
March 29, 2008 OS:Process Synchronization 1

Process Synchronization

March 29, 2008 OS:Process Synchronization 2

Objectives

Background
The Critical-Section Problem
Peterson’s Solution
Synchronization Hardware
Semaphores
Classic Problems of Synchronization
Monitors

March 29, 2008 OS:Process Synchronization 3

- Background

Introduction +
Bounded buffer +
Race Condition +

March 29, 2008 OS:Process Synchronization 4

-- Introduction

Concurrent access to shared data may result in data
inconsistency.

Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes.

March 29, 2008 OS:Process Synchronization 5

-- Bounded-Buffer …

Shared Variables

#define BUFFER-SIZE 10
Typedef struct {
. . .
} item;

Item buffer[BUFFER_SIZE];
Int in = 0;
Int out = 0;

Producer Consumer

while(1) { while(1) {
while (((in + 1) % BUFFER_SIZE) == out) while (in == out)

; /* do nothing */ ; /* do nothing */
buffer[in] = nextProduced nextConsumed = buffer[out];
in = (in + 1) % BUFFER_SIZE; out = (out + 1) % BUFFER_SIZE;

} }

March 29, 2008 OS:Process Synchronization 6

… -- Bounded-Buffer …

Suppose that we modify the producer-consumer code of
chapter 3 (inorder to use all the 10 buffers at the same
time) by adding a variable counter initialized to 0 and
incremented each time a new item is added to the buffer

Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

March 29, 2008 OS:Process Synchronization 7

… -- Bounded-Buffer …

Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

March 29, 2008 OS:Process Synchronization 8

… -- Bounded-Buffer …

The statement “count++” may be implemented in machine
language as:

register1 = counter
register1 = register1 + 1
counter = register1

The statement “count--” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

March 29, 2008 OS:Process Synchronization 9

… -- Bounded-Buffer …

If both the producer and consumer attempt to update
the buffer concurrently, the assembly language
statements may get interleaved.

Interleaving depends upon how the producer and
consumer processes are scheduled.

March 29, 2008 OS:Process Synchronization 10

… -- Bounded-Buffer

Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

The value of counter may be either 4 or 6, where the
correct result should be 5.

March 29, 2008 OS:Process Synchronization 11

… -- Bounded-Buffer …

The statements

counter++;
counter--;

must be performed atomically.

Atomic operation means an operation that completes in
its entirety without interruption.

March 29, 2008 OS:Process Synchronization 12

-- Race Condition

Race condition: The situation where several
processes access – and manipulate shared data
concurrently. The final value of the shared data
depends upon which process finishes last.

To prevent race conditions, concurrent processes must
be synchronized.

March 29, 2008 OS:Process Synchronization 13

- The Critical-Section Problem

n processes all competing to use some shared
data

Each process has a code segment, called critical
section, in which the shared data is accessed.

Problem – ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

March 29, 2008 OS:Process Synchronization 14

- Solution to Critical-Section (CS) Problem

1. Mutual Exclusion. If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then
the selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting. A bound must exist on the number of times
that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before
that request is granted.

Assume that each process executes at a nonzero speed
No assumption concerning relative speed of the n processes.

March 29, 2008 OS:Process Synchronization 15

-- Initial Attempts to Solve CS problem

General Structure of Processes with CS +
Two-process Solution +

Algorithm 1 +
Algorithm 2 +
Algorithm 3 (Peterson’s solution)+

March 29, 2008 OS:Process Synchronization 16

-- General Structure of a Process with CS.

General structure of process

do {
entry section

critical section
exit section

reminder section
} while (1);

Processes may share some common variables to synchronize their
actions.

March 29, 2008 OS:Process Synchronization 17

--- Two-Process Solution - Algorithm 1

Process A

do {
while (turn != A);

critical section
turn = B;
reminder section

} while (1);

Process B

do {
while (turn != B);

critical section
turn = A;
reminder section

} while (1);

Satisfies mutual exclusion, but not progress

For the next 3 algorithms assume two processes A and B.
Shared variable: char turn;

initially turn = A
turn = A ⇒ Process A can enter its critical section

March 29, 2008 OS:Process Synchronization 18

--- Two-Process Solution - Algorithm 2

Process A

do {
flag[A] := true;
while (flag[B]) ;

critical section
flag [A] = false;
remainder section

} while (1);

Process B

do {
flag[B] := true;
while (flag[A]) ;

critical section
flag [B] = false;
remainder section

} while (1);

Satisfies mutual exclusion, but not progress requirement.

Shared variables: boolean flag[A-B];
initially flag [A] = flag [B] = false.
flag [A] = true ⇒ Process A ready to enter its critical section

flag [A] = True; flag [B] = false;

March 29, 2008 OS:Process Synchronization 19

--- Two-Process Solution – Algorithm 3 (Peterson’s solution)

Combined shared variables of algorithms 1 and 2.

Process A

do {
flag [A]:= true;
turn = B;
while (flag [B] and turn == B) ;

critical section
flag [A] = false;
remainder section

} while (1);

Process B

do {
flag [B]:= true;
turn = A;
while (flag [A] and turn == A) ;

critical section
flag [B] = false;
remainder section

} while (1);

Meets all three requirements; solves the critical-section problem for two processes.

March 29, 2008 OS:Process Synchronization 20

- Synchronization Hardware

Many systems provide hardware support for critical section code.This
make programming task easier and improve system efficiency.

Uniprocessors – could disable interrupts
Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic (non-interruptable) hardware
instructions

Either test memory word and set value (TestAndSet)
Or swap contents of two memory words (Swap)

If two atomic instructions are executed simultaneously (each one on
different CPU), they will be executed sequentially in some arbitrary
order.

Unfortunately for hardware designers, implementation of these atomic
instructions in a multiprocessor environment is hard.

March 29, 2008 OS:Process Synchronization 21

-- Test and Set

Test and modify the content of a word atomically

boolean TestAndSet (boolean *lock)
{

boolean rv = *lock;
*lock = TRUE;
return rv:

}

March 29, 2008 OS:Process Synchronization 22

--- Mutual Exclusion with Test-and-Set

Shared data:

boolean lock = false;

Process Pi

while (true) {
while (TestAndSet (&lock))

; /* do nothing

// critical section

lock = FALSE;

// remainder section
}

March 29, 2008 OS:Process Synchronization 23

-- Swap

Atomically swap two variables.

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}

March 29, 2008 OS:Process Synchronization 24

--- Mutual Exclusion with Swap

Shared data (initialized to false): boolean lock;

Each process has a local Boolean variable key.

Process Pi

while(true)
key = true;
while (key == true)

Swap(&lock, &key);
// critical section

lock = false;
// remainder section

}

March 29, 2008 OS:Process Synchronization 25

--- Bounded-waiting mutual-exclusion with TestAndSet - (Pi)

While(true)
waiting[i] = true

key = true /* local */
while (waiting[i] && key)

key = TestAndSet(lock);
waiting[i] = false;

// critical section
k = (i + 1) % n
while ((k != i) && !waiting[k])

k = (k + 1) % n
if (k == i)

lock = false;
else

waiting[k] = false;
// remainder section

}

March 29, 2008 OS:Process Synchronization 26

- Semaphores

Definition +
Semaphores Usage: CS of n Processes +
Semaphore Usage: a General Synchronization Tool +
Implementation +
Deadlock and Starvation +
Two Types of Semaphores +

March 29, 2008 OS:Process Synchronization 27

-- Definition

Synchronization tool that does not require busy waiting.

Semaphore S – integer variable

Apart from initialization it can only be accessed via two indivisible
(atomic) operations

wait (S)
{

while S≤ 0;
S--;

}

signal (S)
{

S++;
}

March 29, 2008 OS:Process Synchronization 28

-- Semaphore Usage: CS of n Processes

Shared data:

semaphore mutex; //initially mutex = 1

Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

March 29, 2008 OS:Process Synchronization 29

-- Semaphore Usage: a General Synchronization Tool

Execute B in Pj only after A executed in Pi

Use semaphore flag initialized to 0
Code:

Pi Pj

M M

A wait(flag)
signal(flag) B

March 29, 2008 OS:Process Synchronization 30

-- Semaphore Implementation …

To avoid spinlock define a semaphore as a record

typedef struct {
int value;
struct process *L;

} semaphore;

Assume two simple operations:
block suspends the process that invokes it.
wakeup(P) resumes the execution of a blocked process P.

March 29, 2008 OS:Process Synchronization 31

… -- Semaphore Implementation

Semaphore operations now defined as

wait(S)
{

S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S)
{

S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

March 29, 2008 OS:Process Synchronization 32

-- Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

M M
signal(S); signal(Q);
signal(Q) signal(S);

Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

March 29, 2008 OS:Process Synchronization 33

- Classical Problems of Synchronization

Bounded-Buffer Problem +

Readers and Writers Problem +

Dining-Philosophers Problem +

March 29, 2008 OS:Process Synchronization 34

-- Bounded-Buffer Problem …

Shared data

semaphore full, empty, mutex;

Initially:

full = 0; empty = n; mutex = 1

Assume that the buffer consists of n buffers, each capable of holding one
item.

The mutex semaphore provides mutual exclusion to the buffer pool.

The empty semaphores count the number of empty buffers.

The full semaphore counts the number of full buffers.

March 29, 2008 OS:Process Synchronization 35

… -- Bounded-Buffer Problem

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

Producer Consumer

March 29, 2008 OS:Process Synchronization 36

-- Readers-Writers Problem …

Two types of processes:
Writers: modify a shared object
Readers: They just read. They do not modify shared object.

Many readers can access a shared object
simultaneously.

A writer needs exclusive access to a shared object

The Readers-Writers problem has several variations, all
involving priorities.

March 29, 2008 OS:Process Synchronization 37

… -- Readers-Writers Problem

Shared data

semaphore mutex, wrt;

Initially

mutex = 1; wrt = 1; readcount = 0

The wrt semaphore is common to both readers and writers

The mutex semaphore is to ensure mutual exclusion when the
variable readcount is updated.

March 29, 2008 OS:Process Synchronization 38

--- Readers-Writers Problem - Writer Process

Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed
…

wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

March 29, 2008 OS:Process Synchronization 39

-- Dining-Philosophers Problem

March 29, 2008 OS:Process Synchronization 40

-- Dining-Philosophers Problem …

Shared data

semaphore chopstick[5];

Initially all values are 1

Philosopher i :

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

March 29, 2008 OS:Process Synchronization 41

- Problems with Semaphores

Correct use of semaphore operations:

signal (mutex) …. wait (mutex)

wait (mutex) … wait (mutex)

Omitting of wait (mutex) or signal (mutex) (or both)

March 29, 2008 OS:Process Synchronization 42

- Monitors

A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

Only one process may be active within the monitor at a time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }
…

}
}

March 29, 2008 OS:Process Synchronization 43

-- Schematic view of a Monitor

March 29, 2008 OS:Process Synchronization 44

-- Condition Variables

condition x, y;

Two operations on a condition variable:
x.wait () – a process that invokes the operation is

suspended.
x.signal () – resumes one of processes (if any) that

invoked x.wait ()

March 29, 2008 OS:Process Synchronization 45

-- Monitor with Condition Variables

March 29, 2008 OS:Process Synchronization 46

Chapter summary

Race condition, atomic operation
Critical Section (CS) : Where shared data is modified
Solution to CS:

Mutual exclusion
Progress
Bounded waiting

Peterson’s Solution
Synchronization HW:

Test and Set
Swap

Semaphores: with spin lock and without spin lock
Classic Problems of Synchronization

Bounded buffer
Readers writers,
Five philosophers

Monitors

March 29, 2008 OS:Process Synchronization 47

End of Chapter 6

