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Processes
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Objectives

To introduce the notion of a process – a program in 
execution

To describe the various features of processes
Scheduling
Creation
Termination
Communication
Etc.

To describe communication in client-server systems.



March 29, 2008 OS:Processes 3

Outline

Process Concept …

Process Scheduling …

Operations on Processes …

Cooperating Processes …

Interprocess Communication …

Communication in Client-Server Systems …

Summary …
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- Process Concept 

Basic Concepts …

Process State …

Process Control Block (PCB) …
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-- Basic Concept

An operating system executes a variety of programs:
Batch system – jobs
Time-shared systems – user programs or tasks

Process – a program in execution; 
process execution must progress in sequential fashion.
A process includes:

Code 
stack
data section

Processes can be described as either:
I/O-bound process – spends more time doing I/O than 
computations, many short CPU bursts.
CPU-bound process – spends more time doing 
computations; few very long CPU bursts.
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--- Process in Memory

Local variables
Function parameters
Return address

Dynamically allocated
memory

Global variables

Program code
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-- Process State

As a process executes, it changes state

new:  The process is being created.

running:  Instructions are being executed.

waiting:  The process is waiting for some event to occur.

ready:  The process is waiting to be assigned to a process.

terminated:  The process has finished execution.
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--- Diagram of Process State
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-- Process Control Block (PCB)

Information associated with each process.

Process state

Program counter

CPU registers

CPU scheduling information

Memory-management information

Accounting information

I/O status information
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--- Process Control Block (PCB)
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--- Process Table and Process Control Block (PCB)
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--- CPU Switch From Process to Process
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- Process Scheduling

In multi-programming environment processes compete to 
get resources. Because the number of resources are limited, 
the OS efficiently schedules processes before it assigns them 
a resource. In this section we will cover: 

Scheduling Queues …

Schedulers …

Context Switching …
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-- Scheduling Queues

Job queue – set of all processes in the system.

Ready queue – set of all processes residing in main memory, 
ready and waiting to execute.

Device queues – set of processes waiting for an I/O device.

Process migration between the various queues.
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--- Ready Queue And Various I/O Device Queues
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--- Representation of Process Scheduling
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-- Schedulers

Long-term scheduler:
Is also called job scheduler
Selects which processes should be brought into the ready queue
Is invoked very infrequently (seconds, minutes) ⇒ (may be slow)
Controls the degree of multiprogramming

Short-term scheduler:
Is also called CPU scheduler
Selects which process should be executed next and allocates CPU
Is invoked very frequently (milliseconds) ⇒ (must be fast)

Medium-term scheduler:
Swaps in and out jobs form memory to improve efficiency.
Found in some time-sharing systems.
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--- Medium Term Scheduling
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--- Context Switch

When CPU switches to another process, the system must 
save the state of the old process and load the saved state 
for the new process.

Context-switch time is overhead; the system does no useful 
work while switching.

Time dependent on hardware support.
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- Operations on Processes

Process Creation …

Process Termination …
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-- Process Creation …

Parent process create children processes, which, in turn 
create other processes, forming a tree of processes.

Resource sharing
Parent and children share all resources.
Children share subset of parent’s resources.
Parent and child share no resources.

Execution
Parent and children execute concurrently.
Parent waits until children terminate.
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A tree of processes on a typical Solaris
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… -- Process Creation

Address space
Child duplicate of parent.
Child has a program loaded into it.

UNIX examples
fork system call creates new process
exec system call used after a fork to replace the process’
memory space with a new program.
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--- Process Creation
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--- C Program forking a separate process

#include <stdio.h>

Main(int argc, char *argv[ ])
{

int pid;
pid = fork( );    /* child process created */
if (pid < 0 ) {   /* Error occurred  */

fprintf(stderr, “Fork Failed”);
}
else if (pid == 0) {    /* Child process  */

execlp(“/bin/ls”, “ls”, NULL);
}
else  {     /* Parent process   */

wait(NULL);
printf(“Child Complete”);
exit(0);

}
}



March 29, 2008 OS:Processes 26

-- Process Termination

Process executes last statement and asks the operating 
system to exit.

Output data from child to parent (via wait).
Process’ resources are deallocated by operating system.

Parent may terminate execution of children processes 
(abort).

Child has exceeded allocated resources.
Task assigned to child is no longer required.
Parent is exiting.

Operating system does not allow child to continue if its parent 
terminates.
Cascading termination.
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- Interprocess Communication (IPC)

IPC is a mechanism for processes to communicate and to 
synchronize their actions.

Independent process cannot affect or be affected by the execution 
of another process.

Cooperating process can affect or be affected by the execution of 
another process

Advantages of process cooperation
Information sharing 
Computation speed-up
Modularity
Convenience

There are two fundamental models of IPC
Shared memory
Message passing
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--- Communications Models 

(a) Message passing                        ( b) Shared memory   
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-- Shared Memory

Communicating processes establish a shared memory

Faster than message passing – memory speed

Not easy to implement when processes are in separate 
computers connected by a network.

Accessing and manipulating the shared memory be 
written explicitly by the application programmer
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--- Example of Producer-Consumer Process …

Paradigm for cooperating processes, producer process 
produces information that is consumed by a consumer
process.

unbounded-buffer places no practical limit on the size of the 
buffer.

bounded-buffer assumes that there is a fixed buffer size.
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… --- Example of Producer Consumer Process

Shared Variables

#define BUFFER-SIZE 10
Typedef struct {
. . .
} item;

Item buffer[BUFFER_SIZE];
Int in = 0;
Int out = 0;

Producer Consumer

while(1) { while(1)  {
while (((in + 1) % BUFFER_SIZE) == out while (in == out)

; /* do nothing */ ;  /*  do nothing */
buffer[in] = nextProduced nextConsumed = buffer[out];
in = (in + 1) % BUFFER_SIZE; out = (out + 1) % BUFFER_SIZE;

} }
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-- Message passing

Basic Concepts …

Direct Communication …

Indirect communication …

Synchronization …

Buffering …
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-- Basic Concepts

Message-passing system – processes communicate with 
each other without resorting to shared variables.

IPC facility provides two operations:
send(message) – message size fixed or variable 
receive(message)

If P and Q wish to communicate, they need to:
establish a communication link between them

physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties like direct or indirect; symmetric or 
asymmetric)

exchange messages via send/receive
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--- Direct Communication

Processes must name each other explicitly:
Symmetry

send (P, message) – send a message to process P
receive(Q, message) – receive a message from process Q

Asymmetry
send (P, message) – send a message to process P
receive(id, message) – receive message from any process.

Properties of communication link
Links are established automatically.
A link is associated with exactly one pair of communicating processes.
Between each pair there exists exactly one link.
The link may be unidirectional, but is usually bi-directional.
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--- Indirect Communication …

Messages are directed and received from mailboxes (also 
referred to as ports).

Each mailbox has a unique id.
Processes can communicate only if they share a mailbox.

Properties of communication link
Link established only if processes share a common mailbox
A link may be associated with many processes.
Each pair of processes may share several communication 
links.
Link may be unidirectional or bi-directional.
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… --- Indirect Communication …

Operations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from 
mailbox A
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… --- Indirect Communication

Mailbox sharing
P1, P2, and P3 share mailbox A.
P1, sends; P2 and P3 receive.
Who gets the message?

Solutions
Allow a link to be associated with at most two processes.
Allow only one process at a time to execute a receive 
operation.
Allow the system to select arbitrarily the receiver.  Sender is 
notified who the receiver was.
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--- Synchronization

Message passing is may be either blocking or non-
blocking

Blocking: is considered synchronous
Blocking send has the sender block until the message is 
received
Blocking receive has the receiver block until a message is 
available

non-blocking: is considered asynchronous
Non-blocking send has the sender send the message and 
continue
Non-blocking receive has the receiver receive a valid message 
or null
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-- Buffering

Queue of messages attached to the link; implemented 
in one of three ways.

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length 
Sender never waits.
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- Client-Server Communication

Sockets …

Remote Procedure Calls …

Remote Method Invocation (Java) …
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-- Sockets

A socket is defined as an endpoint for communication.

Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port 1625 on host 
161.25.19.8

Communication consists between a pair of sockets.
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--- Socket Communication
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-- Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls 
between processes on networked systems.

Stubs – client-side proxy for the actual procedure on the 
server.

The client-side stub locates the server and marshals the 
parameters.

The server-side stub receives this message, unpacks the 
marshaled parameters, and performs the procedure on the 
server.
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--- Marshalling Parameters
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-- Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar to RPCs.

RMI allows a Java program on one machine to invoke a method on a
remote object.
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--- Execution of RPC
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- Summary

Process: A program in execution
Batch vs. time sharing
I/O bound process vs. CPU bound process

Process state: new, ready, running, waiting, terminated
Context switching: PCB
Process scheduling: Short, medium, long term schedulers
Operations on processes: process creation & termination.
IPC: 

shared memory
Producer consumer

message passing
Direct vs. Indirect communication; Synchronization; Buffering

Client-Server communication: Sockets, RPC, Stub, RMI
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End of Chapter 3


