
March 29, 2008 OS:Processes 1

Processes

March 29, 2008 OS:Processes 2

Objectives

To introduce the notion of a process – a program in
execution

To describe the various features of processes
Scheduling
Creation
Termination
Communication
Etc.

To describe communication in client-server systems.

March 29, 2008 OS:Processes 3

Outline

Process Concept …

Process Scheduling …

Operations on Processes …

Cooperating Processes …

Interprocess Communication …

Communication in Client-Server Systems …

Summary …

March 29, 2008 OS:Processes 4

- Process Concept

Basic Concepts …

Process State …

Process Control Block (PCB) …

March 29, 2008 OS:Processes 5

-- Basic Concept

An operating system executes a variety of programs:
Batch system – jobs
Time-shared systems – user programs or tasks

Process – a program in execution;
process execution must progress in sequential fashion.
A process includes:

Code
stack
data section

Processes can be described as either:
I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts.
CPU-bound process – spends more time doing
computations; few very long CPU bursts.

March 29, 2008 OS:Processes 6

--- Process in Memory

Local variables
Function parameters
Return address

Dynamically allocated
memory

Global variables

Program code

March 29, 2008 OS:Processes 7

-- Process State

As a process executes, it changes state

new: The process is being created.

running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

ready: The process is waiting to be assigned to a process.

terminated: The process has finished execution.

March 29, 2008 OS:Processes 8

--- Diagram of Process State

March 29, 2008 OS:Processes 9

-- Process Control Block (PCB)

Information associated with each process.

Process state

Program counter

CPU registers

CPU scheduling information

Memory-management information

Accounting information

I/O status information

March 29, 2008 OS:Processes 10

--- Process Control Block (PCB)

March 29, 2008 OS:Processes 11

--- Process Table and Process Control Block (PCB)

March 29, 2008 OS:Processes 12

--- CPU Switch From Process to Process

March 29, 2008 OS:Processes 13

- Process Scheduling

In multi-programming environment processes compete to
get resources. Because the number of resources are limited,
the OS efficiently schedules processes before it assigns them
a resource. In this section we will cover:

Scheduling Queues …

Schedulers …

Context Switching …

March 29, 2008 OS:Processes 14

-- Scheduling Queues

Job queue – set of all processes in the system.

Ready queue – set of all processes residing in main memory,
ready and waiting to execute.

Device queues – set of processes waiting for an I/O device.

Process migration between the various queues.

March 29, 2008 OS:Processes 15

--- Ready Queue And Various I/O Device Queues

March 29, 2008 OS:Processes 16

--- Representation of Process Scheduling

March 29, 2008 OS:Processes 17

-- Schedulers

Long-term scheduler:
Is also called job scheduler
Selects which processes should be brought into the ready queue
Is invoked very infrequently (seconds, minutes) ⇒ (may be slow)
Controls the degree of multiprogramming

Short-term scheduler:
Is also called CPU scheduler
Selects which process should be executed next and allocates CPU
Is invoked very frequently (milliseconds) ⇒ (must be fast)

Medium-term scheduler:
Swaps in and out jobs form memory to improve efficiency.
Found in some time-sharing systems.

March 29, 2008 OS:Processes 18

--- Medium Term Scheduling

March 29, 2008 OS:Processes 19

--- Context Switch

When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

Context-switch time is overhead; the system does no useful
work while switching.

Time dependent on hardware support.

March 29, 2008 OS:Processes 20

- Operations on Processes

Process Creation …

Process Termination …

March 29, 2008 OS:Processes 21

-- Process Creation …

Parent process create children processes, which, in turn
create other processes, forming a tree of processes.

Resource sharing
Parent and children share all resources.
Children share subset of parent’s resources.
Parent and child share no resources.

Execution
Parent and children execute concurrently.
Parent waits until children terminate.

March 29, 2008 OS:Processes 22

A tree of processes on a typical Solaris

March 29, 2008 OS:Processes 23

… -- Process Creation

Address space
Child duplicate of parent.
Child has a program loaded into it.

UNIX examples
fork system call creates new process
exec system call used after a fork to replace the process’
memory space with a new program.

March 29, 2008 OS:Processes 24

--- Process Creation

March 29, 2008 OS:Processes 25

--- C Program forking a separate process

#include <stdio.h>

Main(int argc, char *argv[])
{

int pid;
pid = fork(); /* child process created */
if (pid < 0) { /* Error occurred */

fprintf(stderr, “Fork Failed”);
}
else if (pid == 0) { /* Child process */

execlp(“/bin/ls”, “ls”, NULL);
}
else { /* Parent process */

wait(NULL);
printf(“Child Complete”);
exit(0);

}
}

March 29, 2008 OS:Processes 26

-- Process Termination

Process executes last statement and asks the operating
system to exit.

Output data from child to parent (via wait).
Process’ resources are deallocated by operating system.

Parent may terminate execution of children processes
(abort).

Child has exceeded allocated resources.
Task assigned to child is no longer required.
Parent is exiting.

Operating system does not allow child to continue if its parent
terminates.
Cascading termination.

March 29, 2008 OS:Processes 27

- Interprocess Communication (IPC)

IPC is a mechanism for processes to communicate and to
synchronize their actions.

Independent process cannot affect or be affected by the execution
of another process.

Cooperating process can affect or be affected by the execution of
another process

Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

There are two fundamental models of IPC
Shared memory
Message passing

March 29, 2008 OS:Processes 28

--- Communications Models

(a) Message passing (b) Shared memory

March 29, 2008 OS:Processes 29

-- Shared Memory

Communicating processes establish a shared memory

Faster than message passing – memory speed

Not easy to implement when processes are in separate
computers connected by a network.

Accessing and manipulating the shared memory be
written explicitly by the application programmer

March 29, 2008 OS:Processes 30

--- Example of Producer-Consumer Process …

Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process.

unbounded-buffer places no practical limit on the size of the
buffer.

bounded-buffer assumes that there is a fixed buffer size.

March 29, 2008 OS:Processes 31

… --- Example of Producer Consumer Process

Shared Variables

#define BUFFER-SIZE 10
Typedef struct {
. . .
} item;

Item buffer[BUFFER_SIZE];
Int in = 0;
Int out = 0;

Producer Consumer

while(1) { while(1) {
while (((in + 1) % BUFFER_SIZE) == out while (in == out)

; /* do nothing */ ; /* do nothing */
buffer[in] = nextProduced nextConsumed = buffer[out];
in = (in + 1) % BUFFER_SIZE; out = (out + 1) % BUFFER_SIZE;

} }

March 29, 2008 OS:Processes 32

-- Message passing

Basic Concepts …

Direct Communication …

Indirect communication …

Synchronization …

Buffering …

March 29, 2008 OS:Processes 33

-- Basic Concepts

Message-passing system – processes communicate with
each other without resorting to shared variables.

IPC facility provides two operations:
send(message) – message size fixed or variable
receive(message)

If P and Q wish to communicate, they need to:
establish a communication link between them

physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties like direct or indirect; symmetric or
asymmetric)

exchange messages via send/receive

March 29, 2008 OS:Processes 34

--- Direct Communication

Processes must name each other explicitly:
Symmetry

send (P, message) – send a message to process P
receive(Q, message) – receive a message from process Q

Asymmetry
send (P, message) – send a message to process P
receive(id, message) – receive message from any process.

Properties of communication link
Links are established automatically.
A link is associated with exactly one pair of communicating processes.
Between each pair there exists exactly one link.
The link may be unidirectional, but is usually bi-directional.

March 29, 2008 OS:Processes 35

--- Indirect Communication …

Messages are directed and received from mailboxes (also
referred to as ports).

Each mailbox has a unique id.
Processes can communicate only if they share a mailbox.

Properties of communication link
Link established only if processes share a common mailbox
A link may be associated with many processes.
Each pair of processes may share several communication
links.
Link may be unidirectional or bi-directional.

March 29, 2008 OS:Processes 36

… --- Indirect Communication …

Operations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

March 29, 2008 OS:Processes 37

… --- Indirect Communication

Mailbox sharing
P1, P2, and P3 share mailbox A.
P1, sends; P2 and P3 receive.
Who gets the message?

Solutions
Allow a link to be associated with at most two processes.
Allow only one process at a time to execute a receive
operation.
Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

March 29, 2008 OS:Processes 38

--- Synchronization

Message passing is may be either blocking or non-
blocking

Blocking: is considered synchronous
Blocking send has the sender block until the message is
received
Blocking receive has the receiver block until a message is
available

non-blocking: is considered asynchronous
Non-blocking send has the sender send the message and
continue
Non-blocking receive has the receiver receive a valid message
or null

March 29, 2008 OS:Processes 39

-- Buffering

Queue of messages attached to the link; implemented
in one of three ways.

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

March 29, 2008 OS:Processes 40

- Client-Server Communication

Sockets …

Remote Procedure Calls …

Remote Method Invocation (Java) …

March 29, 2008 OS:Processes 41

-- Sockets

A socket is defined as an endpoint for communication.

Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

Communication consists between a pair of sockets.

March 29, 2008 OS:Processes 42

--- Socket Communication

March 29, 2008 OS:Processes 43

-- Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

Stubs – client-side proxy for the actual procedure on the
server.

The client-side stub locates the server and marshals the
parameters.

The server-side stub receives this message, unpacks the
marshaled parameters, and performs the procedure on the
server.

March 29, 2008 OS:Processes 44

--- Marshalling Parameters

March 29, 2008 OS:Processes 45

-- Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar to RPCs.

RMI allows a Java program on one machine to invoke a method on a
remote object.

March 29, 2008 OS:Processes 46

--- Execution of RPC

March 29, 2008 OS:Processes 47

- Summary

Process: A program in execution
Batch vs. time sharing
I/O bound process vs. CPU bound process

Process state: new, ready, running, waiting, terminated
Context switching: PCB
Process scheduling: Short, medium, long term schedulers
Operations on processes: process creation & termination.
IPC:

shared memory
Producer consumer

message passing
Direct vs. Indirect communication; Synchronization; Buffering

Client-Server communication: Sockets, RPC, Stub, RMI

March 29, 2008 OS:Processes 48

End of Chapter 3

