
March 29, 2008 ICS 541 1

Transaction Management

March 29, 2008 ICS 541 2

- Lecture outline

Overview
Definition and motivation for transactions
The ACID properties of transactions
Transaction states
Concurrent Executions and Schedules
Conflict Serializability
Testing for Serializability
View Serializability
Transaction Definition in SQL

March 29, 2008 ICS 541 3

- Overview

The database system must ensure that the data stored in the
database is always consistent.

There are several possible types of failures that may cause the
data to become inconsistent.

A transaction is an atomic program that executes on the
database and preserves the consistency of the database.

The input to a transaction is a consistent database, AND the
output of the transaction must also be a consistent database.

A transaction must execute completely or not at all.

March 29, 2008 ICS 541 4

-- Motivating Example

Consider a person who wants to transfer $50 from a savings
account with balance $1000 to a checking account with current
balance = $250.

1. At the ATM, the person starts the process by telling the bank to
remove $50 from the savings account.

2. The $50 is removed from the savings account by the bank.

3. Before the customer can tell the ATM to deposit the $50 in the
checking account, the ATM “crashes.”

Where has the $50 gone?

It is lost if the ATM did not support transactions!

The customer wanted the withdraw and deposit to both happen
in one step, or neither action to happen.

March 29, 2008 ICS 541 5

- Transaction Definition

A transaction is an atomic program that executes on the
database and preserves the consistency of the database.

The basic assumption is that when a transaction starts executing
the database is consistent, and when it finishes executing the
database is still in a consistent state.

Do not consider malicious or incorrect transactions.

This assumption is called The Correctness Principle.

Note that the database may be inconsistent during transaction
execution.

For the bank example, the $50 is removed from the savings
account and is not yet in the checking account at some point in
time.

March 29, 2008 ICS 541 6

Consistent Definition

A database is consistent if the data satisfies all constraints

specified in the database schema. A consistent database is said to
be in a consistent state.

A constraint is a predicate (rule) that the data must satisfy.

Examples:

StudentID is a key of relation Student.

StudentID → Name holds in Student.

No student may have more than one major.

The field Major can only have one of the 4 values: {“BA”,”BS”,”CS”,”ME”}.

The field Year must be between 1 and 4.

March 29, 2008 ICS 541 7

Consistency and Constraints

Note that constraints are logical rules that may not capture a complete
view of all data integrity “issues”.

1. Database constraints do not typically capture transaction constraints.
These are data integrity issues built into transactions themselves such as:

The Year field is updated every September by increasing its value by 1, only if
the degree requirements are met.

2. Since a database only models the real-world, the data it contains and the
associated constraints may not reflect the total picture. For example:

The Year field does not adequately reflect how many years the student has
been attending university, only the year they are in with respect to their
program degree.

March 29, 2008 ICS 541 8

Consistency Issues

There are two major types of challenges in preserving
database consistency:

1. The database system must handle failures of various kinds
such as hardware failures and system crashes.

2. The database system must support concurrent execution of
multiple transactions and guarantee that this concurrency
does not lead to inconsistency.

March 29, 2008 ICS 541 9

ACID Properties

To preserve integrity, transactions have the following properties:

Atomicity - Either all operations of the transaction are properly
reflected in the database or none are.

Consistency - Execution of a transaction in isolation preserves the
consistency of the database.

Isolation - Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions.

Intermediate transaction results must be hidden from other concurrently
executing transactions. That is, for every pair of transactions Ti and Tj, it
appears to Ti that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

Durability - After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

March 29, 2008 ICS 541 10

Transaction Operations

Since a transaction is a general program, there are an enormous
number of potential operations that a transaction can perform.

However, there are only two really important operations:

read(A,t) (or read(A) when t is not important)
Read database element A into local variable t.

write(A,t) (or write(A) when t is not important)
Write the value of local variable t to the database element A.

For most of the discussion, we will assume that the buffer
manager insures that database element is in memory. We could
make the memory management more explicit by using:

input(A)
Read database element A into local memory buffer.

output(A)
Copy the block containing A to disk.

March 29, 2008 ICS 541 11

Fund Transfer Transaction Example …

Transaction to transfer $50 from account A to account B:

1. read(A,t)
2. t := t – 50
3. write(A,t)
4. read(B,t)
5. t := t + 50
6. write(B,t)

March 29, 2008 ICS 541 12

… Fund Transfer Transaction Example

Atomicity requirement – If the transaction fails after step 3 and
before step 6, the system should ensure that its updates are not
reflected in the database, or inconsistency will result.

Consistency requirement – The sum of A and B is unchanged by
the execution of the transaction.

Isolation requirement – If between steps 3 and 6, another
transaction accesses the partially updated database, it will see an
inconsistent database (A + B is less than it should be). Can be
ensured trivially by running transactions serially, that is one after the
other. However, executing multiple transactions concurrently has
significant benefits.

Durability requirement – Once the user has been notified that the
transaction has completed (i.e., the $50 transfer occurred), the
updates by the transaction must persist despite failures.

March 29, 2008 ICS 541 13

Transaction States

During its execution, a transaction can be in many states:

Active - is the initial state. The transaction stays in this state while it
is executing.

Partially committed - A transaction is partially committed after its
final statement has been executed.

Failed - A transaction enters the failed state after the discovery that
normal execution can no longer proceed.

Aborted - A transaction is aborted after it has been rolled back and
the database restored to its prior state before the transaction. There
are two options after abort:

restart the transaction – only if no internal logical error

kill the transaction - problem with transaction itself

Committed - Commit state occurs after successful completion.

May also consider terminated as a transaction state.

March 29, 2008 ICS 541 14

Transaction State Diagram

Partially
Committed

Failed Aborted

Committed

Active

March 29, 2008 ICS 541 15

Concurrent Executions

Multiple transactions are allowed to run concurrently in the
system. Advantages are:

Increased processor and disk utilization, leading to better transaction
throughput: one transaction can be using the CPU while another is
reading from or writing to the disk.

Reduced average response time for transactions as short
transactions need not wait behind long ones.

Concurrency control schemes are mechanisms to control the
interaction among the concurrent transactions in order to prevent
them from destroying the consistency of the database.

We will study concurrency control schemes after examining the notion
of correctness of concurrent executions.

March 29, 2008 ICS 541 16

END

