Xpath

March 29, 2008 ICS 541: Xpath

Objectives

= Introduction to Xpath

March 29, 2008 ICS 541: Xpath

- Lecture outline

= Introduction

s Paths

= Slashes

= Brackets and last()

= Stars

= Attributes

m AXes

= Arithmetic expression
= Equality test

= Boolean expressions
= Some Xpath functions

March 29, 2008 ICS 541: Xpath

-- What is Xpath

= XPath is a syntax used for selecting parts of an XML
document

= The way XPath describes paths to elements is similar to
the way an operating system describes paths to files

= XPath is almost a small programming language; it has
functions, tests, and expressions

= XPath is a W3C standard

March 29, 2008 ICS 541: Xpath

-- Terminology

<library>
<book>
<chapter>
</chapter>

<chapter>
<section>
<paragraph/>
<paragraph/>
</section>
</chapter>

</book>
</library>

March 29, 2008

= library is the parent of book; book is
the parent of the two chapters

= The two chapters are the children of
book, and the section is the child of
the second chapter

= The two chapters of the book are
siblings (they have the same parent)

= library, book, and the second chapter
are the ancestors of the section

= The two chapters, the section, and
the two paragraphs are the
descendents of the book

ICS 541: Xpath

- Paths

= Operating System

March 29, 2008

/ = the root directory

/users/dave/foo = the file named

foo in dave in users

= Xpath

foo = the file named foo in the

current directory

. = the current directory

.. = the parent directory

/users/dave/* = all the files in

/users/dave

ICS 541: Xpath

/library = the root element (if
named library)

/library/book/chapter/section =
every section element in a chapter
in every book in the library

section = every section element
that is a child of the current
element

. = the current element
.. = parent of the current element

/library/book/chapter/* = all the
elements in /library/book/chapter

- Slashes

A path that begins with a / represents an absolute path, starting
from the top of the document

= Example: /email/message/header/from
= Note that even an absolute path can select more than one element
= A slash by itself means “the whole document”

A path that does not begin with a / represents a path starting from
the current element

= Example: header/from

A path that begins with // can start from anywhere in the
document

= Example: //header/from selects every element from that is a child of
an element header

= This can be expensive, since it involves searching the entire document

March 29, 2008 ICS 541: Xpath

- Brackets and last()

= A number in brackets selects a particular matching child
= Example: /library/book[1] selects the first book of the library

= Example: //chapter/section[2] selects the second section of every
chapter in the XML document

= Example: //book/chapter[1]/section[2]

= Only matching elements are counted; for example, if a book has both
sections and exercises, the latter are ignored when counting sections

= The function last() in brackets selects the last matching child
= Example: /library/book/chapter[last()]
= You can even do simple arithmetic

= Example: /library/book/chapter[last()-1]

March 29, 2008 ICS 541: Xpath

- Stars

s A star, or asterisk, is a “wild card”--it means “all the
elements at this level”

= Example: /library/book/chapter/* selects every child of every
chapter of every book in the library

= Example: //book/* selects every child of every book (chapters,
tableOfContents, index, etc.)

= Example: /*/*/*/paragraph selects every paragraph that has
exactly three ancestors

= Example: //* selects every element in the entire document

March 29, 2008 ICS 541: Xpath

- Attributes ...

= You can select attributes by themselves, or elements that have
certain attributes

= Remember: an attribute consists of a name-value pair, for example in
<chapter num="5">, the attribute is named num

= To choose the attribute itself, prefix the name with @

= Example: @num will choose every attribute named num

= Example: //@* will choose every attribute, everywhere in the
document

= To0 choose elements that have a given attribute, put the attribute
name in square brackets

= Example: //chapter[@num] will select every chapter element
(anywhere in the document) that has an attribute named num

March 29, 2008 ICS 541: Xpath 10

... - Attributes

= //chapter[@num] selects every chapter element with
an attribute num

= //chapter[not(@num)] selects every chapter element
that does notf have a num attribute

= //chapter[@*] selects every chapter element that has
any attribute

= //chapter[not(@%*)] selects every chapter element with
no attributes

March 29, 2008 ICS 541: Xpath 11

-- Values of attributes

= //chapter[@num="“3"] selects every chapter element
with an attribute num with value 3

= The normalize-space() function can be used to remove
leading and trailing spaces from a value before
comparison

= Example: //chapter[normalize-space(@num)="3"]

March 29, 2008 ICS 541: Xpath

12

- Axes

= An axis (plural axes) is a set of nodes relative to a given node; X::Y
means “choose Y from the X axis”

March 29, 2008

self:: is the set of current nodes (not too useful)

= self::node() is the current node

child:: is the default, so /child::X is the same as /X
parent:: is the parent of the current node
ancestor:: is all ancestors of the current node, up to and including the root

descendant:: is all descendants of the current node (Note: never contains
attribute or namespace nodes)

preceding:: is everything before the current node in the entire XML document

following:: is everything after the current node in the entire XML document

ICS 541: Xpath

13

xes (outline view)

Starting from a given node, the self, preceding, following, ancestor, and
descendant axes form a partition of all the nodes (if we ignore attribute and
namespace nodes)

//chapter[2]/self::*
<chapter/> 4
<chapter> /—_~ //chapter[2]/preceding::*

=

7

</chapter> - X

March 29, 2008 ICS 541: Xpath 14

Axes (tree

= Starting from a given
node, the self, ancestor
descendant ,
preceding, and
following axes form a
partition of all the nodes
(if we ignore attribute
and namespace nodes)

March 29, 2008

view)
library
/\‘\
book[1] book[2]
chapter[1] chapter[2] chapter[3]
|
|
| |
section[1]
paragraph[1] paragraph[2]

ICS 541: Xpath

15

-- Axis Examples

= //book/descendant::* is all descendants of every book

= //book/descendant::section is all section descendants of every
book

= //parent::* is every element that is a parent, i.e., is not a leaf
= //section/parent::* is every parent of a section element

= //parent:.chapter is every chapter that is a parent, i.e., has
children

= /library/book[3]/following::* is everything after the third book in
the library

March 29, 2008 ICS 541: Xpath 16

-- More axes

= ancestor-or-self:: ancestors plus the current node

= descendant-or-self:: descendants plus the current node
= attribute:: is all attributes of the current node

= namespace:: is all namespace nodes of the current node

= preceding:: is everything before the current node in the entire XML
document

= following-sibling:: is all siblings after the current node

= Note: preceding-sibling:: and following-sibling:: do not apply to
attribute nodes or namespace nodes

March 29, 2008 ICS 541: Xpath 17

-- Abbreviations for axes

= (none) Isthe same as child::

s @ is the same as attribute::

.. IS the same as self::node()

= //X is the same as self::node()/descendant-or self::node()/child::X
n .. Is the same as parent::node()

N // is the same as /descendant-or-self::node()/

= //X isthe same as /descendant-or-self::node()/child:: X

March 29, 2008 ICS 541: Xpath

18

March 29, 2008

+

*

div (not /)

mod

* - Arithmetic Expressions

add
subtract
multiply
divide

modulo (remainder)

ICS 541: Xpath

19

- Equality Tests

m = “equals” (Notice it's not ==
= = “not equals”
= But it's not that simple!

= value = node-set will be true if the node-set contains any node with a
value that matches value

= value |= node-set will be true if the node-set contains any node with
a value that does not match value

= Hence,
= Value = node-set and value '= node-set may both be true at the same

time!

March 29, 2008 ICS 541: Xpath

20

- Boolean Operators

= and (infix operator)
= Or (infix operator)

= Example: count =0 orcount=1

= not() (function)

= The following are used for numerical comparisons only:

s < “less than”

<= “less than or equal to”

s > “greater than”

n >= “greater than or equal to”

March 29, 2008 ICS 541: Xpath

- Some XPath Functions

s XPath contains a number of functions on node sets,
numbers, and strings; here are a few of them:

= count(e/em) counts the number of selected elements

= Example: //chapter[count(section)=2] selects chapters with
exactly two section children

= name() returns the name of the element
= Example: //*[name()="section'] is the same as //section

= Starts-with(argl, arg2) tests if argl starts with arg?
= Example: //*[starts-with(name(), 'sec’)]

= contains(argl, arg2) tests if argl contains argZ2
= Example: //*[contains(name(), 'ect’)]

March 29, 2008 ICS 541: Xpath 22

- References

= W3School XPath Tutorial

s http://www.w3schools.com/xpath/default.asp

= MSXML 4.0 SDK

= Several online presentations

March 29, 2008 ICS 541: Xpath

23

- Reading list

= W3School XPath Tutorial

= http://www.w3schools.com/xpath/default.asp

March 29, 2008 ICS 541: Xpath

24

March 29, 2008

END

ICS 541: Xpath

25

