
March 29, 2008 ICS 541: Quey Execution 1

Query Execution

Chapter 15 of GUW

Sections 15.1 to 15.8 



March 29, 2008 ICS 541: Quey Execution 2

Objectives

Analyze several possible algorithms for each relational 
algebra operations.

The best algorithm depends on the particular relations 
involved, and on the internal memory available



March 29, 2008 ICS 541: Quey Execution 3

- Lecture outline

Query Processor
Introduction to Physical-Query-Plan Operators
One-Pass Algorithms for Database Operations
Nested-Loop Joins
Two-Pass Algorithms Based on Sorting
Two-Pass Algorithms Based on Hashing
Index Based Algorithms
Buffer Management
Algorithms Using More Than Two Passes



March 29, 2008 ICS 541: Quey Execution 4

- Query Processor

Query processor is a group of DBMS components that turns user 
queries and data-modification commands into a sequence of 
database operation and executes those operations.

Query Processor is divided into:
Query compilation (Ch 16)
Query execution  (Ch. 15)

Query compilation is divided into 2 main components:
Parsing

A parse tree, representing the query and its structure, is constructed.

Query optimization



March 29, 2008 ICS 541: Quey Execution 5

-- Query Optimization

Query rewrite

parse tree is converted into an initial query plan, which is usually an 
algebraic representation  of the query.

The initial plan is then transformed into an equivalent plan that is 
expected to take less time to execute

The result of this step is logical query plan

Physical plan generation

Selecting algorithms to implement each of the operators of the logical 
query plan.

Selects order of execution of the operators.

Includes details of how the queried relations are accessed and when 
and if a relation should be sorted.

Is also represented by an expression tree.



March 29, 2008 ICS 541: Quey Execution 6

-- Query Processing



March 29, 2008 ICS 541: Quey Execution 7

Example:   SQL query

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)



March 29, 2008 ICS 541: Quey Execution 8

Example:   Parse Tree

<Query>

<SFW>

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition>

<Attribute>              <RelName>                 <Tuple>  IN  <Query>

title                       StarsIn <Attribute>      (  <Query>  )

starName <SFW>

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition>

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern>

name                 MovieStar birthDate ‘%1960’



March 29, 2008 ICS 541: Quey Execution 9

Example:   Generating Relational Algebra

Πtitle

σ
StarsIn <condition>

<tuple>      IN   Πname

<attribute>      σbirthdate LIKE ‘%1960’

starName MovieStar



March 29, 2008 ICS 541: Quey Execution 10

Example:   Logical Query Plan

Πtitle

σstarName=name

StarsIn Πname             

σbirthdate LIKE ‘%1960’

MovieStar

×



March 29, 2008 ICS 541: Quey Execution 11

Example:   Improved Logical Query Plan

Πtitle

starName=name

StarsIn Πname             

σbirthdate LIKE ‘%1960’

MovieStar

⋈



March 29, 2008 ICS 541: Quey Execution 12

Example: Estimate costs

L.Q.P

P1 P2 …. Pn

C1 C2 …. Cn

Pick best!



March 29, 2008 ICS 541: Quey Execution 13

Example:    Estimate Result Sizes

Need expected size

StarsIn

MovieStar
Π

σ



March 29, 2008 ICS 541: Quey Execution 14

Example:  One Physical Plan

Parameters: join order,
memory size, project attributes,...

Hash join

Table scan index scan Parameters:
Select Condition,...

StarsIn MovieStar



March 29, 2008 ICS 541: Quey Execution 15

- Introduction to Physical-Query-Plan Operators

What are physical operators

Scanning tables

Model of computation

Parameters for measuring cost

I/0 Cost of Scan Operator



March 29, 2008 ICS 541: Quey Execution 16

-- What are Physical Operators

Are implementations for one of the operators of 
relational algebra.

They are also implementation of non relational algebra 
operators like:

Bringing tuples from disk to memory



March 29, 2008 ICS 541: Quey Execution 17

-- Scanning tables

Table-scan
No index is used

Index-scan
Index is used

Sorting while scanning

Sorting relation R on attribute A while scanning it can be 
implemented:

By index-scan if there is an index on A.

By efficient main memory sorting algorithm if R is small and fits in the 
available memory

By Using  multiway merge approach if R is too large to fit in main memory.



March 29, 2008 ICS 541: Quey Execution 18

-- Parameters for measuring Cost

Assume:
Data is accessed one block at a time
Memory buffer size = disk block size
Arguments of any operator are read from disk
Result are not written back to disk
Cost of a query is approximated by the number of disk blocks accessed.

Parameters:
M: Estimate of memory buffers that can be used by operator

Wrong estimation of M can fool the optimizer.
B: Number of blocks

B(R): Number of block needed to hold tuples of R.
T: Number of tuples

T( R): Cardinality of R
V: Number of distinct values in a column

V(R,a): Number of distinct values in column a of relation R.



March 29, 2008 ICS 541: Quey Execution 19

-- I/0 Cost of Scan Operator

Table-scan of R
Clustered R: B(R)
Unclustered R: T(R)

Index-scan of R:
Must be much less than Table-scan
To be discussed later

Note:
All our subsequent calculations will assume clustered tables, 
unless specified.
Incase of binary operations S and R will be used, and we will 
assume B(R) ≥ B(S).



March 29, 2008 ICS 541: Quey Execution 20

-- Model of Computation

Assume:
Data is accessed one block at a time

Memory buffer size = disk block size

Arguments of any operator are read from disk

Result are not written back to disk

Cost of a query is approximated by the number of disk blocks 
accessed.

With binary operations involving Relations R and S, Assume is is
smaller unless specified.



March 29, 2008 ICS 541: Quey Execution 21

- One-Pass Algorithms for DB Operations 

Assumption:  B(S) <  B(R)  and  B(S) < M
Unary

Selection σ
Projection
Duplicate elimination δ
Grouping ¥

Binary
Bag Union ∪B

Bag Intersection ∩B

Bag Difference -B

Set union ∪s

Set Intersection ∩s

Set Difference -S

Product X
Join ⋈

π



March 29, 2008 ICS 541: Quey Execution 22

-- Selection: σc(R)

Algorithm
Read blocks of R one at a time into an input buffer
Perform the operation on each tuple
Move selected tuples to output buffer

Memory Structures:
None

Memory size
M = 1 suffices

Cost
B(R)



March 29, 2008 ICS 541: Quey Execution 23

-- Projection:    (R)

Algorithm
Read blocks of R one at a time into an input buffer
Perform the operation on each tuple
Move projected tuples to output buffer

Memory Structures
None

Memory size
M = 1 suffices

Cost
B(R)

π



March 29, 2008 ICS 541: Quey Execution 24

-- Duplicate Elimination: δ(R)

Algorithm
Read R one block at a time
For each tuple:

New tuple:  add to structure
duplicate tuple:    ignore

Memory structures
Balanced tree or Hash

Memory requirement
B(δ(R) )  < M

Cost
B(R)



March 29, 2008 ICS 541: Quey Execution 25

-- Grouping: ¥L(R) …

Algorithm
Scan the tuples of R one block at a time
Compute the aggregate value for the corresponding group.

Memory Structure
Balanced tree or Hash

Memory requirement
M > B  (¥L(R) )
M not directly related to B(R).

Cost
B(R)



March 29, 2008 ICS 541: Quey Execution 26

-- Bag Union: R UB  S

Algorithm
Read each Block of R one at a time
Copy each tuple of R to the output
Read each block of S one at a time
Copy each tuple of S to the output

Memory Structures
None

Memory requirement
M = 1 suffices

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 27

-- Bag Intersection: R ∩B S

Algorithm
Read each tuple of S and associate a count which is equal to the
number of times it is duplicated. 
Read each tuple of R, and check whether it is also in S

If it is and its count is higher than zero, send the tuple to output and 
subtract the count. 
If it isn’t in S or its count is zero ignore it

Memory Structures
Balanced tree or Hash

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 28

-- Bag Difference: S –B R

Algorithm
Read each tuple of S and associate a count which is equal to the
number of times it is duplicated. 
Read each tuple of R, and check whether it is also in S

If it is, subtract its count. 
If it isn’t, ignore it

The output is those tuples of S with positive count copied as many 
times as their count.

Memory Structures
Balanced tree or Hash

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 29

-- Set Union: R ∪s  S

Algorithm
Read S into M-1 buffers and build a search structure where the search 
key is the hole tuple
Also copy all the S tuples to the output
Read each block of R to the Mth buffer one at a time
If a tuple t of R is not in S, then t is copied to the output, otherwise t 
is skipped.

Memory Structures
Btree or Hash

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 30

-- Set Intersection: R ∩s S

Algorithm
Read S into M-1 buffers and build a search structure where the search 
key is the hole tuple.
Read each block of R to the Mth buffer one at a time
If a tuple t of R is in S, then copy t  to the output, otherwise skip it.

Memory Structures
Balanced tree or Hash

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 31

-- Set Difference: S -s R

Algorithm
Read S into M-1 buffers and build a search structure where the search 
key is the hole tuple.
Read each block of R to the Mth buffer one at a time
If a tuple t of R is in S, delete t (in memory) from S 
Then copy the undeleted tuples of S to the output.

Memory Structures
Balanced tree or Hash

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 32

-- Product: S X R

Algorithm
Read S into M-1 buffers 
Read each block of R to the Mth buffer one at a time
Concatenate each tuple of R with each tuple of S and copy to 
output

Memory Structures
None

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 33

-- Natural Join: R(X,Y) ⋈ S(Y,Z) 

Algorithm
Read S into M-1 buffers and build a search structure where the search 
key is Y. 
Read each block of R to the Mth buffer one at a time
For each tuple t of R, join it with matching tuples of S  and copy the 
result tuples to the output.

Memory Structures
Hash or balanced tree

Memory requirement
M > min(B(S), B(R))

Cost
B(R) + B(S)



March 29, 2008 ICS 541: Quey Execution 34

- Nested-Loop Join:  S ⋈ R …

Assumption B(S) and B(R) > M
Algorithm

FOR each chunk of M-1 blocks of S DO BEGIN
read These blocks into main memory
organize their tuples into a search structure whose

search key is the common attributes of R and S
FOR each block b of R DO BEGIN

read b into main memory;
FOR each tuple t of b DO BEGIN

find the tuples of S in memory that join with t
output the join of t with each of these tuples

END;
END;

END;



March 29, 2008 ICS 541: Quey Execution 35

… - Nested-Loop Join:  S ⋈ R 

Memory Structures
Hash or balanced tree

Memory requirement
M ≥ 2

Cost
B(S) + (B(S) * B(R))/(M-1)



March 29, 2008 ICS 541: Quey Execution 36

- Two-Pass Algorithms Based on Sorting

The basic idea is:
Read M blocks of R Sort the M blocks
Write the sorted sublist into M disk blocks
In some way use the sorted sublists to execute one of the following 
operators.  

Duplicate elimination δ
Grouping ¥
Bag Intersection ∩B

Bag Difference -B

Set union ∪s

Set Intersection ∩s

Set Difference -S

Join ⋈



March 29, 2008 ICS 541: Quey Execution 37

-- Duplicate Elimination: δ(R)

Algorithm
1. Read the tuples of R into memory, M blocks at a time
2. Sort each M block  
3. Write each sorted sublist to disk
4. Load the first block of each sublist into a main memory buffer.
5. Copy each tuple to the output and ignore its duplicates
6. If a buffer becomes empty, replace it with the next block from the same sublist.
7. Repeat steps 5 and 6 until all the blocks of R are processed.

Memory structures
None

Memory requirement
B(R) < M*M

Cost
3 * B(R)



March 29, 2008 ICS 541: Quey Execution 38

-- Grouping: ¥L(R) 

Algorithm
1. Read the tuples of R into memory, M blocks at a time
2. Sort each M block using the grouping attributes of L 
3. Write each sorted sublist to disk
4. Load the first block of each sublist into a main memory buffer.
5. Repeatedly find all the tuples with the least value of the sort key,   accumulate 

its  aggregates and copy the result tuple to output.
6. If a buffer becomes empty, replace it with the next block from the same sublist.

Memory Structure
None

Memory requirement
M > SQRT(B(R))

Cost
3 * B(R)



March 29, 2008 ICS 541: Quey Execution 39

-- Set Union: R Us  S

Algorithm
1. Repeatedly bring M blocks of R into memory
2. Sort their tuples and write the sorted sublists back to disk.
3. Do the same steps 1 and 2 for S.
4. Use one main-memory buffer for each sublist of R and S. Initialize each 

with the first block from the corresponding sublist.
5. Repeatedly find the first remaining tuple t, among all the buffers.
6. Copy t to the output and remove its duplicates from the buffers.
7. If a buffer becomes empty, reload it with the next block from its sublist. 

Memory Structures
None

Memory requirement
M > SQRT(B(S) +  B(R))

Cost
3 * (B(R) + B(S))



March 29, 2008 ICS 541: Quey Execution 40

-- Intersection and Difference

Algorithm
The same as that of Us except:

For ∩S, output t if it appears in R and S
For ∩B, output t the minimum of the number of times it appears in R and S.
For  R –s S, output t if and only if it appears in R but not in S.
For  R –B S, output t, the number of times it appears in R minus the number 
of times it appears in S.

Memory Structures
None

Memory requirement
M > SQRT(B(S) +  B(R))

Cost
3 * (B(R) + B(S))



March 29, 2008 ICS 541: Quey Execution 41

-- Join: R(X,Y) ⋈ S(Y,Z)

Algorithm
1. Create a sorted sublist of size M, using Y as the sort key, for both R and S.
2. Bring the first block of each sublist into buffer. (Assume there are no more 

than M sublists in all).
3. Repeatedly find tuples with the next minimum Y value in R, and join them with 

the corresponding tuples in S.
4. If the buffer for one of the sublists is exhausted, then replenish it from disk.

Memory Structures
None

Memory requirement
M > SQRT(B(S) +  B(R))

Cost
3 * (B(R) + B(S))



March 29, 2008 ICS 541: Quey Execution 42

- Two-Pass Algorithms Based on Hash

Partitioning 
operators.

Duplicate elimination δ
Grouping ¥
Bag Intersection ∩B
Bag Difference -B
Set union ∪s
Set Intersection ∩s
Set Difference -S

Join ⋈



March 29, 2008 ICS 541: Quey Execution 43

-- Partition Relations By Hashing

h(t)
RR0

R1

Rn



March 29, 2008 ICS 541: Quey Execution 44

-- Duplicate Elimination: δ(R)

Algorithm
Has R into M-1 partitions
Read each partition and out put distinct copies. (duplicates will 
has to the same bucket.)

Memory Structures
None

Memory requirement
M < SQRT(B(R))

Cost
3 * (B(R))



March 29, 2008 ICS 541: Quey Execution 45

-- Grouping and Aggregation: ¥L(R)

Algorithm
Hash R into M-1 partitions using the attributes in L
Use the one pass algorithm to process each bucket in turn

Memory Structures
Balanced tree or hash

Memory requirement
M < SQRT(B(R))

Cost
3 * (B(R))



March 29, 2008 ICS 541: Quey Execution 46

-- The Rest of the Relational operators

Algorithm
Partition R and S into M partitions
Consider each partition as a mini table
Use the one-pass algorithm on this mini-tables to implement the rest 
of the relational operators.

Summary

Operation Memory Cost

δ, ¥ SQRT(B(R)) 3B(R)

∪, ∩, - SQRT(B(S)) 3(B(R) + B(S))
⋈ SQRT(BS) (3-2M/B(S))(B(R)+B(S))



March 29, 2008 ICS 541: Quey Execution 47

- Summary

Query Processor
Introduction to Physical-Query-Plan Operators
One-Pass Algorithms for Database Operations
Nested-Loop Joins
Two-Pass Algorithms Based on Sorting
Two-Pass Algorithms Based on Hashing
Index Based Algorithms
Buffer Management
Algorithms Using More Than Two Passes



March 29, 2008 ICS 541: Quey Execution 48

- Reference 

Sections 15.1 to 15.8 of GUW



March 29, 2008 ICS 541: Quey Execution 49

END


