King Fahd University of Petroleum and Minerals

Information and Computer Science Department

ICS 541: Database Design & Implementation

DO NOT OPEN UNTIL INSTRUCTED TO DO SO!!!!

Write clearly, precisely, and briefly!!

ID:			
Name:			

Grades							
Section	Max	Scored					
A	8						
В	12						
С	16						
D	6						
E	8						
TOTAL	50						

A. Questions from the paper of home work 3 [8 points]

Assume the following SQL statements in answering the following questions:

CREATE TABLE STUDENT (Id CHAR(7),

Name VARCHAR(100),

FullTime BOOLEAN,

DOB DATE);

INSERT into Student values("1234567", "AAA", TRUE, "16-10-1986"); INSERT into Student values("2345678", "BBBB", TRUE, "17-11-1987"); INSERT into Student values("3456789", "CCCCC", TRUE, "18-12-1988");

SELECT * FROM Student WHERE Fulltime = TRUE;

- 1. Draw what the PAX, DSM, and NSM block or blocks look like.
- 2. Explain in detail why the above SELECT statement will run faster in PAX than in the NSM or DSM.

B. Questions from Chapter 12.

[12 pts]

Use the SQL statements in the previous question in answering the following questions.

- 1. Draw the layout of the first record inserted, when fields are required to start at multiples of 4. (Assume DATE takes 7 bytes and don't forget record header)
- **2.** Assume the three inserted records reside in the same block. Draw how the records will be organized in the block. Don't forget block header.
- **3.** Explain what pointer swizzling mean.
- **4.** Breifly mention two strategies we can use to determine when to swizzle pointers.

C. Questions from Chapter 13.

[16 pts]

[4pts]

- I. Suppose an index block can hold a maximum of 99 keys and 100 pointers and a data block can hold a maximum of 20 data records. Also assume that average B+-tree node is 66% full. If a table of one million data records is organized using B+-tree and the size of one disk block is 4k, then [12 pts]
 - 1. What is the number of data records?
 - 2. What is the number of index blocks?
 - 3. What is the depth of the B+tree?
 - 4. How much disk accesses do you need to answer an exact match query?
- II. Explain the difference between linear and extensible hashing

D. Questions from Chapter 14

[6 pts]

1. Encode the following bit-vector using run-length encoding

00000011000000000010100000

E. Questions from Chapter 15

[8 pts]

Suppose B(R) = B(S) = 5000 and M = 1000. Calculate the disk I/O of a sort based join.