XQuery

March 29, 2008 ICS 541: XQuery

Objectives

= To learn XML query language

March 29, 2008 ICS 541: XQuery

Lecture outline

= What is XQuery?

= Functions, path expressions, and predicates

= XQuery Basic Syntax Rules
= XQuery Comparisons

= XQuery FLWOR Expressions
= FLWOR Explained Indetail

= XQuery built-in functions

= XQuery user-defined functions

March 29, 2008 ICS 541: XQuery

- What is XQuery?

= XQuery is the language for querying XML data
= XQuery for XML is like SQL for databases

= XQuery is built on XPath expressions

= XQuery is defined by the W3C

= XQuery is supported by all the major database engines (IBM,
Oracle, Microsoft, etc.)

= XQuery will become a W3C standard - and developers can be sure
that the code will work among different products

= XQuery 1.0 and XPath 2.0 share the same data model and support
the same functions and operators.

March 29, 2008 ICS 541: XQuery

- Example document

<?xml version="1.0" encoding="1S0-8859-1"?>

<bookstore>

<book category="COOKING">

</book>

<title lang="en">Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<price>30.00¢</price>

<book category="CHILDREN">

</book>

<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

<book category="WEB">

</book>

<title lang="en">XQuery Kick Start</title>
<author>James McGovern</author>
<author>Per Bothner</author>
<author>Kurt Cagle</author>
<author>James Linn</author>
<author>Vaidyanathan Nagarajan</author>
<year>2003</year>

<price>49.99</price>

<book category="WEB">

</book>
</bookstore>

March 29, 2008

<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95¢</price>

ICS 541: XQuery

- Functions, path expressions, and predicates ...

= Functions:
= XQuery uses functions to extract data from XML documents.

= The doc() function is used to open the "books.xml" file:
= doc("books.xml")

= Path expressions:

= XQuery uses path expressions to navigate through elements in an XML
document

= The following path expression is used to select all the title elements in
the "books.xml" file:

= doc("books.xml")/bookstore/book/title

Output:
<title lang="en">Everyday Italian</title>
<title lang="en">Harry Potter</title>
<title lang="en">XQuery Kick Start</title>
<title lang="en">Learning XML</title>

March 29, 2008 ICS 541: XQuery

... - Functions, path expressions, and predicates

s Predicates

= XQuery uses predicates to limit the extracted data from XML
documents

= The following predicate is used to select all the book elements under
the bookstore element that have a price element with a value that is
less than 30:

= doc("books.xml")/bookstore/book[price<30]

= Output

<book category="CHILDREN">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

March 29, 2008 ICS 541: XQuery

- XQuery Basic Syntax Rules

= XQuery is case-sensitive

= XQuery elements, attributes, and variables must be valid XML
names

= An XQuery string value can be in single or double quotes

= An XQuery variable is defined with a $ followed by a name, e.qg.
$bookstore

= XQuery comments are delimited by (: and :), e.g. (: XQuery
Comment :)

March 29, 2008 ICS 541: XQuery

- XQuery Comparisons

= In XQuery there are two ways of comparing values.
= General comparisons: =, 1=, <, <=, >, >=
= Value comparisons: eq, ne, It, le, gt, ge

= The difference is shown below:
= $bookstore//book/@q > 10

= The expression above returns true if any g attributes have values
greater than 10.

= $bookstore//book/@q gt 10

= The expression above returns true if there is only one g attribute
returned by the expression, and its value is greater than 10. If
more than one q is returned, an error occurs.

March 29, 2008 ICS 541: XQuery

- XQuery FLWOR Expressions

= The syntax of Flower expression looks like the combination of SQL
and path expression

= The following path expression will select all the title elements
under the book elements that is under the bookstore element that
have a price element with a value that is higher than 30.

doc("books.xml")/bookstore/book[price >30]/title

= The following FLWOR expression will select exactly the same as
the path expression above

for $x in doc("books.xml")/bookstore/book
where $x/price>30
return $x/title

= Output

<title lang="en">XQuery Kick Start</title>
<title lang="en">Learning XML</title>

March 29, 2008 ICS 541: XQuery 10

-- FLWOR briefly explained

for $x in doc("books.xml")/bookstore/book
where $x/price>30

order by $x/title

return $x/title

= FLWOR is an acronym for "For, Let, Where, Order by, Return".

= The for clause selects all book elements under the bookstore
element into a variable called $x.

= The where clause selects only book elements with a price element
with a value greater than 30.

= The order by sorts the results according to the specified element

= The return clause specifies what should be returned. Here it returns
the title elements

March 29, 2008 ICS 541: XQuery

11

-- XQuery Conditional Expressions

= "If-Then-Else" expressions are allowed in XQuery.

for $x in doc("books.xml")/bookstore/book

return if ($x/@category="CHILDREN")
then <child>{data($x/title)}</child>
else <adult>{data($x/title)}</adult>

= Notes on the "if-then-else" syntax: parentheses around the if
expression are required. else is required, but it can be just else ().

[OUtQUt

<adult>Everyday Italian</adult>
<child>Harry Potter</child>
<adult>Learning XML</adult>
<adult>XQuery Kick Start</adult>

March 29, 2008 ICS 541: XQuery

12

-- Adding Elements and Attributes to the Result

for $x in doc("books.xml")/bookstore/book/title
order by $x
return $x

= The XQuery expression above will include both the title
element and the lang attribute in the result, like this

N OUtpUt

March 29, 2008

<title lang="en">Everyday ltalian</title>
<title lang="en">Harry Potter</title>
<title lang="en">Learning XML</title>
<title lang="en">XQuery Kick Start</title>

ICS 541: XQuery 13

-- Add Attributes to HTML Elements ...

<html|>
<body>
<h1>Bookstore</h1>

{
for $x in doc("books.xml")/bookstore/book
order by $x/title
return <li class="{data($x/@category)}">{data($x/title)}

}

</body>
</html>

March 29, 2008 ICS 541: XQuery

14

... -- Add Attributes to HTML Elements

<html|>
<body>
<hl1l>Bookstore</h1>

<li class="COOKING">Everyday ltalian</Ili>
<li class="CHILDREN">Harry Potter
<li class="WEB">Learning XML
<li class="WEB">XQuery Kick Start

</body>
</html|>

March 29, 2008 ICS 541: XQuery

Output

15

-- FLWOR Explained Indetall

= for - (optional) binds a variable to each item returned
by the in expression

= |let - (optional)
= Wwhere - (optional) specifies a criteria

= order by - (optional) specifies the sort-order of the
result

= return - specifies what to return in the result

March 29, 2008 ICS 541: XQuery

16

--- The for clause ...

= The for clause binds a variable to each item returned by the in expression.
The for clause results in iteration. There can be multiple for clauses in the
same FLWOR expression

= To loop a specific number of times in a for clause, you may use the to
keyword

= Example:

for $x in (1 to B)
return <test>{$x}</test>

= Result

<test>1</test>
<test>2</test>
<test>3</test>
<test>4</test>
<test>b</test>

March 29, 2008 ICS 541: XQuery

... -=—- The for clause

= Itis also allowed with more than one in expression in the for
clause. Use comma to separate each in expression:

s Example:

for $x in (10,20), $y in (100,200)
return <test>x={$x} and y={$y}/test>

s Results

<test>x=10 and y=100</test>
<test>x=10 and y=200</test>
<test>x=20 and y=100</test>
<test>x=20 and y=200</test>

March 29, 2008 ICS 541: XQuery

18

--- The at keyword

= The at keyword can be used to count the iteration:

for $x at $i in doc("books.xml")/bookstore/book/title
return <book>{$i}. {data($x)}</book

s Result

<book>1. Everyday Italian</book>
<book>2. Harry Potter</book>
<book>3. XQuery Kick Start</book>
<book>4. Learning XML</book>

March 29, 2008 ICS 541: XQuery

19

--- The let Clause

= The let clause allows variable assignments and it avoids
repeating the same expression many times. The let
clause does not result in iteration

= Example:

let $x := (110 B)
return <test>{$x}</test>

s Result:

<test>1 2 3 4 B</test>

March 29, 2008 ICS 541: XQuery

20

--- The where Clause

= The where clause is used to specify one or more criteria
for the result:

= Example:

where $x/price>30 and $x/price<100

March 29, 2008 ICS 541: XQuery

21

--- The order by Clause

= The order by clause is used to specify the sort order of the result.
Here we want to order the result by category and title:

= Example:

for $x in doc("books.xml")/bookstore/book
order by $x/@category, $x/title
return $x/title

s Result

<title lang="en">Harry Potter</title>
<title lang="en">Everyday Italian</title>
<title lang="en">Learning XML</title>
<title lang="en">XQuery Kick Start</title>

March 29, 2008 ICS 541: XQuery

22

--- The return Clause

= The return clause specifies what is to be returned.

s Example:

for $x in doc("books.xml")/bookstore/book
return $x/title

s Result:

<title lang="en">Everyday Italian</title>
<title lang="en">Harry Potter</title>
<title lang="en">XQuery Kick Start</title>
<title lang="en">Learning XML</title>

March 29, 2008 ICS 541: XQuery

23

- XQuery Built-in Functions

= XQuery includes over 100 built-in functions. There are functions for string
values, numeric values, date and time comparison, node and QName
manipulation, sequence manipulation, Boolean values, and more. You can
also define your own functions in XQuery.

= A call to a function can appear where an expression may appear.

= Example 1: in an element:

<name>{uppercase($booktitle)}</name>

= Example 2: In the predicate of a path expression
doc("books.xml")/bookstore/book[substring(title,1,5="Harry"')]

s Example 3: In a let clause
let $name := (substring($booktitle,1,4))

March 29, 2008 ICS 541: XQuery 24

- XQuery User-Defined Functions ...

declare function prefix:function_name($ parameter AS datatype)
AS returnDatatype

{

(: ... function code here... :)
¥
= Use the declare function keyword
= The name of the function must be prefixed

= The data type of the parameters are mostly the same as the data
types defined in XML Schema

= The body of the function must be surrounded by curly braces

March 29, 2008 ICS 541: XQuery

... - XQuery User-Defined Functions ...

declare function local:minPrice($price as xs:decimal?,
$discount as xs:decimal?)

AS xs:decimal?

{
let $disc := ($price * $discount) div 100
return ($price - $disc)

= (: Below is an example of how to call the function above :)

<minPrice>{local:minPrice($book/price,$book/discount)}</minPrice>

March 29, 2008 ICS 541: XQuery

26

- References

= W3School Xquery Tutorial

s http://www.w3schools.com/xquery/default.asp

= MSXML 4.0 SDK

= Several online presentations

March 29, 2008 ICS 541: XQuery

27

- Reading list

= W3School Xquery Tutorial
= http://www.w3schools.com/xquery/default.asp

= The following paper which is posted in the WebCT.

= D. Chamberlin, XQuery: An XML query language, IBM Systems
Journal, Vol 41, No 4, 2002.

March 29, 2008 ICS 541: XQuery

28

March 29, 2008

END

ICS 541: XQuery

29

