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The Query Compiler

Chapter 16
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Objectives …

Convert an SQL query to a parse tree using a grammar.
Explain the difference between syntax and semantic validation and 
the query processor component responsible for each.
Define: valid parse tree, logical query tree, physical query tree
Convert parse tree to logical query tree for regular and nested 
queries.
Explain the difference between correlated and uncorrelated nested 
queries.
Use heuristic optimization (6 rules) and relational algebra laws to 
optimize logical query trees.

selection laws (splitting law), projection laws, laws for joins, duplicate 
elimination, and grouping, equivalence preserving transformations
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… Objectives

Define and use canonical logical query trees.
Convert logical query tree to physical query tree.
Calculate estimates for estimating operation costs/sizes for 
selection, projection, joins, and set operations.
List the different approach to finding an "optimal" physical query 
plan.
Define: join-orders: left-deep, right-deep, balanced join trees
Explain issues in selecting algorithms for selection and join.
Compare/contrast materialization versus pipelining and know 
when to use them when building physical query plans.
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- Lecture outline

Components of Query Processor
Optimizing the Logical Query Plan
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- Components of Query Processor

Query
SELECT Name FROM Student WHERE Major = ‘ICS’

<Query>

<FROM>
<SelLIst> <FromList>Preprocessor

Translator

Optimizer

Evaluator

Sem. valid
Expression tree

Physical query tree

Logical query tree
DB stat

Database

Query output

Parser
Synt. valid
Expression tree <SELECT> <WHERE> <Condition>

<Attr> <Rel> <Attr>  =  <Value>

Student Major “ICS”Name

∏Name

σMajor=“ICS”

Students

∏Name

σMajor=“ICS”

Students

(Index scan)

(Table scan)



March 29, 2008 ICS 541 6

-- The Parser

The role of the parser is to convert a SQL statement represented
as a string of characters into a parse tree.

A parse tree consists of nodes, and each node is either an:
Atom - lexical elements such as words (WHERE), attribute or relation 

names, constants, operator symbols, etc.

Syntactic category - are names for query subparts.
E.g. <SFW> represents a query in select-from-where form.

Nodes that are atoms have no children. Nodes that correspond to 
categories have children based on one of the rules of the grammar 
for the language.
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-- A Simple SQL Grammar

A grammar is a set of rules dictating the structure of the 
language. It exactly specifies what strings correspond to the 
language and what ones do not.

Compilers are used to parse grammars into parse trees.

Same process for SQL as programming languages, but somewhat 
simpler because the grammar for SQL is smaller.

Our simple SQL grammar will only allow queries in the form of 
SELECT-FROM-WHERE.

We will not support grouping, ordering, or SELECT DISTINCT.

We will have to support lists of attributes in the SELECT clause, lists of 
relations in the FROM clause, and conditions in the WHERE clause.
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-- Simple SQL Grammar

<Query> ::= <SFW>

<Query> ::= ( <Query> )

<SFW>  ::= SELECT <SelList> FROM <FromList> WHERE <Condition>

<SelList> ::= <Attr>

<SelList> ::= <Attr> , <SelList>

<FromList> ::= <Rel>

<FromList> ::= <Rel> , <FromList>

<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Tuple> IN <Query>

<Condition> ::= <Attr> = <Attr>

<Condition> ::= <Attr> LIKE <Value>

<Condition> ::= <Attr> = <Value>

<Tuple> ::= <Attr> // Tuple may be 1 attribute
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-- A Simple SQL Grammar Discussion

The syntactic categories of <Attr>, <Rel>, and 
<Value> are special because they are not defined by 
the rules of the grammar.

<Attr> - must be a string of characters that matches 
an attribute name in the database schema.

<Rel> - must be a character string that matches a 
relation name in the database schema

<Value> - is some quoted string that is a legal SQL 
pattern or a valid numerical value.
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--Query Example Database

Student(Id,Name,Major,Year) 
Department(Code,DeptName,Location)

Student Department
ID Name Major Year

11111 Aaaa ICS 4

22222 Bbbb EE 3

33333 Ccccc ME 3

44444 Ddddd ICS 1

55555 Eeeee AE 4

66666 Ffffff EE 1

77777 Gggggg AE 2

88888 Hhhhh ME 2

Code DeptName Location

EE Electrical  Engineering 14

ME Mechanical Engineering 22

ICS Computer Science 23

AE Architecture Engineering 19
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-- Query Parsing Example

Return all students who major in computer science.

SELECT Name FROM Student WHERE Major = “ICS”;

<SFW>

<FROM>
<SelList>

<WHERE>
<Condition>

<SELECT>
<FromList>

<Rel><Attr>

StudentName 

<Attr> = <Value>

Major “ICS”

<Query>

Rules applied:
<Query> ::= <SFW>
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attr> (<Attr> = “Name”)
<Condition> ::= <Attr> = <Value> (<Attr>=“Major”, <Value>=“CS”)
<FromList> ::= <Rel> (<Rel> = “Student”)
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-- Query Parsing Example

Return all departments who have a 4th year student.

SELECT DeptName FROM Student, Department 
WHERE Code = Major AND year = 4 ;

<Query>

<FROM><SelList> <Condition><FromList>

<Rel><Attr>

DeptName <Attr> = <Value>

Major

<WHERE><SELECT>

Student

<FromList>

<SFW>

Department <Rel> 

<Condition> <Condition>AND

<Attr> = <Value>

Year 4Code



March 29, 2008 ICS 541 13

-- Query Parsing Example

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<Query>

<FROM><SelList> <WHERE> <Condition><FromList>

<Rel><Attr>

Student

DeptName

Major

<SELECT>

Return all 
departments 
who have a 4th 
year student.

<SFW>

Department 

<Rel> 

<Tuple> <Query>IN
<Attr>

Code

( Query )

<SFW>

<SELECT> <FROM> <WHERE>
<SelList>

<FromList> <Condition>

<Attr> <Attr> = <Value>

Year 4
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-- The Parser Functionality

The parser converts an SQL string to a parse tree.

This involves breaking the string into tokens.

Each token is matched with the grammar rules according to the 
current parse tree.

Invalid tokens (not in grammar) generate an error.

If there are no rules in the grammar that apply to the current SQL 
string, the command will be flagged to have a syntax error.

We will not concern ourselves with how the parser works. 
However, we will note that the parser is responsible for checking 
for syntax errors in the SQL statement.

That is, the parser determines if the SQL statement is valid according 
to the grammar.
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-- The Preprocessor

The preprocessor is a component of the parser that performs semantic 
validation.

The preprocessor runs after the parser has built the parse tree. Its 
functions include:

Mapping views into the parse tree if required.

Verify that the relation and attribute names are actually valid relations and 
attributes in the database schema.

Verify that attribute names have a corresponding relation name specified in 
the query. (Resolve attribute names to relations.)

Check types when comparing with constants or other attributes.

If a parse tree passes syntax and semantic validation, it is called a valid 
parse tree.

A valid parse tree is sent to the logical query processor, otherwise an error 
is sent back to the user.
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-- The Translator

The translator, or logical query processor, is the 
component that takes the parse tree and converts it 
into a logical query tree.

A logical query tree is a tree consisting of relational 
operators and relations. It specifies what operations to 
apply, and the order to apply them, but not how to 
actually implement the operations.

A logical query tree does not select a particular algorithm to 
implement each relational operator.

We will give some informal rules explaining how the 
parse tree is converted into a logical query tree.
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-- Parse Trees to Logical Query Trees

The simplest parse tree to convert is one where there 
is only one select-from-where (<SFW>) construct, and 
the <Condition> construct has no nested queries.

The logical query tree produced consists of:

1. The cross-product (×) of all relations mentioned in the 
<FromList> which are inputs to:

2. A selection operator, σC, where C is the <Condition> 
expression in the construct being replaced which is the input 
to:

3. A projection, πL, where L is the list of attributes in the 
<SelList>.
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-- Parse Tree to Logical Tree:  Example 1

SELECT Name FROM Student WHERE Major = ‘ICS’

<Query>

<FROM>
<SelLIst> <FromList>

∏Name
<SELECT> <WHERE> <Condition>

σMajor=“ICS”

Students

<Attr> <Rel> <Attr>  =  <Value>

Name Student Major “ICS”
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-- Parse Tree to Logical Tree: Example 2

SELECT DeptName
FROM Student, Department 
WHERE Code = Major 
AND year = 4 ;

<Query>

<FROM><SelList> <Condition><FromList>

<Rel><Attr>

DeptName
<Attr> = <Value>

Major

<WHERE><SELECT>

Student

<FromList>

<SFW>

Department <Rel> 

<Condition> <Condition>

<Attr> = <Value>

Year 4

AND

Code

∏DeptName

σMajor=Code AND Year = 4

Student

X

Department
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-- Converting Nested Parse Trees to Logical Query Trees …

Converting a parse tree that contains a nested query is slightly
more challenging.

A nested query may be correlated with the outside query if it 
must be re-computed for every tuple produced by the outside 
query. Otherwise, it is uncorrelated, and the nested query can be 
converted to a non-nested query using joins.

We will define a two-operand selection operator σ that takes the 
outer relation R as one input (left child), and the right child is the 
condition applied to each tuple of R.

The condition is the subquery involving IN.
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… -- Converting Nested Parse Trees to Logical Query Trees

The nested subquery translation algorithm involves defining a 
tree from root to leaves as follows:

1. Root node is a projection, πL, where L is the list of attributes in the 
<SelList> of the outer query.

2. Child of root is a selection operator, σC, where C is the <Condition> 
expression in the outer query ignoring the subquery.

3. The two-operand selection operator σ with left-child as the cross-
product (×) of all relations mentioned in the <FromList> of the outer 
query, and right child as the <Condition> expression for the 
subquery.

4. The subquery itself involved in the <Condition> expression is 
translated to relational algebra.
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-- Parse Tree to Logical Tree:  Example 3 …

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<Query>

<FROM><SelList> <WHERE> <Condition><FromList>

<Rel><Attr>

Student

DeptName

Major

<SELECT>

Return all 
departments 
who have a 4th 
year student.

<SFW>

Department 

<Rel> 

<Tuple> <Query>IN
<Attr>

Code

( Query )

<SFW>

<SELECT> <FROM> <WHERE>
<SelList>

<FromList> <Condition>

<Attr> <Attr> = <Value>

Year 4
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… -- Parse Tree to Logical Tree:  Example 3

SELECT DeptName
FROM Department 
WHERE Code IN (

SELECT Major 
FROM Student 
WHERE Year=4)

∏DeptName

σTrue

σ

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

Condition in parse tree

No outer level selection

Only one outer
relation

Subquery transilated
To Logical query tree
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-- Converting Nested Parse Trees to Logical Query Trees 

Now, we must remove the two-operand selection and replace it by 
relational algebra operators.

Rule for replacing two-operand selection (uncorrelated):

Let R be the first operand, and the second operand is a <Condition> 
of the form t IN S. (S is uncorrelated subquery.)

Replace <Condition> by the tree that is expression for S.
May require applying duplicate elimination if expression has duplicates.

Replace two-operand selection by one-argument selection, σC, where C is 
the condition that equates each component of the tuple t to the 
corresponding attribute of relation S.

Give σC an argument that is the product of R and S.
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-- Parse Tree to Logical Tree Conversion

σC

R

X

S

δ

σ

R <condition>

t     IN     S

Replace σ by 
with σC and X

May need to eliminate
duplicates



March 29, 2008 ICS 541 26

-- Parse Tree to Logical Tree:  Example 3

∏DeptName

σTrue

σ

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

∏DeptName

σcode=Major

X

Department <condition>

<Tuple>

<Attr>

Code

∏Major

σYear = 4

IN

<Student>

δ
Major is
Not a key

Replace σ by 
with σC and X
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-- Correlated Nested Subqueries

Translating correlated subqueries is more difficult because the result of 
the subquery depends on a value defined outside the query itself.

In general, correlated subqueries may require the subquery to be 
evaluated for each tuple of the outside relation as an attribute of each 
tuple is used as the parameter for the subquery.

We will not study translation of correlated subqueries.

Example:

Return all students that are more senior than the average for their majors.

SELECT Name 
FROM Student s 
WHERE year >

(SELECT Avg(Year) 
FROM student AS s2
WHERE s.major = s2.major)
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- Optimizing the Logical Query Plan

The translation rules converting a parse tree to a logical query tree 
do not always produce the best logical query tree. It is often 
possible to optimize the logical query tree by applying relational 
algebra laws to convert the original tree into a more efficient 
logical query tree.

Optimizing a logical query tree using relational algebra laws is
called heuristic optimization because the optimization process uses 
common conversion techniques that result in more efficient query
trees in most cases, but not always.

The optimization rules are heuristics.

We begin with looking at relational algebra laws.
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-- Relational Algebra Laws

Just like there are laws associated with the mathematical operators, 
there are laws associated with the relational algebra operators.

These laws often involve the properties of:

commutativity - operator can be applied to operands independent of 
order.

E.g. A + B = B + A - The “+” operator is commutative.

associativity - operator is independent of operand grouping.

E.g. A + (B + C) = (A + B) + C - The “+” operator is associative.
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-- Associative and Commutative Operators

The relational algebra operators of cross-product (×), join (⋈), set 
and bag union (US and UB), and set and bag intersection (∩S and 
∩B) are all associative and commutative.

Associative

(R  X  S)  X  T = S  X  (R  X  T)

(R ⋈ S) ⋈ T= S ⋈ (R ⋈ T)

(R ∪ S) ∪ T = S ∪ (R ∪ T)

(R  ∩ S)   ∩ T =  S  ∩ (R ∩ T)

Commutative

R  X  S = S  X  R

R ⋈ S = S ⋈ R

R ∪ S = S ∪ R

R  ∩ S  = S ∩ R
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-- Laws Involving Selection …

Complex selections involving AND or OR can be broken into two 
or more selections: (splitting laws)

σC1 AND C2 (R) = σC1( σC2 (R))

σC1 OR C2 (R) = ( σC1 (R) ) ∪S ( σC2 (R) )

Notes:

1. Second law only works if R is a set.

2. The ordering that selections are applied in first law is flexible:

σC1 AND C2 (R) = σC2( σC1 (R))

3. In general, we may evaluate selection operators in any order.
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… -- Laws Involving Selection …

Pushing selections through binary operations is possible 
and often results in much more efficient logical query 
trees because a selection reduces the size of the 
relation.

Selection is pushed through both arguments for union:

σC(R ∪ S) = σC(R) ∪ σC(S)

Selection is pushed to the first argument and optionally 
the second for difference:

σC(R - S) = σC(R) - S
σC(R - S) = σC(R) - σC(S)
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… -- Laws Involving Selection …

All other operators require selection to be pushed to only one of 
the arguments. For joins, may not be able to push selection to 
both if argument does not have attributes selection requires.

σC(R × S) = σC(R) × S
σC(R ∩ S) = σC(R) ∩ S
σC(R ⋈ S) = σC(R) ⋈ S
σC(R ⋈D S) = σC(R) ⋈D S

Notes:
1. Laws shown are only pushing to one of the arguments.
2. D is a condition for the join. (Not a natural join.)
3. Assumed that R has all attributes of C.
4. Selection can sometimes be applied to both operands.
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… -- Laws Involving Selection

Selection and cross-product can be converted to a theta 
join:

σC(R × S) =  R ⋈ C S

Selection and theta join can also be combined:

σC(R ⋈D S) = R     C AND ⋈D S
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-- Laws Involving Projection …

Like selections, it is also possible to push projections down the 
logical query tree. However, the performance gained is less than
selections because projections just reduce the number of attributes 
instead of reducing the number of tuples.

Unlike selections, it is common for a pushed projection to also remain 
where it is.

General principle: We may introduce a projection anywhere in 
an expression tree, as long as it eliminates only attributes that are 
never used by any of the operators above, and are not in the 
result of the entire expression.



March 29, 2008 ICS 541 36

… -- Laws Involving Projection …

Laws for pushing projections with joins:

πL(R × S) = πL(πM(R) × πN(S))

πL(R ⋈ S) = πL((πM(R) ⋈ πN(S))

πL(R ⋈D S) = πL((πM(R) ⋈D πN(S))

Notes:
L is a set of attributes to be projected. M is the list of all 
attributes of R that are either join attributes or are attributes of 
L. N is the list of attributes of S that are either join or attributes 
or attributes of L. D is a condition for the join.
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… -- Laws Involving Projection …

Laws for pushing projections with set operations.

Projection can be performed entirely before bag union.

πL(R UB S) = πL(R) UB πL(S)

Projections can not be pushed below set unions or either the set or 
bag versions of intersection and difference.

Projection can be pushed below selection as long as we also keep
all attributes needed for the selection (M = L ∪ attr(C)).

πL ( σC (R)) = πL( σC (πM(R)))
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… -- Laws Involving Projection …

Only the last in a sequence of projection operations is 
needed, the others can be omitted.

πL (πM (R)) = πL(R)

Notes:

Set M must be a superset of set L.
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-- Laws Involving Join …

We have previously seen these important rules about 
joins:

1. Joins are commutative and associative.

2. Selection can be distributed into joins.

3. Projection can be distributed into joins.
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… -- Laws Involving Duplicate Elimination …

The duplicate elimination operator (δ) can be pushed through 
many operators.

First, realize that δ(R) = R occurs when R has no duplicates:

R may be a stored relation with a primary key.

R may be the result after a grouping operation.

Laws for pushing duplicate elimination operator (δ):

δ(R × S) = δ(R) × δ(S)

δ(R S) = δ(R)      δ(S)

δ(R D S) = δ(R)      D δ(S)

δ( σC(R) = σC(δ(R))
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… -- Laws Involving Duplicate Elimination

The duplicate elimination operator (δ) can also be 
pushed through bag intersection, but not across union, 
difference, or projection in general.

δ(R ∩ S)  =  δ(R) ∩ δ(S)
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-- Laws Involving Grouping

The grouping operator (γ) laws depend on the 
aggregate operators used.

There is one general rule, however, that grouping 
subsumes duplicate elimination:

δ(γL(R)) = γL(R)

The reason is that some aggregate functions are 
unaffected by duplicates (MIN and MAX) while other 
functions are (SUM, COUNT, and AVG).
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-- Rules of Heuristic Query Optimization

Deconstruct conjunctive selections into a sequence of single 
selection operations.

Move selection operations down the query tree for the earliest 
possible execution.

Execute first those selection and join operations that will produce 
the smallest relations.

Replace Cartesian product operations that are followed by a 
selection condition by join operations.

Deconstruct and move as far down the tree as possible lists of 
projection attributes, creating new projections where needed.

Identify those subtrees whose operations can be pipelined, and 
execute them using pipelining.
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-- Parse Tree to Logical Tree:  Example 1

SELECT Name FROM Student WHERE Major = ‘ICS’

∏Name

σMajor=“ICS”

Students

πName( σMajor=“ICS”’(Student))
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-- Parse Tree to Logical Tree:  Example 1

SELECT DeptName
FROM Department, Student
WHERE Code = Major 
AND Year = 4

∏DeptName
∏DeptName

σCode =Major AND Year=4

Student Department

Code =Major

∏DeptName.CodeσYear=4

Optimizations
- push selection down
- push projection down
- merge selection and
cross-productX

Student Department

Original:

πDeptName( σCode=Major AND Year=4 (Student × Department))
Optimized:

πDeptName(( σ Year=4 (Student)) Code=Major (πDeptName,Code(Department)))
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-- Canonical Logical Query Trees

Most parsers do not produce trees which have unlimited # of 
children because most operations are unary or binary.

However, associative and commutative operators could be considered 
as having many operands as the order is irrelevant.

This is especially important for joins as the order of joins may
make a significant difference in the performance of the query.

A canonical logical query tree is a logical query tree where all 
associative and commutative operators with more than two 
operands are converted into multi-operand operators.

This will make it more convenient and obvious that the operands can 
be combined in any order.
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-- Canonical Logical Query Tree: Example

Original Query Tree Canonical Query Tree

∪

∪R

S T

W

∪

R S T

W Y Z

Y Z
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--Physical Query Plan

A physical query plan is derived from a logical query plan by:

Selecting an order and grouping for operations like joins, unions, and 
intersections.

Deciding on an algorithm for each operator in the logical query plan.
e.g. Nested-loop join, sort join or hash join

Adding additional operators to the logical query tree such as sorting 
and scanning that are not present in the logical plan.

Determining how arguments are passed from one operator to the 
next. Involves deciding between pipelining and materialization.

Whether we perform cost-based or heuristic optimization, we 
eventually must arrive at a physical query tree that can be 
executed by the evaluator.
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-- Heuristic versus Cost Optimization

In order to determine when one physical query plan is better than 
another, we must have an estimate of the cost of the plan.

Heuristic optimization is normally used to pick the best logical
query plan.

Cost-based optimization is used to determine the best physical 
query plan given a logical query plan.

Note that both can be used in the same query processor (and 
typically are). Heuristic optimization is used to pick the best logical 
plan which is then optimized by cost-based techniques.
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-- Estimating Operation Cost …

In order to determine when one physical query plan is better than 
another for cost-based optimization, we must have an estimate of 
the cost of a physical query plan.

Note that the query optimizer will very rarely know the exact cost 
of a query plan because the only way to know is to execute the 
query itself!

Since the cost to execute a query is much greater than the cost to 
optimize a query, we cannot execute the query to determine its cost!

Thus, it is important to be able to estimate the cost of a query plan 
without executing it based on statistics and general formulas.
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… -- Estimating Operation Cost

Statistics for base relations such as B(R), T(R), and V(R,a) are 
used for optimization and can be gathered directly from the data, 
or estimated using statistical gathering techniques.

One of the most important factors determining the cost of the 
query is the size of the intermediate relations. An intermediate 
relation is a relation generated by a relational algebra operator 
that is the input to another query operator.

The final result is not an intermediate relation.

The goal is to come up with general rules that estimate the sizes 
of intermediate relations that give accurate estimates, are easy to 
compute, and are consistent.

There is no one set of agreed-upon rules!
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-- Estimating Projection Sizes

Calculating the size of a relation after the projection operation is 
easy because we can compute it directly.

Assuming we know the size of the input, we can calculate the size of 
the output based on the size of the input records and the size of the 
output records.

The projection operator decreases the size of the tuples, not the 
number of tuples.

For example, given relation R(a,b,c) with size of a = size of b = 4 
bytes, and size of c = 100 bytes. T(R) = 10000 and unspanned
block size is 1024 bytes. If the projection operation is Πa,b, what 
is the size of the output U in blocks?

T(U) = 10000. Output tuples are 8 bytes long.
bfr = 1024/8 = 128 B(U) = 10000/128 = 79
B(R) = 10000 / (1024/108) = 1112
Savings = (B(R) - B(U))/B(R)*100% = 93%
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-- Estimating Selection Sizes …

A selection operator generally decreases the number of tuples in the 
output compared to the input. By how much does the operator 
decrease the input size?

The selectivity (sf) is the fraction of tuples selected by a selection 
operator. Common cases and their selectivities:

Equality: S = σa=v (R)       - sf = 1/V(R,a)         T(S) = T(R)/V(R,a)
Reason: Based on the assumption that values occur equally likely in the 
database. However, estimate is still the best on average even if the values v for 
attribute a are not equally distributed in the database.

Inequality: S = σa<v (R)     - sf = 1/3       T(S) = T(R)/3
Reason: On average, you would think that the value should be T(R)/2. 
However, queries with inequalities tend to return less than half the tuples, so 
the rule compensates for this fact.

Not equals: S = σa!=v (R) - sf = 1 T(S) = T(R)
Reason: Assume almost all tuples satisfy the condition.
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… -- Estimating Selection Sizes …

Simple selection clauses can be connected using AND or OR. 

A complex selection operator using AND ( σa=10 AND b<20(R)) is the 
same as a cascade of simple selections ( σa=10 ( σb<20(R)). The 
selectivity is the product of the selectivity of the individual 
clauses.

Example: Given R(a,b,c) and S = σa=10 AND b<20(R), what is the best 
estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = 1/3 * 1/50 = 1/150.
T(S) = T(R)* 1/150 = 67
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… -- Estimating Selection Sizes …

For complex selections using OR (S = σC1 OR C2(R)), the # of 
output tuples can be estimated by the sum of the # of tuples for 
each condition.

Measuring the selectivity with OR is less precise, and simply taking 
the sum is often an overestimate.

A better estimate assumes that the two clauses are independent, 
leading to the formula:

n(1-(1-m1/n)(1-m2/n))

m1 and m2 are the # of tuples that satisfy C1 and C2 respectively.

n is the number of tuples of R (i.e. T(R)).

1-m1/n and 1-m2/n are the fraction of tuples that do not satisfy 
C1  and C2 respectively. The product of these numbers is the 
fraction that do not satisfy either condition.
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… -- Estimating Selection Sizes

Example: Given R(a,b,c) and S = σa=10 OR b<20(R), what is 
the best estimate for T(S)? Assume T(R)=10,000 and 
V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.

The filter b<20 has selectivity of 1/3.

Total selectivity = (1 - (1 - 1/50)(1 - 1/3)) = .3466

T(S) = T(R) *.3466 = 3466

Simple method results in T(S) = 200 + 3333 = 3533.
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-- Estimating Join Sizes …

We will study only estimating the size of natural join.

Other types of joins are equivalent or can be translated into a cross-
product followed by a selection.

The two relations joined are R(X,Y) and S(Y,Z).

We will assume Y consists of only one attribute.

The challenge is we do not know how the set of values of Y in R 
relate to the values of Y in S. There are some possibilities:

The two sets are disjoint. Result size = 0.

Y may be a foreign key of R joining to a primary key of S. Result size in 
this case is T(R).

Almost all tuples of R and S have the same value for Y, so result size in 
the worst case is T(R)*T(S).
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… -- Estimating Join Sizes

The result size of joining relations R(X,Y) and S(Y,Z) can be 
approximated by:

(T(R) * T(S))/(MAX(V(R,Y), V(S,Y))

Argument:
Every tuple of R has a 1/V(S,Y) chance of joining with every tuple of S. On 
average then, each tuple of R joins with T(S)/V(S,Y) tuples. If there are 
T(R) tuples of R, then the expected size is T(R) * T(S)/V(S,Y).

A symmetric argument can be made from the perspective of joining every 
tuple of S. Each tuple has a 1/V(R,Y) chance of joining with every tuple of 
R. On average, each tuple of R joins with T(R)/V(R,Y) tuples. The expected 
size is then T(S) * T(R)/V(R,Y).

In general, we choose the smaller estimate for the result size (divide by the 
maximum value). 
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--- Estimating V(R,a)

The database will keep statistics on the number of distinct values for 
each attribute a in each relation R, which we denote as V(R,a).

However, when a sequence of operations is applied, it is necessary to 
estimate V(R,a) on the intermediate relations.

For our purposes, there will be three common cases:

a is the primary key of R then V(R,a) = T(R)
The number of distinct values is the same as the # tuples in R.

a is a foreign key of R to another relation S then V(R,a) = T(S)
In the worst case, the number of distinct values of a cannot be larger than the 
number of tuples of S since a is a foreign key to the primary key of S.

If a selection occurs on relation R before a join, then V(R,a) after the 
selection is the same as V(R,a) before selection.

This is often strange since V(R,a) may be greater than # of tuples in 
intermediate result! V(R,a) <> # of tuples in result.
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-- Estimating Sizes of Other Operators

The size of the result of set operators, duplicate elimination, and grouping is 
hard to determine. Some estimates are below:

Union
bag union = sum of two argument sizes
set union = minimum is the size of the largest relation, maximum is the sum of the 
two relations sizes. Estimate by taking average of min/max.

Intersection
minimum is 0, maximum is size of smallest relation. Take average.

Difference
Range is between T(R) and T(R) - T(S) tuples. Estimate: T(R) - 1/2*T(S)

Duplicate Elimination
Range is 1 to T(R). Estimate by either taking smaller of 1/2*T(R) or product of all 
V(R,ai) for all attributes ai.

Grouping
Range and estimate is similar to duplicate elimination.
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- Cost-Based Optimization

Cost-based optimization is used to determine the best physical 
query plan given a logical query plan.

The cost of a query plan in terms of disk I/Os is affected by:

The logical operations chosen to implement the query (the logical 
query plan).

The sizes of the intermediate results of operations.

The physical operators selected.

The ordering of similar operations such as joins.

The method of passing arguments from one operator to another 
(pipelining versus materialization).
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-- Obtaining Size Estimates

The cost calculations for the physical operators relied on 
reasonable estimates for B(R), T(R), and V(R,a).

Most DBMSs allow an administrator to explicitly request these 
statistics be gathered. It is easy to gather them by performing a 
scan of the relation. It is also common for the DBMS to gather 
these statistics independently during its operation.

Note that by answering one query using a table scan, it can 
simultaneously update its estimates about that table!

It is also possible to produce a histogram of values for use with 
V(R,a) as not all values are equally likely in practice.

Histograms display the frequency that attribute values occur.

Since statistics tend not to change dramatically, statistics are
computed only periodically instead of after every update.
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-- Using Size Estimates in Heuristic Optimization

Size estimates can also be used during heuristic 
optimization.

In this case, we are not deciding on a physical plan, but 
rather determining if a given logical transformation will 
make sense.

By using statistics, we can estimate intermediate relation 
sizes (independent of the physical operator chosen), and 
thus determine if the logical transformation is useful.
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-- Using Size Estimates in Cost-based Optimization …

Given a logical query plan, the simplest algorithm to 
determine the best physical plan is an exhaustive 
search.

In an exhaustive search, we evaluate the cost of 
every physical plan that can be derived from the logical 
plan and pick the one with minimum cost.

The time to perform an exhaustive search is extremely 
long because there are many combinations of physical 
operator algorithms, operator orderings, and join 
orderings.



March 29, 2008 ICS 541 65

… -- Using Size Estimates in Cost-based Optimization …

Since exhaustive search is costly, other approaches 
have been proposed based on either a top-down or 
bottom-up approach.

Top-down algorithms start at the root of the logical 
query tree and pick the best implementation for each 
node starting at the root.

Bottom-up algorithms determine the best method 
for each subexpression in the tree (starting at the 
leaves) until the best method for the root is 
determined.
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… -- Using Size Estimates in Cost-based Optimization

Heuristic Selection
Use the same approach to select physical plan that is generally used 
for selecting a logical plan.

Branch-and-bound
Begin with heuristic to find a plan. Let the cost of this plan be C.
Then consider other plans for subqueries and ignore if the cost of the 
subquery is higer than C and so on.

Hill climbing
Start with heuristically selected plan. Let the cost of this plan be C.
Change the plan slightly. If the new plan is better than C then 
consider this plan.
Repeat the process again till certain threshold is reached.

Dynamic programming
Selinger-Style Optimization

Like Dynamic programming but keeps the least cost plan plus some
more.
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-- Selecting a Join Order

Since joins are the most costly operation, determining the best 
possible join order will result in more efficient queries.

Selecting a join order is most important if we are performing a join of 
three or more relations. However, a join of two relations can be
evaluated in two different ways depending on which relation is 
chosen to be the left argument.

Some algorithms (such as nested-block join and one-pass join) are more 
efficient if the left argument is the smaller relation.

A join tree is used to graphically display the join order.
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-- Join Tree Examples

Left-deep join tree Balanced join tree Right-deep join tree
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-- Choosing a Selection Method

In building the physical query plan, we will have to pick 
an algorithm to evaluate each selection operator.

Some of our choices are:
table scan
index scan

There also may be several variants of each choice if 
there are multiple indexes.

We evaluate the cost of each choice and select the best 
one.
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-- Choosing a Join Method

In building the physical query plan, we will have to pick 
an algorithm to evaluate each join operator:

nested-block join - one-pass join or nested-block join used if 
reasonably sure that relations will fit in memory.

sort-join is good when arguments are sorted on the join 
attribute or there are two or more joins on the same attribute.

index-join may be used when an index is available.

hash-join is generally used if a multipass join is 
required, and no sorting or indexing can be exploited.
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-- Other Operators

Determining the algorithms to select for the other 
operators is similar. This includes the set operators.

Projection is always implemented as a table scan, so no 
decisions must be made for that operator.
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-- Pipelining versus Materialization

The final decision to be made is how results are passed from one
operator to the next.

There are two choices:

Materialization - the entire operator result is computed before any 
tuples are sent to the next operator.

Pipelining - the operator result is provided to the next operator a 
tuple-at-a-time as it is calculated (using iterators).

Materialization reduces parallelism and requires intermediate 
results to be stored on disk. Pipelining increases parallelism and 
reduces disk I/Os, but may be less efficient if many operators 
compete for the same resources or the pipelined algorithms are 
less efficient than regular algorithms.
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-- Pipelining Operators

Pipelining unary operators like selection are projection is easy as they 
operate a tuple-at-a-time.

Binary operators such as join can also be pipelined. However, there is 
a potential that pipelining may reduce the performance.

For example, consider pipelining the join of R(a,b), S(b,c), and U(c,d)
with a fixed number of memory buffers M.

One solution is to materialize the join on R and S, then join the result with U
using a regular hash-join.

The other approach is to perform both hash joins simultaneously, but this 
would reduce the amount of memory available to each individual operation.

Potentially, pipelining would reduce the performance for certain relation sizes.
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To be continued


