
March 29, 2008 ICS 541: Xpath 1

Xpath



March 29, 2008 ICS 541: Xpath 2

Objectives

Introduction to Xpath



March 29, 2008 ICS 541: Xpath 3

- Lecture outline

Introduction
Paths
slashes
Brackets and last()
Stars
Attributes
Axes
Arithmetic expression
Equality test
Boolean expressions
Some Xpath functions



March 29, 2008 ICS 541: Xpath 4

-- What is Xpath

XPath is a syntax used for selecting parts of an XML 
document

The way XPath describes paths to elements is similar to 
the way an operating system describes paths to files

XPath is almost a small programming language; it has 
functions, tests, and expressions

XPath is a W3C standard



March 29, 2008 ICS 541: Xpath 5

-- Terminology

<library>
<book>

<chapter>
</chapter>

<chapter>
<section>

<paragraph/>
<paragraph/>

</section>
</chapter>

</book>
</library>

library is the parent of book; book is 
the parent of the two chapters

The two chapters are the children of 
book, and the section is the child of 
the second chapter

The two chapters of the book are 
siblings (they have the same parent)

library, book, and the second chapter 
are the ancestors of the section

The two chapters, the section, and 
the two paragraphs are the 
descendents of the book



March 29, 2008 ICS 541: Xpath 6

- Paths

Xpath

/library = the root element (if 
named library )

/library/book/chapter/section = 
every section element in a chapter 
in every book in the library

section = every section element 
that is a child of the current 
element

. = the current element

.. = parent of the current element

/library/book/chapter/* = all the 
elements in /library/book/chapter

Operating System

/ = the root directory

/users/dave/foo = the file named 
foo in dave in users

foo = the file named foo in the 
current directory

. = the current directory

.. = the parent directory

/users/dave/* = all the files in 
/users/dave



March 29, 2008 ICS 541: Xpath 7

- Slashes

A path that begins with a / represents an absolute path, starting 
from the top of the document

Example: /email/message/header/from

Note that even an absolute path can select more than one element

A slash by itself means “the whole document”

A path that does not begin with a / represents a path starting from 
the current element

Example: header/from

A path that begins with // can start from anywhere in the 
document

Example: //header/from selects every element from that is a child of 
an element header

This can be expensive, since it involves searching the entire document



March 29, 2008 ICS 541: Xpath 8

- Brackets and last()

A number in brackets selects a particular matching child

Example: /library/book[1] selects the first book of the library

Example: //chapter/section[2] selects the second section of every 
chapter in the XML document

Example: //book/chapter[1]/section[2]

Only matching elements are counted; for example, if a book has both 
sections and exercises, the latter are ignored when counting sections

The function last() in brackets selects the last matching child

Example: /library/book/chapter[last()]

You can even do simple arithmetic

Example: /library/book/chapter[last()-1]



March 29, 2008 ICS 541: Xpath 9

- Stars

A star, or asterisk, is a “wild card”--it means “all the 
elements at this level”

Example: /library/book/chapter/* selects every child of every 
chapter of every book in the library

Example: //book/* selects every child of every book (chapters, 
tableOfContents, index, etc.)

Example: /*/*/*/paragraph selects every paragraph that has 
exactly three ancestors

Example: //* selects every element in the entire document



March 29, 2008 ICS 541: Xpath 10

- Attributes …

You can select attributes by themselves, or elements that have 
certain attributes

Remember: an attribute consists of a name-value pair, for example in 
<chapter num="5">, the attribute is named num

To choose the attribute itself, prefix the name with @

Example: @num will choose every attribute named num

Example: //@* will choose every attribute, everywhere in the 
document

To choose elements that have a given attribute, put the attribute 
name in square brackets

Example: //chapter[@num] will select every chapter element 
(anywhere in the document) that has an attribute named num



March 29, 2008 ICS 541: Xpath 11

… -- Attributes

//chapter[@num] selects every chapter element with 
an attribute num

//chapter[not(@num)] selects every chapter element 
that does not have a num attribute

//chapter[@*] selects every chapter element that has 
any attribute

//chapter[not(@*)] selects every chapter element with 
no attributes



March 29, 2008 ICS 541: Xpath 12

-- Values of attributes

//chapter[@num=“3”] selects every chapter element 
with an attribute num with value 3

The normalize-space() function can be used to remove 
leading and trailing spaces from a value before 
comparison

Example: //chapter[normalize-space(@num)="3"]



March 29, 2008 ICS 541: Xpath 13

- Axes

An axis (plural axes) is a set of nodes relative to a given node; X::Y 
means “choose Y from the X axis”

self:: is the set of current nodes (not too useful)

self::node() is the current node

child:: is the default, so /child::X is the same as /X

parent:: is the parent of the current node

ancestor:: is all ancestors of the current node, up to and including the root

descendant:: is all descendants of the current node (Note: never contains 
attribute or namespace nodes)

preceding:: is everything before the current node in the entire XML document

following:: is everything after the current node in the entire XML document



March 29, 2008 ICS 541: Xpath 14

Axes (outline view)

 <library>
<book>

<chapter/>
<chapter>

<section>
<paragraph/>
<paragraph/>

</section>
</chapter>
<chapter/>

</book>
<book/>

</library>

//chapter[2]/self::*

//chapter[2]/preceding::*

//chapter[2]/following::*

//chapter[2]/ancestor::*

//chapter[2]/descendant::*

Starting from a given node, the self, preceding, following, ancestor, and 
descendant axes form a partition of all the nodes (if we ignore attribute and 
namespace nodes)



March 29, 2008 ICS 541: Xpath 15

Axes (tree view)

Starting from a given 
node, the self, ancestor, 
descendant , 
preceding, and 
following axes form a 
partition of all the nodes 
(if we ignore attribute 
and namespace nodes)

paragraph[1] paragraph[2]

section[1]

chapter[2]chapter[1] chapter[3]

book[1] book[2]

library

self

ancestor

descendant

preceding

following



March 29, 2008 ICS 541: Xpath 16

-- Axis Examples

//book/descendant::* is all descendants of every book

//book/descendant::section is all section descendants of every 
book

//parent::* is every element that is a parent, i.e., is not a leaf

//section/parent::* is every parent of a section element

//parent::chapter is every chapter that is a parent, i.e., has 
children

/library/book[3]/following::* is everything after the third book in 
the library



March 29, 2008 ICS 541: Xpath 17

-- More axes

ancestor-or-self:: ancestors plus the current node

descendant-or-self:: descendants plus the current node

attribute:: is all attributes of the current node

namespace:: is all namespace nodes of the current node

preceding:: is everything before the current node in the entire XML 
document

following-sibling:: is all siblings after the current node

Note: preceding-sibling:: and following-sibling:: do not apply to 
attribute nodes or namespace nodes



March 29, 2008 ICS 541: Xpath 18

-- Abbreviations for axes

(none) is the same as child::

@ is the same as attribute::

. is the same as self::node()

.//X is the same as self::node()/descendant-or self::node()/child::X

.. is the same as parent::node()

// is the same as /descendant-or-self::node()/

//X is the same as /descendant-or-self::node()/child::X



March 29, 2008 ICS 541: Xpath 19

- Arithmetic Expressions

+ add

- subtract

* multiply

div (not /) divide

mod modulo (remainder)



March 29, 2008 ICS 541: Xpath 20

- Equality Tests

= “equals” (Notice it’s not ==)

!= “not equals”

But it’s not that simple!

value = node-set will be true if the node-set contains any node with a 
value that matches value

value != node-set will be true if the node-set contains any node with 
a value that does not match value

Hence,

value = node-set and value != node-set may both be true at the same 
time!



March 29, 2008 ICS 541: Xpath 21

- Boolean Operators

and (infix operator)

or (infix operator)

Example: count = 0 or count = 1

not() (function)

The following are used for numerical comparisons only:

< “less than”

<= “less than or equal to”

> “greater than”

>= “greater than or equal to”



March 29, 2008 ICS 541: Xpath 22

- Some XPath Functions

XPath contains a number of functions on node sets, 
numbers, and strings; here are a few of them:

count(elem) counts the number of selected elements
Example: //chapter[count(section)=2] selects chapters with 
exactly two section children

name() returns the name of the element
Example: //*[name()='section'] is the same as //section

starts-with(arg1, arg2) tests if arg1 starts with arg2
Example: //*[starts-with(name(), 'sec‘)]

contains(arg1, arg2) tests if arg1 contains arg2
Example: //*[contains(name(), 'ect‘)]



March 29, 2008 ICS 541: Xpath 23

- References

W3School XPath Tutorial

http://www.w3schools.com/xpath/default.asp

MSXML 4.0 SDK

Several online presentations



March 29, 2008 ICS 541: Xpath 24

- Reading list

W3School XPath Tutorial

http://www.w3schools.com/xpath/default.asp



March 29, 2008 ICS 541: Xpath 25

END


