 24, 28

into an initially empty hash table of size 11. Show all computations, including the computations to insert the last key.
Q6 (55 points): Consider the following ASCII codes for the following letters, where each letter is represented by 8 bits.
	Character
	ASCII Code
	
	Character
	ASCII Code

	I
	73
	
	N
	78

	R
	82
	
	T
	84

Consider the following string:

TINTINTINTIRIRIN

a. (18 points) Use LZ78 to encode the above string. Make sure you show your computations.
b. (10 points) For the encoding in a, compute the exact number of bits needed to represent the LZ78 encoded string.
c. (2 points) Compute the compression ratio for compressing the above string using LZ78.
Consider the following ASCII codes for the following letters, where each letter is represented by 8 bits.

	Character
	ASCII Code
	
	Character
	ASCII Code

	I
	73
	
	N
	78

	R
	82
	
	T
	84

Consider the following string:

TINTINTINTIRIRIN

d. (18 points) Use LZW to encode the above string. Make sure you show your computations.
e. (5 points) For the encoding in d, compute the exact number of bits needed to represent the LZW encoded string, assuming that each codeword uses 12 bits.
f. (2 points) Compute the compression ratio for compressing the above string using LZW.
ICS 202 – Data Structures
	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)

 public boolean equals(Object obj)

public String toString()

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public class AVLTree extends BinarySearchTree {

 public AVLTree()

 public int getHeight()

 public void insert(Comparable comparable)

 public void attachKey(Object obj)

 public Object detachKey()

}

[image: image7.png]

[image: image8.png]

[image: image9.png]a
log,a == , logab =loga +logh

[image: image10.png]1og%:1.;ga—1og» . aom=P=p

[image: image11.png](a?) = (a®)2=

Quick Reference Sheet

	public class BinaryTree extends AbstractContainer implements Comparable{ public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

 public BinaryTree()

 public BinaryTree(Object obj)

 public void purge()

 public boolean isLeaf()

 public boolean isEmpty()

 public Object getKey()

 public BinaryTree getLeft()

 public BinaryTree getRight()

 public void attachKey(Object obj)

 public Object detachKey()

 public void preorderTraversal(Visitor v)

 public void inorderTraversal(Visitor v)

 public void postorderTraversal(Visitor v)

 public void breadthFirstTraversal(Visitor visitor)

 public void accept(Visitor visitor)

 public boolean isMember(Object obj)

 public int getHeight()

}

public class BinarySearchTree extends BinaryTree {

 private BinarySearchTree getLeftBST()

 private BinarySearchTree getRightBST()

 public boolean isMember(Comparable c)

 public Comparable find(Comparable c)

 public Comparable findMin()

 public Comparable findMax()

 public void attachKey(Object obj)

 public void insert(Comparable comparable)

 public void withdraw(Comparable comparable)

}

// implemented by MinHeap

public interface PriorityQueue extends Container{

 public abstract void enqueue(Comparable c);

 public abstract Comparable findMin();

 public abstract Comparable dequeueMin();

}

public abstract class AbstractGraph implements Graph {

public AbstractGraph(boolean directed)

}

public class GraphAsArrayLists extends AbstractGraph {

 public GraphAsArrayLists(int size, boolean directed)

}
	public interface Graph{

 public int getNumberOfEdges();

 public int getNumberOfVertices();

 public Iterator getVertices();

 public Iterator getEdges();

 public void addVertex(String label);

 public void addVertex(String label, Comparable weight);

 public Vertex getVertex(String label);

 public int getIndex(Vertex v);

 public void addEdge(String from, String to);

 public void addEdge(String from, String to, Comparable weight);

 public Edge getEdge(String from, String to);

 public boolean isReachable(String from, String to);

 public boolean isDirected();

 public boolean isWeighted();

 public boolean isConnected();

 public abstract boolean isStronglyConnected();

 public abstract boolean isWeaklyConnected();

 public boolean isCyclic();

 public void preorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void postorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void breadthFirstTraversal(Visitor visitor, Vertex start);

 public abstract int topologicalOrderTraversal(Visitor visitor);

}

public interface Edge extends Comparable{

 public abstract Vertex getFromVertex();

 public abstract Vertex getToVertex();

 public abstract Comparable getWeight();

 public abstract boolean isDirected();

 public abstract Vertex getMate(Vertex vertex);

}

public interface Vertex extends Comparable{

 public String getLabel();

 public Comparable getWeight();

 public Iterator getIncidentEdges();

 public Iterator getEmanatingEdges();

 public Iterator getPredecessors();

 public Iterator getSuccessors();

}

44

31

39

49

57

22

28

34

36

40

42

60

62

64

52

55

46

48

a

b

f

g

d

e

h

c

12

1

3

2

4

7

5

1

3

2

11

7

13

13

a

b

f

g

d

e

h

c

12

1

3

2

4

7

5

1

3

2

11

7

13

13

a

b

f

g

d

e

h

c

a

b

e

d

c

G1

G2

a

b

g

h

e

f

i

c

G3

j

d

PAGE

_1295257766.unknown

