!'_ File System Implementation

Chapter 11

March 29, 2008 OS: File-System Implementation

Objectives

= To describe the detalils of implementing local file
systems and directory structures

= To describe the implementation of remote file systems

= To discuss block allocation and free-block algorithms
and trade-offs

March 29, 2008 OS: File-System Implementation

Chapter Outline

= File-System Structure

= File-System Implementation
= Directory Implementation

= Allocation Methods

= Free-Space Management

= Efficiency and Performance

March 29, 2008 OS: File-System Implementation

- File-System Structure

= File structure

= Logical storage unit
= Collection of related information

= File system resides on secondary storage (disks)
= File system organized into layers

= File control block — storage structure consisting of
Information about a file

March 29, 2008 OS: File-System Implementation

-- Layered File System

March 29, 2008

application programs

|

logical file system

U

file-organization module

4

basic file system

U

I/O control

U

devices

OS: File-System Implementation

-- File-System Layers ...

= Application Programs

= |Interface that issues system calls to the logical file system.

= Logical file system

= Manages the metadata information of the files. Ex. FCB, directories

= Uses a symbolic file name (usually from the application program)
and searches the directory to provide the file organization module
with the information it needs.

= Also provides protection and security

= File-organization module
= Takes care of free-space management.

= Translate logical to physical addresses |

March 29, 2008 OS: File-System Implementation

... -- File-System Layers ...

= Basic file system

= |Issues generic commands to the appropriate device driver
to read and write physical blocks on the disk.

= Physical blocks (drive #, Cylinder #, Track #, Sector #)

= Physical block is translated into block # and presented to
/0O control layer.

March 29, 2008 OS: File-System Implementation

... -- File-System Layers

= | /0O control

= Controls devices - Consists of device drivers, interrupt handlers:

= Input to a device driver is generally a high-level command (e.g.,
retrieve block 150)

= Qutput of a device driver is low-level, hardware specific
Instructions used by hardware controller, which interfaces the 1/0
device to the rest of the system.

= Usually, device driver writes specific bit patterns to special

locations in the 1/0 controller’'s memory (Control register) —
These bits tells the controller the device location and what to do.

March 29, 2008 OS: File-System Implementation

- File-System Implementation

= In Disk file-system structures
= In memory file-system structures

= Virtual file-systems

March 29, 2008 OS: File-System Implementation

- In Disk file-system structures

Boot control block
Volume control block
Directory structure per file system

File control block

March 29, 2008 OS: File-System Implementation

10

March 29, 2008

* -- A Typical File Control Block (FCB)

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

OS: File-System Implementation

11

-- In-Memory File System Structures ...

= Mount table
= Directory structure cache
= System-wide open-file table (copy of FCB)

= Per-process open-file table

March 29, 2008 OS: File-System Implementation

12

* -- Virtual File Systems

= Virtual File Systems (VFS) provide an object-oriented
way of implementing file systems.

= VFS allows the same system call interface (the API) to
be used for different types of file systems.

= The API is to the VFS interface, rather than any specific
type of file system.

March 29, 2008 OS: File-System Implementation

13

March 29, 2008

--- Schematic View of Virtual File System

file-system interface

Y

VFS interface

L 4

local file system
type 1

Y

local file system
type 2

Y

remote file system
type 1

S

network

OS: File-System Implementation

14

- Directory Implementation

= Linear list of file names with pointer to the data blocks.
= Simple to program
= time-consuming to execute

= Hash Table — linear list with hash data structure.
= decreases directory search time

= collisions — situations where two file names hash to the same
location

= fixed size

March 29, 2008 OS: File-System Implementation

15

- Allocation Methods

= An allocation method refers to how disk blocks are
allocated for files:

= Contiguous allocation
= Linked allocation

= Indexed allocation

March 29, 2008 OS: File-System Implementation

16

-- Contiguous Allocation

= Each file occupies a set of contiguous blocks on the disk

= Simple — only starting location (block #) and length
(number of blocks) are required

= Random access
= Wasteful of space (dynamic storage-allocation problem)

= Files cannot grow

March 29, 2008 OS: File-System Implementation

17

--- Contiguous Allocation of Disk Space

N directory
e, _
count file start length
OIEG o | 3[] count 0 2
f tr 14 3
L] sL1el] 701 mail 19 6
8[1] o[J1o[]11[] list 28 4
tr f 6 2
12[]13[| = |
16117118119]
mail
20[]21[J22[]23[]
24[]25[J26[127[]
list
28[]29[130[131[]
N 09090

March 29, 2008 OS: File-System Implementation

-- Extent-Based Systems

= Many newer file systems (l.e. Veritas File System) use
a modified contiguous allocation scheme

= Extent-based file systems allocate disk blocks in
extents

= An extent is a contiguous block of disks
= Extents are allocated for file allocation
= A file consists of one or more extents.

March 29, 2008 OS: File-System Implementation

19

-- Linked Allocation

., directory
= Each file is a linked i R :
. . file start end
list of disk blocks: jeep 9 25
blocks may be oL 1 1] 201 3L
scattered anywhere 4[] (7 6] 7[]
on the disk. -

8[]
1213 114f 115
16[17[J18[|19[]
20[|212|:|23|:|
24[]25[126 [J27[]
28 [129[]30[]31[]
S~ [7

OR10E11[|

March 29, 2008 OS: File-System Implementation

--- File-Allocation Table

March 29, 2008

directory entry

test | eee | D217 [—
name start block o
—» 217
339
618

no. of disk blocks —1

618

339

FAT

OS: File-System Implementation

21

-- Indexed Allocation

= Need index table
= Random access

= Dynamic access without external fragmentation, but
have overhead of index block.

March 29, 2008 OS: File-System Implementation

22

--- Example of Indexed Allocation

g—

o] 1 2[] 3]

20 J21[J22 23D
2425126127]
28 129[I30[131[]

-

directory
file index block
jeep 19

March 29, 2008

OS: File-System Implementation

23

March 29, 2008

Bit vector

- Free-Space Management

Linked free space list

Grouping

Counting

OS: File-System Implementation

24

-- Bit Vector ...

= Bit vector (77 blocks)

01 2 n-1

o 0 = blockK]i] free
bit[i] =
1 = block][i] occupied
Block number calculation
(number of bits per word) *

(number of O0-value words) +
offset of first 1 bit

March 29, 2008 OS: File-System Implementation

25

... -- Bit vector ...

= Bit map requires extra space
= Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 pits (or 32K bytes)
= Easy to get contiguous files

= Linked list (free list)
= Cannot get contiguous space easily
= No waste of space

= Grouping
= Counting

March 29, 2008 OS: File-System Implementation

26

... -- Bit vector

= Need to protect:
= Pointer to free list

= Bit map
= Must be kept on disk
= Copy in memory and disk may differ

= Cannot allow for block[/] to have a situation where bit[/] =
1 in memory and bit[/] = 0 on disk

= Solution:
= Set bit[/] = 1 in disk
= Allocate block[/]
« Set bit[/] = 1 in memory

March 29, 2008 OS: File-System Implementation

27

-- Linked Free Space List on Disk

free-space list head

20[]21[]22F 123[]

24[12526 [l27

28[]29[]30[131]

.

March 29, 2008 OS: File-System Implementation

28

-- Grouping

= Modification of the linked free-list

s Stores the address of the n free blocks Iin the first
block.

= The first n-1 of these blocks are actually free

= The last block contains the address of another n free blocks

March 29, 2008 OS: File-System Implementation

29

-- Counting

= This approach takes advantage of the fact that
contiguous blocks are allocated and freed
simultaneously.

= Keeps the address of the first free blocks and the
number n of free contiguous blocks

= Particularly good if space is allocated using contiguous
allocation.

March 29, 2008 OS: File-System Implementation

30

!'_ End of Chapter 11

March 29, 2008 OS: File-System Implementation

31

