
March 29, 2008 ICS 541 1

The Query Compiler

Chapter 16

March 29, 2008 ICS 541 2

Objectives …

Convert an SQL query to a parse tree using a grammar.
Explain the difference between syntax and semantic validation and
the query processor component responsible for each.
Define: valid parse tree, logical query tree, physical query tree
Convert parse tree to logical query tree for regular and nested
queries.
Explain the difference between correlated and uncorrelated nested
queries.
Use heuristic optimization (6 rules) and relational algebra laws to
optimize logical query trees.

selection laws (splitting law), projection laws, laws for joins, duplicate
elimination, and grouping, equivalence preserving transformations

March 29, 2008 ICS 541 3

… Objectives

Define and use canonical logical query trees.
Convert logical query tree to physical query tree.
Calculate estimates for estimating operation costs/sizes for
selection, projection, joins, and set operations.
List the different approach to finding an "optimal" physical query
plan.
Define: join-orders: left-deep, right-deep, balanced join trees
Explain issues in selecting algorithms for selection and join.
Compare/contrast materialization versus pipelining and know
when to use them when building physical query plans.

March 29, 2008 ICS 541 4

- Lecture outline

Components of Query Processor
Optimizing the Logical Query Plan

March 29, 2008 ICS 541 5

- Components of Query Processor

Query
SELECT Name FROM Student WHERE Major = ‘ICS’

<Query>

<FROM>
<SelLIst> <FromList>Preprocessor

Translator

Optimizer

Evaluator

Sem. valid
Expression tree

Physical query tree

Logical query tree
DB stat

Database

Query output

Parser
Synt. valid
Expression tree <SELECT> <WHERE> <Condition>

<Attr> <Rel> <Attr> = <Value>

Student Major “ICS”Name

∏Name

σMajor=“ICS”

Students

∏Name

σMajor=“ICS”

Students

(Index scan)

(Table scan)

March 29, 2008 ICS 541 6

-- The Parser

The role of the parser is to convert a SQL statement represented
as a string of characters into a parse tree.

A parse tree consists of nodes, and each node is either an:
Atom - lexical elements such as words (WHERE), attribute or relation

names, constants, operator symbols, etc.

Syntactic category - are names for query subparts.
E.g. <SFW> represents a query in select-from-where form.

Nodes that are atoms have no children. Nodes that correspond to
categories have children based on one of the rules of the grammar
for the language.

March 29, 2008 ICS 541 7

-- A Simple SQL Grammar

A grammar is a set of rules dictating the structure of the
language. It exactly specifies what strings correspond to the
language and what ones do not.

Compilers are used to parse grammars into parse trees.

Same process for SQL as programming languages, but somewhat
simpler because the grammar for SQL is smaller.

Our simple SQL grammar will only allow queries in the form of
SELECT-FROM-WHERE.

We will not support grouping, ordering, or SELECT DISTINCT.

We will have to support lists of attributes in the SELECT clause, lists of
relations in the FROM clause, and conditions in the WHERE clause.

March 29, 2008 ICS 541 8

-- Simple SQL Grammar

<Query> ::= <SFW>

<Query> ::= (<Query>)

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>

<SelList> ::= <Attr>

<SelList> ::= <Attr> , <SelList>

<FromList> ::= <Rel>

<FromList> ::= <Rel> , <FromList>

<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Tuple> IN <Query>

<Condition> ::= <Attr> = <Attr>

<Condition> ::= <Attr> LIKE <Value>

<Condition> ::= <Attr> = <Value>

<Tuple> ::= <Attr> // Tuple may be 1 attribute

March 29, 2008 ICS 541 9

-- A Simple SQL Grammar Discussion

The syntactic categories of <Attr>, <Rel>, and
<Value> are special because they are not defined by
the rules of the grammar.

<Attr> - must be a string of characters that matches
an attribute name in the database schema.

<Rel> - must be a character string that matches a
relation name in the database schema

<Value> - is some quoted string that is a legal SQL
pattern or a valid numerical value.

March 29, 2008 ICS 541 10

--Query Example Database

Student(Id,Name,Major,Year)
Department(Code,DeptName,Location)

Student Department
ID Name Major Year

11111 Aaaa ICS 4

22222 Bbbb EE 3

33333 Ccccc ME 3

44444 Ddddd ICS 1

55555 Eeeee AE 4

66666 Ffffff EE 1

77777 Gggggg AE 2

88888 Hhhhh ME 2

Code DeptName Location

EE Electrical Engineering 14

ME Mechanical Engineering 22

ICS Computer Science 23

AE Architecture Engineering 19

March 29, 2008 ICS 541 11

-- Query Parsing Example

Return all students who major in computer science.

SELECT Name FROM Student WHERE Major = “ICS”;

<SFW>

<FROM>
<SelList>

<WHERE>
<Condition>

<SELECT>
<FromList>

<Rel><Attr>

StudentName

<Attr> = <Value>

Major “ICS”

<Query>

Rules applied:
<Query> ::= <SFW>
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attr> (<Attr> = “Name”)
<Condition> ::= <Attr> = <Value> (<Attr>=“Major”, <Value>=“CS”)
<FromList> ::= <Rel> (<Rel> = “Student”)

March 29, 2008 ICS 541 12

-- Query Parsing Example

Return all departments who have a 4th year student.

SELECT DeptName FROM Student, Department
WHERE Code = Major AND year = 4 ;

<Query>

<FROM><SelList> <Condition><FromList>

<Rel><Attr>

DeptName <Attr> = <Value>

Major

<WHERE><SELECT>

Student

<FromList>

<SFW>

Department <Rel>

<Condition> <Condition>AND

<Attr> = <Value>

Year 4Code

March 29, 2008 ICS 541 13

-- Query Parsing Example

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<Query>

<FROM><SelList> <WHERE> <Condition><FromList>

<Rel><Attr>

Student

DeptName

Major

<SELECT>

Return all
departments
who have a 4th
year student.

<SFW>

Department

<Rel>

<Tuple> <Query>IN
<Attr>

Code

(Query)

<SFW>

<SELECT> <FROM> <WHERE>
<SelList>

<FromList> <Condition>

<Attr> <Attr> = <Value>

Year 4

March 29, 2008 ICS 541 14

-- The Parser Functionality

The parser converts an SQL string to a parse tree.

This involves breaking the string into tokens.

Each token is matched with the grammar rules according to the
current parse tree.

Invalid tokens (not in grammar) generate an error.

If there are no rules in the grammar that apply to the current SQL
string, the command will be flagged to have a syntax error.

We will not concern ourselves with how the parser works.
However, we will note that the parser is responsible for checking
for syntax errors in the SQL statement.

That is, the parser determines if the SQL statement is valid according
to the grammar.

March 29, 2008 ICS 541 15

-- The Preprocessor

The preprocessor is a component of the parser that performs semantic
validation.

The preprocessor runs after the parser has built the parse tree. Its
functions include:

Mapping views into the parse tree if required.

Verify that the relation and attribute names are actually valid relations and
attributes in the database schema.

Verify that attribute names have a corresponding relation name specified in
the query. (Resolve attribute names to relations.)

Check types when comparing with constants or other attributes.

If a parse tree passes syntax and semantic validation, it is called a valid
parse tree.

A valid parse tree is sent to the logical query processor, otherwise an error
is sent back to the user.

March 29, 2008 ICS 541 16

-- The Translator

The translator, or logical query processor, is the
component that takes the parse tree and converts it
into a logical query tree.

A logical query tree is a tree consisting of relational
operators and relations. It specifies what operations to
apply, and the order to apply them, but not how to
actually implement the operations.

A logical query tree does not select a particular algorithm to
implement each relational operator.

We will give some informal rules explaining how the
parse tree is converted into a logical query tree.

March 29, 2008 ICS 541 17

-- Parse Trees to Logical Query Trees

The simplest parse tree to convert is one where there
is only one select-from-where (<SFW>) construct, and
the <Condition> construct has no nested queries.

The logical query tree produced consists of:

1. The cross-product (×) of all relations mentioned in the
<FromList> which are inputs to:

2. A selection operator, σC, where C is the <Condition>
expression in the construct being replaced which is the input
to:

3. A projection, πL, where L is the list of attributes in the
<SelList>.

March 29, 2008 ICS 541 18

-- Parse Tree to Logical Tree: Example 1

SELECT Name FROM Student WHERE Major = ‘ICS’

<Query>

<FROM>
<SelLIst> <FromList>

∏Name
<SELECT> <WHERE> <Condition>

σMajor=“ICS”

Students

<Attr> <Rel> <Attr> = <Value>

Name Student Major “ICS”

March 29, 2008 ICS 541 19

-- Parse Tree to Logical Tree: Example 2

SELECT DeptName
FROM Student, Department
WHERE Code = Major
AND year = 4 ;

<Query>

<FROM><SelList> <Condition><FromList>

<Rel><Attr>

DeptName
<Attr> = <Value>

Major

<WHERE><SELECT>

Student

<FromList>

<SFW>

Department <Rel>

<Condition> <Condition>

<Attr> = <Value>

Year 4

AND

Code

∏DeptName

σMajor=Code AND Year = 4

Student

X

Department

March 29, 2008 ICS 541 20

-- Converting Nested Parse Trees to Logical Query Trees …

Converting a parse tree that contains a nested query is slightly
more challenging.

A nested query may be correlated with the outside query if it
must be re-computed for every tuple produced by the outside
query. Otherwise, it is uncorrelated, and the nested query can be
converted to a non-nested query using joins.

We will define a two-operand selection operator σ that takes the
outer relation R as one input (left child), and the right child is the
condition applied to each tuple of R.

The condition is the subquery involving IN.

March 29, 2008 ICS 541 21

… -- Converting Nested Parse Trees to Logical Query Trees

The nested subquery translation algorithm involves defining a
tree from root to leaves as follows:

1. Root node is a projection, πL, where L is the list of attributes in the
<SelList> of the outer query.

2. Child of root is a selection operator, σC, where C is the <Condition>
expression in the outer query ignoring the subquery.

3. The two-operand selection operator σ with left-child as the cross-
product (×) of all relations mentioned in the <FromList> of the outer
query, and right child as the <Condition> expression for the
subquery.

4. The subquery itself involved in the <Condition> expression is
translated to relational algebra.

March 29, 2008 ICS 541 22

-- Parse Tree to Logical Tree: Example 3 …

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<Query>

<FROM><SelList> <WHERE> <Condition><FromList>

<Rel><Attr>

Student

DeptName

Major

<SELECT>

Return all
departments
who have a 4th
year student.

<SFW>

Department

<Rel>

<Tuple> <Query>IN
<Attr>

Code

(Query)

<SFW>

<SELECT> <FROM> <WHERE>
<SelList>

<FromList> <Condition>

<Attr> <Attr> = <Value>

Year 4

March 29, 2008 ICS 541 23

… -- Parse Tree to Logical Tree: Example 3

SELECT DeptName
FROM Department
WHERE Code IN (

SELECT Major
FROM Student
WHERE Year=4)

∏DeptName

σTrue

σ

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

Condition in parse tree

No outer level selection

Only one outer
relation

Subquery transilated
To Logical query tree

March 29, 2008 ICS 541 24

-- Converting Nested Parse Trees to Logical Query Trees

Now, we must remove the two-operand selection and replace it by
relational algebra operators.

Rule for replacing two-operand selection (uncorrelated):

Let R be the first operand, and the second operand is a <Condition>
of the form t IN S. (S is uncorrelated subquery.)

Replace <Condition> by the tree that is expression for S.
May require applying duplicate elimination if expression has duplicates.

Replace two-operand selection by one-argument selection, σC, where C is
the condition that equates each component of the tuple t to the
corresponding attribute of relation S.

Give σC an argument that is the product of R and S.

March 29, 2008 ICS 541 25

-- Parse Tree to Logical Tree Conversion

σC

R

X

S

δ

σ

R <condition>

t IN S

Replace σ by
with σC and X

May need to eliminate
duplicates

March 29, 2008 ICS 541 26

-- Parse Tree to Logical Tree: Example 3

∏DeptName

σTrue

σ

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

∏DeptName

σcode=Major

X

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

δ
Major is
Not a key

Replace σ by
with σC and X

March 29, 2008 ICS 541 27

-- Correlated Nested Subqueries

Translating correlated subqueries is more difficult because the result of
the subquery depends on a value defined outside the query itself.

In general, correlated subqueries may require the subquery to be
evaluated for each tuple of the outside relation as an attribute of each
tuple is used as the parameter for the subquery.

We will not study translation of correlated subqueries.

Example:

Return all students that are more senior than the average for their majors.

SELECT Name
FROM Student s
WHERE year >

(SELECT Avg(Year)
FROM student AS s2
WHERE s.major = s2.major)

March 29, 2008 ICS 541 28

- Optimizing the Logical Query Plan

The translation rules converting a parse tree to a logical query tree
do not always produce the best logical query tree. It is often
possible to optimize the logical query tree by applying relational
algebra laws to convert the original tree into a more efficient
logical query tree.

Optimizing a logical query tree using relational algebra laws is
called heuristic optimization because the optimization process uses
common conversion techniques that result in more efficient query
trees in most cases, but not always.

The optimization rules are heuristics.

We begin with looking at relational algebra laws.

March 29, 2008 ICS 541 29

-- Relational Algebra Laws

Just like there are laws associated with the mathematical operators,
there are laws associated with the relational algebra operators.

These laws often involve the properties of:

commutativity - operator can be applied to operands independent of
order.

E.g. A + B = B + A - The “+” operator is commutative.

associativity - operator is independent of operand grouping.

E.g. A + (B + C) = (A + B) + C - The “+” operator is associative.

March 29, 2008 ICS 541 30

-- Associative and Commutative Operators

The relational algebra operators of cross-product (×), join (⋈), set
and bag union (US and UB), and set and bag intersection (∩S and
∩B) are all associative and commutative.

Associative

(R X S) X T = S X (R X T)

(R ⋈ S) ⋈ T= S ⋈ (R ⋈ T)

(R ∪ S) ∪ T = S ∪ (R ∪ T)

(R ∩ S) ∩ T = S ∩ (R ∩ T)

Commutative

R X S = S X R

R ⋈ S = S ⋈ R

R ∪ S = S ∪ R

R ∩ S = S ∩ R

March 29, 2008 ICS 541 31

-- Laws Involving Selection …

Complex selections involving AND or OR can be broken into two
or more selections: (splitting laws)

σC1 AND C2 (R) = σC1(σC2 (R))

σC1 OR C2 (R) = (σC1 (R)) ∪S (σC2 (R))

Notes:

1. Second law only works if R is a set.

2. The ordering that selections are applied in first law is flexible:

σC1 AND C2 (R) = σC2(σC1 (R))

3. In general, we may evaluate selection operators in any order.

March 29, 2008 ICS 541 32

… -- Laws Involving Selection …

Pushing selections through binary operations is possible
and often results in much more efficient logical query
trees because a selection reduces the size of the
relation.

Selection is pushed through both arguments for union:

σC(R ∪ S) = σC(R) ∪ σC(S)

Selection is pushed to the first argument and optionally
the second for difference:

σC(R - S) = σC(R) - S
σC(R - S) = σC(R) - σC(S)

March 29, 2008 ICS 541 33

… -- Laws Involving Selection …

All other operators require selection to be pushed to only one of
the arguments. For joins, may not be able to push selection to
both if argument does not have attributes selection requires.

σC(R × S) = σC(R) × S
σC(R ∩ S) = σC(R) ∩ S
σC(R ⋈ S) = σC(R) ⋈ S
σC(R ⋈D S) = σC(R) ⋈D S

Notes:
1. Laws shown are only pushing to one of the arguments.
2. D is a condition for the join. (Not a natural join.)
3. Assumed that R has all attributes of C.
4. Selection can sometimes be applied to both operands.

March 29, 2008 ICS 541 34

… -- Laws Involving Selection

Selection and cross-product can be converted to a theta
join:

σC(R × S) = R ⋈ C S

Selection and theta join can also be combined:

σC(R ⋈D S) = R C AND ⋈D S

March 29, 2008 ICS 541 35

-- Laws Involving Projection …

Like selections, it is also possible to push projections down the
logical query tree. However, the performance gained is less than
selections because projections just reduce the number of attributes
instead of reducing the number of tuples.

Unlike selections, it is common for a pushed projection to also remain
where it is.

General principle: We may introduce a projection anywhere in
an expression tree, as long as it eliminates only attributes that are
never used by any of the operators above, and are not in the
result of the entire expression.

March 29, 2008 ICS 541 36

… -- Laws Involving Projection …

Laws for pushing projections with joins:

πL(R × S) = πL(πM(R) × πN(S))

πL(R ⋈ S) = πL((πM(R) ⋈ πN(S))

πL(R ⋈D S) = πL((πM(R) ⋈D πN(S))

Notes:
L is a set of attributes to be projected. M is the list of all
attributes of R that are either join attributes or are attributes of
L. N is the list of attributes of S that are either join or attributes
or attributes of L. D is a condition for the join.

March 29, 2008 ICS 541 37

… -- Laws Involving Projection …

Laws for pushing projections with set operations.

Projection can be performed entirely before bag union.

πL(R UB S) = πL(R) UB πL(S)

Projections can not be pushed below set unions or either the set or
bag versions of intersection and difference.

Projection can be pushed below selection as long as we also keep
all attributes needed for the selection (M = L ∪ attr(C)).

πL (σC (R)) = πL(σC (πM(R)))

March 29, 2008 ICS 541 38

… -- Laws Involving Projection …

Only the last in a sequence of projection operations is
needed, the others can be omitted.

πL (πM (R)) = πL(R)

Notes:

Set M must be a superset of set L.

March 29, 2008 ICS 541 39

-- Laws Involving Join …

We have previously seen these important rules about
joins:

1. Joins are commutative and associative.

2. Selection can be distributed into joins.

3. Projection can be distributed into joins.

March 29, 2008 ICS 541 40

… -- Laws Involving Duplicate Elimination …

The duplicate elimination operator (δ) can be pushed through
many operators.

First, realize that δ(R) = R occurs when R has no duplicates:

R may be a stored relation with a primary key.

R may be the result after a grouping operation.

Laws for pushing duplicate elimination operator (δ):

δ(R × S) = δ(R) × δ(S)

δ(R S) = δ(R) δ(S)

δ(R D S) = δ(R) D δ(S)

δ(σC(R) = σC(δ(R))

March 29, 2008 ICS 541 41

… -- Laws Involving Duplicate Elimination

The duplicate elimination operator (δ) can also be
pushed through bag intersection, but not across union,
difference, or projection in general.

δ(R ∩ S) = δ(R) ∩ δ(S)

March 29, 2008 ICS 541 42

-- Laws Involving Grouping

The grouping operator (γ) laws depend on the
aggregate operators used.

There is one general rule, however, that grouping
subsumes duplicate elimination:

δ(γL(R)) = γL(R)

The reason is that some aggregate functions are
unaffected by duplicates (MIN and MAX) while other
functions are (SUM, COUNT, and AVG).

March 29, 2008 ICS 541 43

-- Rules of Heuristic Query Optimization

Deconstruct conjunctive selections into a sequence of single
selection operations.

Move selection operations down the query tree for the earliest
possible execution.

Execute first those selection and join operations that will produce
the smallest relations.

Replace Cartesian product operations that are followed by a
selection condition by join operations.

Deconstruct and move as far down the tree as possible lists of
projection attributes, creating new projections where needed.

Identify those subtrees whose operations can be pipelined, and
execute them using pipelining.

March 29, 2008 ICS 541 44

-- Parse Tree to Logical Tree: Example 1

SELECT Name FROM Student WHERE Major = ‘ICS’

∏Name

σMajor=“ICS”

Students

πName(σMajor=“ICS”’(Student))

March 29, 2008 ICS 541 45

-- Parse Tree to Logical Tree: Example 1

SELECT DeptName
FROM Department, Student
WHERE Code = Major
AND Year = 4

∏DeptName
∏DeptName

σCode =Major AND Year=4

Student Department

Code =Major

∏DeptName.CodeσYear=4

Optimizations
- push selection down
- push projection down
- merge selection and
cross-productX

Student Department

Original:

πDeptName(σCode=Major AND Year=4 (Student × Department))
Optimized:

πDeptName((σ Year=4 (Student)) Code=Major (πDeptName,Code(Department)))

March 29, 2008 ICS 541 46

-- Canonical Logical Query Trees

Most parsers do not produce trees which have unlimited # of
children because most operations are unary or binary.

However, associative and commutative operators could be considered
as having many operands as the order is irrelevant.

This is especially important for joins as the order of joins may
make a significant difference in the performance of the query.

A canonical logical query tree is a logical query tree where all
associative and commutative operators with more than two
operands are converted into multi-operand operators.

This will make it more convenient and obvious that the operands can
be combined in any order.

March 29, 2008 ICS 541 47

-- Canonical Logical Query Tree: Example

Original Query Tree Canonical Query Tree

∪

∪R

S T

W

∪

R S T

W Y Z

Y Z

March 29, 2008 ICS 541 48

--Physical Query Plan

A physical query plan is derived from a logical query plan by:

Selecting an order and grouping for operations like joins, unions, and
intersections.

Deciding on an algorithm for each operator in the logical query plan.
e.g. Nested-loop join, sort join or hash join

Adding additional operators to the logical query tree such as sorting
and scanning that are not present in the logical plan.

Determining how arguments are passed from one operator to the
next. Involves deciding between pipelining and materialization.

Whether we perform cost-based or heuristic optimization, we
eventually must arrive at a physical query tree that can be
executed by the evaluator.

March 29, 2008 ICS 541 49

-- Heuristic versus Cost Optimization

In order to determine when one physical query plan is better than
another, we must have an estimate of the cost of the plan.

Heuristic optimization is normally used to pick the best logical
query plan.

Cost-based optimization is used to determine the best physical
query plan given a logical query plan.

Note that both can be used in the same query processor (and
typically are). Heuristic optimization is used to pick the best logical
plan which is then optimized by cost-based techniques.

March 29, 2008 ICS 541 50

-- Estimating Operation Cost …

In order to determine when one physical query plan is better than
another for cost-based optimization, we must have an estimate of
the cost of a physical query plan.

Note that the query optimizer will very rarely know the exact cost
of a query plan because the only way to know is to execute the
query itself!

Since the cost to execute a query is much greater than the cost to
optimize a query, we cannot execute the query to determine its cost!

Thus, it is important to be able to estimate the cost of a query plan
without executing it based on statistics and general formulas.

March 29, 2008 ICS 541 51

… -- Estimating Operation Cost

Statistics for base relations such as B(R), T(R), and V(R,a) are
used for optimization and can be gathered directly from the data,
or estimated using statistical gathering techniques.

One of the most important factors determining the cost of the
query is the size of the intermediate relations. An intermediate
relation is a relation generated by a relational algebra operator
that is the input to another query operator.

The final result is not an intermediate relation.

The goal is to come up with general rules that estimate the sizes
of intermediate relations that give accurate estimates, are easy to
compute, and are consistent.

There is no one set of agreed-upon rules!

March 29, 2008 ICS 541 52

-- Estimating Projection Sizes

Calculating the size of a relation after the projection operation is
easy because we can compute it directly.

Assuming we know the size of the input, we can calculate the size of
the output based on the size of the input records and the size of the
output records.

The projection operator decreases the size of the tuples, not the
number of tuples.

For example, given relation R(a,b,c) with size of a = size of b = 4
bytes, and size of c = 100 bytes. T(R) = 10000 and unspanned
block size is 1024 bytes. If the projection operation is Πa,b, what
is the size of the output U in blocks?

T(U) = 10000. Output tuples are 8 bytes long.
bfr = 1024/8 = 128 B(U) = 10000/128 = 79
B(R) = 10000 / (1024/108) = 1112
Savings = (B(R) - B(U))/B(R)*100% = 93%

March 29, 2008 ICS 541 53

-- Estimating Selection Sizes …

A selection operator generally decreases the number of tuples in the
output compared to the input. By how much does the operator
decrease the input size?

The selectivity (sf) is the fraction of tuples selected by a selection
operator. Common cases and their selectivities:

Equality: S = σa=v (R) - sf = 1/V(R,a) T(S) = T(R)/V(R,a)
Reason: Based on the assumption that values occur equally likely in the
database. However, estimate is still the best on average even if the values v for
attribute a are not equally distributed in the database.

Inequality: S = σa<v (R) - sf = 1/3 T(S) = T(R)/3
Reason: On average, you would think that the value should be T(R)/2.
However, queries with inequalities tend to return less than half the tuples, so
the rule compensates for this fact.

Not equals: S = σa!=v (R) - sf = 1 T(S) = T(R)
Reason: Assume almost all tuples satisfy the condition.

March 29, 2008 ICS 541 54

… -- Estimating Selection Sizes …

Simple selection clauses can be connected using AND or OR.

A complex selection operator using AND (σa=10 AND b<20(R)) is the
same as a cascade of simple selections (σa=10 (σb<20(R)). The
selectivity is the product of the selectivity of the individual
clauses.

Example: Given R(a,b,c) and S = σa=10 AND b<20(R), what is the best
estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = 1/3 * 1/50 = 1/150.
T(S) = T(R)* 1/150 = 67

March 29, 2008 ICS 541 55

… -- Estimating Selection Sizes …

For complex selections using OR (S = σC1 OR C2(R)), the # of
output tuples can be estimated by the sum of the # of tuples for
each condition.

Measuring the selectivity with OR is less precise, and simply taking
the sum is often an overestimate.

A better estimate assumes that the two clauses are independent,
leading to the formula:

n(1-(1-m1/n)(1-m2/n))

m1 and m2 are the # of tuples that satisfy C1 and C2 respectively.

n is the number of tuples of R (i.e. T(R)).

1-m1/n and 1-m2/n are the fraction of tuples that do not satisfy
C1 and C2 respectively. The product of these numbers is the
fraction that do not satisfy either condition.

March 29, 2008 ICS 541 56

… -- Estimating Selection Sizes

Example: Given R(a,b,c) and S = σa=10 OR b<20(R), what is
the best estimate for T(S)? Assume T(R)=10,000 and
V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.

The filter b<20 has selectivity of 1/3.

Total selectivity = (1 - (1 - 1/50)(1 - 1/3)) = .3466

T(S) = T(R) *.3466 = 3466

Simple method results in T(S) = 200 + 3333 = 3533.

March 29, 2008 ICS 541 57

-- Estimating Join Sizes …

We will study only estimating the size of natural join.

Other types of joins are equivalent or can be translated into a cross-
product followed by a selection.

The two relations joined are R(X,Y) and S(Y,Z).

We will assume Y consists of only one attribute.

The challenge is we do not know how the set of values of Y in R
relate to the values of Y in S. There are some possibilities:

The two sets are disjoint. Result size = 0.

Y may be a foreign key of R joining to a primary key of S. Result size in
this case is T(R).

Almost all tuples of R and S have the same value for Y, so result size in
the worst case is T(R)*T(S).

March 29, 2008 ICS 541 58

… -- Estimating Join Sizes

The result size of joining relations R(X,Y) and S(Y,Z) can be
approximated by:

(T(R) * T(S))/(MAX(V(R,Y), V(S,Y))

Argument:
Every tuple of R has a 1/V(S,Y) chance of joining with every tuple of S. On
average then, each tuple of R joins with T(S)/V(S,Y) tuples. If there are
T(R) tuples of R, then the expected size is T(R) * T(S)/V(S,Y).

A symmetric argument can be made from the perspective of joining every
tuple of S. Each tuple has a 1/V(R,Y) chance of joining with every tuple of
R. On average, each tuple of R joins with T(R)/V(R,Y) tuples. The expected
size is then T(S) * T(R)/V(R,Y).

In general, we choose the smaller estimate for the result size (divide by the
maximum value).

March 29, 2008 ICS 541 59

--- Estimating V(R,a)

The database will keep statistics on the number of distinct values for
each attribute a in each relation R, which we denote as V(R,a).

However, when a sequence of operations is applied, it is necessary to
estimate V(R,a) on the intermediate relations.

For our purposes, there will be three common cases:

a is the primary key of R then V(R,a) = T(R)
The number of distinct values is the same as the # tuples in R.

a is a foreign key of R to another relation S then V(R,a) = T(S)
In the worst case, the number of distinct values of a cannot be larger than the
number of tuples of S since a is a foreign key to the primary key of S.

If a selection occurs on relation R before a join, then V(R,a) after the
selection is the same as V(R,a) before selection.

This is often strange since V(R,a) may be greater than # of tuples in
intermediate result! V(R,a) <> # of tuples in result.

March 29, 2008 ICS 541 60

-- Estimating Sizes of Other Operators

The size of the result of set operators, duplicate elimination, and grouping is
hard to determine. Some estimates are below:

Union
bag union = sum of two argument sizes
set union = minimum is the size of the largest relation, maximum is the sum of the
two relations sizes. Estimate by taking average of min/max.

Intersection
minimum is 0, maximum is size of smallest relation. Take average.

Difference
Range is between T(R) and T(R) - T(S) tuples. Estimate: T(R) - 1/2*T(S)

Duplicate Elimination
Range is 1 to T(R). Estimate by either taking smaller of 1/2*T(R) or product of all
V(R,ai) for all attributes ai.

Grouping
Range and estimate is similar to duplicate elimination.

March 29, 2008 ICS 541 61

- Cost-Based Optimization

Cost-based optimization is used to determine the best physical
query plan given a logical query plan.

The cost of a query plan in terms of disk I/Os is affected by:

The logical operations chosen to implement the query (the logical
query plan).

The sizes of the intermediate results of operations.

The physical operators selected.

The ordering of similar operations such as joins.

The method of passing arguments from one operator to another
(pipelining versus materialization).

March 29, 2008 ICS 541 62

-- Obtaining Size Estimates

The cost calculations for the physical operators relied on
reasonable estimates for B(R), T(R), and V(R,a).

Most DBMSs allow an administrator to explicitly request these
statistics be gathered. It is easy to gather them by performing a
scan of the relation. It is also common for the DBMS to gather
these statistics independently during its operation.

Note that by answering one query using a table scan, it can
simultaneously update its estimates about that table!

It is also possible to produce a histogram of values for use with
V(R,a) as not all values are equally likely in practice.

Histograms display the frequency that attribute values occur.

Since statistics tend not to change dramatically, statistics are
computed only periodically instead of after every update.

March 29, 2008 ICS 541 63

-- Using Size Estimates in Heuristic Optimization

Size estimates can also be used during heuristic
optimization.

In this case, we are not deciding on a physical plan, but
rather determining if a given logical transformation will
make sense.

By using statistics, we can estimate intermediate relation
sizes (independent of the physical operator chosen), and
thus determine if the logical transformation is useful.

March 29, 2008 ICS 541 64

-- Using Size Estimates in Cost-based Optimization …

Given a logical query plan, the simplest algorithm to
determine the best physical plan is an exhaustive
search.

In an exhaustive search, we evaluate the cost of
every physical plan that can be derived from the logical
plan and pick the one with minimum cost.

The time to perform an exhaustive search is extremely
long because there are many combinations of physical
operator algorithms, operator orderings, and join
orderings.

March 29, 2008 ICS 541 65

… -- Using Size Estimates in Cost-based Optimization …

Since exhaustive search is costly, other approaches
have been proposed based on either a top-down or
bottom-up approach.

Top-down algorithms start at the root of the logical
query tree and pick the best implementation for each
node starting at the root.

Bottom-up algorithms determine the best method
for each subexpression in the tree (starting at the
leaves) until the best method for the root is
determined.

March 29, 2008 ICS 541 66

… -- Using Size Estimates in Cost-based Optimization

Heuristic Selection
Use the same approach to select physical plan that is generally used
for selecting a logical plan.

Branch-and-bound
Begin with heuristic to find a plan. Let the cost of this plan be C.
Then consider other plans for subqueries and ignore if the cost of the
subquery is higer than C and so on.

Hill climbing
Start with heuristically selected plan. Let the cost of this plan be C.
Change the plan slightly. If the new plan is better than C then
consider this plan.
Repeat the process again till certain threshold is reached.

Dynamic programming
Selinger-Style Optimization

Like Dynamic programming but keeps the least cost plan plus some
more.

March 29, 2008 ICS 541 67

-- Selecting a Join Order

Since joins are the most costly operation, determining the best
possible join order will result in more efficient queries.

Selecting a join order is most important if we are performing a join of
three or more relations. However, a join of two relations can be
evaluated in two different ways depending on which relation is
chosen to be the left argument.

Some algorithms (such as nested-block join and one-pass join) are more
efficient if the left argument is the smaller relation.

A join tree is used to graphically display the join order.

March 29, 2008 ICS 541 68

-- Join Tree Examples

Left-deep join tree Balanced join tree Right-deep join tree

SR

W

T SR W S

R

WT

T

March 29, 2008 ICS 541 69

-- Choosing a Selection Method

In building the physical query plan, we will have to pick
an algorithm to evaluate each selection operator.

Some of our choices are:
table scan
index scan

There also may be several variants of each choice if
there are multiple indexes.

We evaluate the cost of each choice and select the best
one.

March 29, 2008 ICS 541 70

-- Choosing a Join Method

In building the physical query plan, we will have to pick
an algorithm to evaluate each join operator:

nested-block join - one-pass join or nested-block join used if
reasonably sure that relations will fit in memory.

sort-join is good when arguments are sorted on the join
attribute or there are two or more joins on the same attribute.

index-join may be used when an index is available.

hash-join is generally used if a multipass join is
required, and no sorting or indexing can be exploited.

March 29, 2008 ICS 541 71

-- Other Operators

Determining the algorithms to select for the other
operators is similar. This includes the set operators.

Projection is always implemented as a table scan, so no
decisions must be made for that operator.

March 29, 2008 ICS 541 72

-- Pipelining versus Materialization

The final decision to be made is how results are passed from one
operator to the next.

There are two choices:

Materialization - the entire operator result is computed before any
tuples are sent to the next operator.

Pipelining - the operator result is provided to the next operator a
tuple-at-a-time as it is calculated (using iterators).

Materialization reduces parallelism and requires intermediate
results to be stored on disk. Pipelining increases parallelism and
reduces disk I/Os, but may be less efficient if many operators
compete for the same resources or the pipelined algorithms are
less efficient than regular algorithms.

March 29, 2008 ICS 541 73

-- Pipelining Operators

Pipelining unary operators like selection are projection is easy as they
operate a tuple-at-a-time.

Binary operators such as join can also be pipelined. However, there is
a potential that pipelining may reduce the performance.

For example, consider pipelining the join of R(a,b), S(b,c), and U(c,d)
with a fixed number of memory buffers M.

One solution is to materialize the join on R and S, then join the result with U
using a regular hash-join.

The other approach is to perform both hash joins simultaneously, but this
would reduce the amount of memory available to each individual operation.

Potentially, pipelining would reduce the performance for certain relation sizes.

March 29, 2008 ICS 541 74

To be continued

