Applications Of Genetic Algorithms To Optimal Multilevel Design Of MPLS-Based Networks

El-Alfy, ESM

ELSEVIER SCIENCE BV, COMPUTER COMMUNICATIONS; pp: 2010-2020; Vol: 30
King Fahd University of Petroleum & Minerals
http://www.kfupm.edu.sa

Summary

This paper proposes a design methodology based on the application of genetic algorithms (GA) to find a minimal-cost topological structure of MPLS-based networks. MPLS technology is currently deployed in designing the backbone infrastructure of service provider networks whereas other parts of the network are still operated using the traditional IP protocol. This makes the overall topological structure of MPLS-based networks naturally breaks into two prime sub-problems: access network design and backbone network design. The ultimate goal is to identify the locations of label-edge routers and label-switching routers, and to determine the interconnection links and their capacities to accommodate expected traffic demands. The locations of label edge routers depend on the demands of a given set of terminal networks which in turn affect the design of the backbone network. This problem is a highly constrained NP-hard optimization problem for which exact solution approaches do not scale well. We first present a multilevel design model that divides the optimal topology design into a set of linear programs. Then, we propose GA-based meta-heuristics for solving them. We also discuss the impact of encoding methods and genetic operators and parameters on the performance. Numerical results for the considered cases show that the proposed methodology is effective and gives optimal or close to optimal solutions as compared with the exact branch and bound method. (C) 2007 Elsevier B.V. All rights reserved.

References:
3. AWDUCHE D, 2002, 3272 RFC
5. CHIPPERFIELD A, GENETIC ALGORITHM TO
7. DIONNE R, 1979, NETWORKS, V9, P37
8. ELALFY E, 2005, KFUPMCCSE2005005ICS
9. ELALFY E, 2006, P 4 ACS IEEE INT C C
11. GEN M, 2000, GENETIC ALGORITHMS E
13. MICHALEWICZ Z, 1995, P 6 INT C GEN ALG PI
14. MYSEK A, 2001, POL TEL S ZAK
15. PIOORO M, 2004, ROUTING FLOW CAPACIT
16. PIORO M, 2001, TOPOLOGICAL DESIGN M
17. QIN Z, 1997, P IEEE MASCOTS 97, P140
18. ROSEN E, 2001, 3031 RFC
19. SAYOUD H, 2001, IEEE COMMUN LETT, V5, P113
20. SCHWARTZ M, 1997, COMPUTER COMMUNICATI
21. SRINIVAS M, 1994, IEEE COMPUT, V27, P17
22. SRIVATSA S, 1995, COMPUTER NETWORKS IS, V27, P567
23. THOMADSEN T, 2002, HIERARCHICAL NETWORK
24. WHITLEY D, 2002, GENETIC ALGORITHMS E
25. YOUSSEF H, 2001, P IJCNN, V1, P744

For pre-prints please write to: alfy@kfupm.edu.sa