

Relational Database Design:

Recap of ICS 334
The first DB course in KFUPM

Announcement

- Read the following paper before next class:
- Code, Relational Model of Data Large Shared Data Banks, communication of the ACM, Volume 12, number 6, June 1970.
 - Posted for you in the WebCT.

Lecture objectives

Briefly mention topics covered in ICS 334.

- Lecture outline

- The main steps in DB Design
- Requirement collection and analysis
- Conceptual data model
- Logical data model
- Physical data model
- Relational Data model

- The main Steps in DB Design

- Requirement collection and analysis
 - How the data is collected and analyzed.
- Data modeling
 - How data should be stored in the database.
 - Includes:
 - Conceptual data model
 - Logical data model
 - Relational data model
 - physical data model
- Functional modeling
 - How the data is processed.

- Requirement collection and analysis

- The goals are:
 - To determine the data requirements of the DB in terms of primitive objects
 - To classify and describe the information about these objects
 - To identify and classify the relationships among the objects
 - To determine the types of transactions that will be executed on the DB and the interactions between the data and the transactions
 - To identify rules governing the integrity of the data
- Requirement analysis can be gathered by data modeler from:
 - Existing documents
 - Users
 - Existing systems

-- Example

- Required: A database to record students' enrollment in ICS courses.
- Assume that after requirement analysis we identified the following 3 entities.
 - Course
 - Enroll
 - Student

- Conceptual data model

- Objectives:
 - To identify entities:
 - To identify the highest-level relationships among entities.
- No attribute is specified

3 main entities: Student, Enroll, Course

- Logical data model

Objective:

 Describe the data in as much detail as possible, without regard to how they will be physically implemented in the database.

Features include:

- Entities and relationships among them.
- All attributes for each entity are specified.
- The primary key for each entity specified.
- Foreign keys are specified.
- Many-to-many relationships are resolved
- Normalization occurs at this level.

<u>Note</u>: Because relational data model is a logical data model, it should be discussed together with the logical data model. But I prefer discussing it after the physical data model.

- Physical Data Model

Features:

- Specification all tables and columns
- Foreign keys are used to identify relationships between tables
- Denormalization may occur based on user requirements
- Physical considerations may cause the physical data model to be quite different from the logical data model

Steps:

- Convert entities into tables
- Convert relationships into foreign keys
- Convert attributes into columns
- Modify the physical data model based on physical constraints / requirements

- The Relational Data Model

- The logical model behind the relational DB (RDB). Data is always represented as relations (2-dim. tables).
- Basic Concepts:
 - Relation
 - Attribute
 - Schema
 - Tuple
 - Keys
 - Constraints
 - Functional dependency
 - Normalization

-- Relation

- The way to represent data is through relations.
- A relation is a two-dimensional table.
- The order of rows and columns can be exchanged, and it is still the same relation.

Example:

-- Attribute

 An attribute is the name of a column in a relation. It usually describes the meaning of the content in the column.

Example:

 A schema is a description of a class of relation. It consists of the name of the relation and the set of attributes in the relation.

That it is a set of attributes means that the attributes are unordered.

Example:

Course

CID	Title	
ICS 102	Java	
ICS 202	Data structures	
ICS 334	Databases	

Schema for the above relation: Course(CID, Title)

A tuple is a row in a table. A relation can be seen as a set of tuples.

Example:

Course

CID	Title		
ICS 102	Java		
ICS 202	Data structures	 ←	A relation with 3 tuples
ICS 334	Databases		

- Superkey:
 - A combination of attributes that can be uniquely used to identify a record.
 - A table may have many superkeys
- Candidate key:
 - A superkey but without extraneous data.
 - A table can have one or more candidate keys
- Primary key
 - One of the candidate keys is chosen to be the primary key.
 - There can only be one primary key in a table
- Alternate key
 - All the candidate keys, minus the primary key.
 - The number of alternate keys in a table is one less than the number of candidate keys.

-- constraints

- NOT NULL
 - No null values are allowed in an attribute specified as NOT NULL
- UNIQUE
 - No duplicate values are allowed in a column specified as UNIQUE.
- Primary key
 - Must be UNIQUE and NOT NULL
- Foreign key
 - Must refer to a value of a candidate key in the parent table
 - Can be null
 - Can be duplicate

-- Functional dependency

- A functional dependency occurs when one or more attributes in a relation uniquely determine other attribute(s). If A and B are attributes, this can be written A --> B which would be the same as stating "B is functionally dependent upon A."
- Attribute A is the determinant and attribute B is the functionally dependent.
- If the determinant is part of the primary key (and not the whole key), then the dependency is called partial dependency.
- If both the determinant and the functionally dependent attributes are non key attributes, then the dependency is called transitive dependency.

-- Normalization

- UNF (Un Normalized form)
 - A relation is in UNF if it contains at least one multi-valued attribute
- INF
 - A relation is in 1NF if it has no multi-valued attribute.
- 2NF
 - A relations is in 2NF if it is in 1NF and has no partial dependency.
- 3NF
 - A relation is in 3NF if its is in 2NF and contains no transitive dependency.
- BCNF
 - A relation is in BCNF if and only if, every determinant is a candidate key.

END