!'_ THREADS

March 29, 2008 OS:Threads

Chapter outline

= Overview +

= Multithreading Models +
= Threading Issues +

= Pthreads +

= Examples of Threads +

March 29, 2008 OS:Threads

- OQverview

= Thread concept +

= Benefits of threads +
= Thread states +

= Supporting threads +

March 29, 2008 OS:Threads

-- Thread Concepts ...

= A thread
= Is simply an execution stream through a process.
= Some times it is called lightweight process (LWP)

= Has:
A program counter
A register set
A stack
State
It shares with other threads of the same process:
Data section
Code section
Global Variables
Accounting information
Other OS resources, such as open files and signals

March 29, 2008 OS:Threads

Thread Concepts ...

code

code

data

files

registers

registers

registers

registers

stack

stack

stack

March 29, 2008

single-threaded

OS:Threads

multithreaded

... -—- Thread Concepts

= A modern application is implemented as a process with several threads.
For example a word processor can have:

= A thread to display graphics
= A thread for performing spelling
= A thread for reading user input

Four scare and seven |[nation, or any nation | [lives that this nation|[wha struggled here| [her ta the unfinished | [they gave the last full
years ago, our fathers ||so conceived and sa || might live. 1t is|| have cansecrated it, far| | work which they who | [measure of devotian,
bought forth npan this || dedicated, can long || ahagether fitting and | | above owr poar power| | faught here have thus | |that we here highly
cantinert a new nation: || endure. We are met on | | proper that we should | | 1o add or detract. The| | far sa nobly advanced. | [resolve that these dead

canceived in liberty, |2 great battlefield of || do this. warld will litfle note, | |1t is ather for ms 1 be | |shall not have died in
and dedicated 1o the || that war. But, ina largerserse, | | nor long remember, | | here dedicated to the | [vain that this nation,
proposition that all We have come to | wecannot dedicate, we | | what we say here, tut| | great task remaining | [nnder God, shail have
men are created equal. || dedicate a portion of || cannat consscrate we| | can never forget||befor ws, that fmm | |a new birth of freedom

Tow we am engaged [[that field as a final || cannot hallow this | | whatthey did here these honoted dead we | |and that government of
in a great civil war || resting place for those || gmund The brve|| Ltis for s the living, | | ke increased devotion | [the people by the

testing whether that || whe here gave theic|| men, living and d mther, 1o be dedicated | | 1o that cavse for which | [people, for the people

L J
~

Kernel
Keyboard Disk

March 29, 2008 OS:Threads

-- Benefits of Threads

= Responsiveness:

= One thread could be blocked while another thread could be responding to user
requests.

= Resource sharing:
= Threads of the same process share resources.

= Economy:

= Compared to processes, threads are:
Faster to create (around 30 times faster in Solaris 2)
Faster to context switch (around 5 times faster in Solaris 2)
Easier to manage
Consume less resources
Communicate with out involving the kernel (Those of the same process)

= Utilization of multiprocessor architecture

March 29, 2008 OS:Threads

-- Thread States

= Threads have three states:
= Running
= Ready
= Blocked

= They have no suspend state in user level threads (ULT) (ULTs will
be explained later) because all threads within the same process
share the same address space. Suspending (swapping) a single
thread involves suspending all threads of the same process.

= Termination of a process, terminates all threads within the
process.

March 29, 2008 OS:Threads

-- Supporting Threads

= Support for threads may be provided at either the user
level or the kernel level. In this section we will discuss:
= User Level Threads +
= Kernel Level Threads +
= User Vs. Kernel-Level threads +

March 29, 2008 OS:Threads

--- User-level Threads (ULT)

= Are supported above the kernel.

= Are implemented by thread library.

= With no support from the kernel, the thread library
provides:
= Thread creation
= Thread termination

= Thread scheduling
= Thread Management

= All thread management is done in the user space.

= Examples
= POSIX Pthreads
= Mach C-threads
= Solaris threads

March 29, 2008 OS:Threads

10

---- A user-level threads package

Process Thread
) \\ /
User
space <
=

_
Kernel
space Kernel

w,
/ N
Run-time Thread Process

system table table

March 29, 2008 OS:Threads

--- Kernel-Level Threads (KLT)

= Are supported by the OS.

= The kernel does thread:
= Creation
= termination
= Scheduling
= Management

= Examples:
= Windows 95/98/NT/2000
= Solaris
= Tru64 UNIX
= BeOS
= Linux

March 29, 2008

OS:Threads

12

————— A Threads Package managed by Kernel

Process Thread

\

Kernel é
1

Process Thread
table table

March 29, 2008 OS:Threads

--- ULT Vs. KLT

= ULTs are:
= Faster than KLTs.
= More portable than KLT
= Tunable by user

= In a single threaded kernel:

= With ULT, if one thread is blocked, all the threads which belong
to the same KLT get blocked. (Some system threading libraries
translate blocking system calls into nonblocking system calls).

= With KLT, if one thread is blocked, the other threads of the
same process don't get blocked.

March 29, 2008 OS:Threads

14

- Multithreading Models

= Many systems provide

support for both user &
kernel threads, resulting in
different multi-threaded
models. The four common
types of threading
Implementation are:

= Many-to-One Model+

= One-to-One Model +

= Many-to-Many Model +

= Two-level Model +

March 29, 2008

Multiple user threads
on a kernel thread

\ |

VA

Kernel S S*— Kernel thread

User
> space

Kernel
space

OS:Threads

15

-- Many-to-One Model

= Many user-level threads mapped to
single kernel thread.

= Used on systems that do not support
kernel threads.

= Efficient: Management is done in the
user space.

= Can be blocked.
= No parallelism.
= Example

= Green threads of Solaris 2

March 29, 2008 OS:Threads

R

4— kernel thread

16

-- One-to-One Model

= Each ULT maps to KLT.
= More concurrency than Many-to-one.
= Threads can run in parallel.

= When one thread gets blocked, CPU is
assigned another thread.

= Drawback:
= Frequent creation of KLTs. (overhead)

= May need to Limit the number of
KLTs, hence ULTs.

= Examples:
= Windows 95/98/NT/2000/XP
= 0S/2

< yserthread

k k @4— kerel thread

March 29, 2008 OS:Threads

17

-- Many-to-Many Model

= Multiplexes ULTs to less than or equal
number of KLTSs.

= Allows the operating system to
create a sufficient number of kernel
threads.

= Less concurrency than One-to-One
but better than Many-to-one.

m More ULTs can be created in this
model than in the One-to-One.

= If a thread is blocked, CPU is assigned
another thread.

= Examples:
= Solaris 2

= Windows NT/2000 with the
ThreadFiber package

March 29, 2008 OS:Threads

<4— kernel thread

18

-- Two-level Model

= Similar to M:M, except that it allows a user thread to be bound to
kernel thread

= Examples

= IRIX
= HP-UX ; 3 ; <«— user thread
= Tru6d UNIX
= Solaris 8 and earlier

March 29, 2008 OS:Threads 19

- Threading Issues

In this section we will discuss some issues to consider
with multithreaded programs.
= Thread creation +
Thread cancellation +
Signal handling +
Thread-specific Data +
Thread pools +

March 29, 2008 OS:Threads

20

-- Thread Creation

= The semantic of fork and exec is different for threads
and processes.
= If a thread in a program calls fork:
Does it duplicate all the threads of the process or
Or it only duplicates the thread that invoked the fork.
= Some UNIX systems have chosen to have 2 versions of fork.

One that duplicates all threads (when exec follows fork).

Another one that duplicates the thread that invoked the fork
(when no exec).

March 29, 2008 OS:Threads 21

-- Threading Cancellation

= Is a task of terminating a thread before it has competed.

= Example:

Threads concurrently searching a DB. If one thread returns the result
others might be cancelled.

When a user presses the STOP button on a web browser.

= Cancellation of a thread can occur in two ways:

= Asynchronous: One thread immediately terminated by another.
(used by most OS)

s Deferred: A thread checks to terminate itself.

March 29, 2008 OS:Threads

22

-- Signal Handling

March 29,

A signal is used to notify a process that a particular event has
occurred.
A signal can be:
= Synchronous
= Asynchronous
Signals follow the same pattern
= A signal is generated by the occurrence of a particular event
= A generated signal is delivered to a process

= One delivered, the signal must be handled by either
A default signal handler
A user-defined signal handler

A process may have many threads so where then should a signal
be delivered. In general, the following options exist:
= Deliver the signal to the thread to which the signal applies
= Deliver the signal to every thread in the process (like <control>< ¢>)
= Deliver the signal to certain threads in the process
= Assign a specific thread to receive all signals of the process (Solaris 2)

2008 OS:Threads 23

March 29, 2008

--- Thread Signal Delivery

Signal
handlers

Signal

OS:Threads

} Threads

3 Signal masks

Key

[1-Unmasked
1 - Masked

|

24

-- Thread-Specific Data

= Threads belonging to a process share the data of the
process.

= In some circumstances each thread might need its own
copy of data which is called thread specific-data.
= Example: a unique identifier of a transaction.

March 29, 2008 OS:Threads

25

-- Thread Pools

= A number of KLTs are created at process startup and are placed into a
pool.

= A thread waits in the pool till it is needed.

= |If a thread completes a service, it is not destroyed. It is put back into the
pool.

= |If a pool contains no available threads, the server waits until one becomes
free.

= The benefits of thread pools are:

= Faster, because of not creating and destroying threads.
= Number of threads can be controlled.

March 29, 2008 OS:Threads

26

* - Pthreads

= a POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization.

= API specifies behavior of the thread library,
Implementation is up to development of the library.

= Common in UNIX operating systems.

March 29, 2008 OS:Threads

27

- Summary

= Thread: lightweight process (LWP).

= Benefits of threads:
= Responsiveness
= resource sharing
= economy
= Utilization of multiprocessor architecture

s Thread states:

= running

= ready

= Blocked
u ULT, KLT.

= Multi-threading Models:
= Many-to-one
= One-to-one
= Many-to-Many
= Two-level

Thread creation, thread cancellation, Signal handling, thread pools

March 29, 2008 OS:Threads

March 29, 2008

End

OS:Threads

29

