
March 29, 2008 OS: OS Structures 1

Operating-Systems Structures

March 29, 2008 OS: OS Structures 2

Objectives

To describe the services an operating system provides
to users, processes, and other systems

To discuss the various ways of structuring an operating
system

To explain how operating systems are installed and
customized and how they boot

March 29, 2008 OS: OS Structures 3

Chapter outline

Operating System Services
User Operating System Interface
System Calls
Types of System Calls
System Programs
Operating System Design and Implementation
Operating System Structure
Virtual Machines
Operating System Generation
System Boot

March 29, 2008 OS: OS Structures 4

- Operating System Services …

One set of operating-system services provides functions that
are helpful to the user:

User interface - Almost all operating systems have a user interface (UI)
Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)
I/O operations - A running program may require I/O, which may
involve a file or an I/O device.
File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

March 29, 2008 OS: OS Structures 5

… - Operating System Services …

One set of operating-system services provides functions that
are helpful to the user (Cont):

Communications Communications– Processes may exchange
information, on the same computer or between computers over a
network

Communications may be via shared memory or through message
passing (packets moved by the OS)

Error detection – OS needs to be constantly aware of possible errors
May occur in the CPU and memory hardware, in I/O devices, in user
program
For each type of error, OS should take the appropriate action to
ensure correct and consistent computing
Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

March 29, 2008 OS: OS Structures 6

… - Operating System Services

Another set of OS functions exists for ensuring the efficient
operation of the system itself via resource sharing

Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code.

Accounting - To keep track of which users use how much and what kinds
of computer resources
Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of that
information, concurrent processes should not interfere with each other

Protection involves ensuring that all access to system resources is
controlled
Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts
If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

March 29, 2008 OS: OS Structures 7

- User Operating-System Interface

There are two fundamental approaches

Command-line interface (command interpreter)

Graphical user Interface

March 29, 2008 OS: OS Structures 8

-- Command Line Interface (CLI)

Allows direct command entry

Sometimes implemented in kernel, sometimes by
systems program

Sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of
programs

If the latter, adding new features doesn’t require shell modification

March 29, 2008 OS: OS Structures 9

-- Graphical user Interface (GUI)

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc
Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)
Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available
Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

March 29, 2008 OS: OS Structures 10

- System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)
Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use
Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)
Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

March 29, 2008 OS: OS Structures 11

-- Example of System Calls

System call sequence to copy the contents of one file to another
file

March 29, 2008 OS: OS Structures 12

-- Example of Standard API

Consider the ReadFile() function in the
Win32 API—a function for reading from a file

A description of the parameters passed to ReadFile()
HANDLE file—the file to be read
LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

March 29, 2008 OS: OS Structures 13

-- System Call Implementation

Typically, a number associated with each system call

System-call interface maintains a table indexed according to these
numbers

The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a result call

Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into libraries
included with compiler)

March 29, 2008 OS: OS Structures 14

-- API – System Call – OS Relationship

March 29, 2008 OS: OS Structures 15

-- Standard C Library Example

C program invoking printf() library call, which calls write() system call

March 29, 2008 OS: OS Structures 16

-- System Call Parameter Passing

Often, more information is required than simply identity of desired system call

Exact type and amount of information vary according to OS and call

Three general methods used to pass parameters to the OS

Simplest: pass the parameters in registers

In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

This approach taken by Linux and Solaris

Parameters placed, or pushed, onto the stack by the program and popped off
the stack by the operating system

Block and stack methods do not limit the number or length of parameters
being passed

March 29, 2008 OS: OS Structures 17

--- Parameter Passing via Table

March 29, 2008 OS: OS Structures 18

-- Types of System Calls

Process control

File management

Device management

Information maintenance

Communications

March 29, 2008 OS: OS Structures 19

- System Programs …

System programs provide a convenient environment for
program development and execution. The can be divided
into:

File manipulation
Status information
File modification
Programming language support
Program loading and execution
Communications
Application programs

Most users’ view of the operation system is defined by
system programs, not the actual system calls

March 29, 2008 OS: OS Structures 20

… - System Programs …

Provide a convenient environment for program development and
execution

Some of them are simply user interfaces to system calls; others are
considerably more complex

File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories
Status information

Some ask the system for info - date, time, amount of available
memory, disk space, number of users
Others provide detailed performance, logging, and debugging
information
Typically, these programs format and print the output to the terminal
or other output devices
Some systems implement a registry - used to store and retrieve
configuration information

March 29, 2008 OS: OS Structures 21

… - System Programs

File modification
Text editors to create and modify files
Special commands to search contents of files or perform
transformations of the text

Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided
Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language
Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

March 29, 2008 OS: OS Structures 22

- Operating System Design and Implementation …

No complete solution for the design and Implementation of OS but
some approaches have proven successful

Internal structure of different Operating Systems can vary widely

Start by defining goals and specifications

Affected by choice of hardware, type of system

User goals and System goals

User goals – operating system should be convenient to use, easy to
learn, reliable, safe, and fast

System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free, and
efficient

March 29, 2008 OS: OS Structures 23

… - Operating System Design and Implementation

Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

Mechanisms determine how to do something, policies
decide what will be done

The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later

March 29, 2008 OS: OS Structures 24

- Operating System Structure

Simple

Layered

Microkernel

Modules

March 29, 2008 OS: OS Structures 25

-- Simple Structure

MS-DOS – written to provide the most functionality in
the least space

Not divided into modules

Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

March 29, 2008 OS: OS Structures 26

-- Simple Structure

March 29, 2008 OS: OS Structures 27

--- MS-DOS Layer Structure

March 29, 2008 OS: OS Structures 28

--- UNIX

UNIX – limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts

Systems programs

The kernel

Consists of everything below the system-call interface and
above the physical hardware

Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

March 29, 2008 OS: OS Structures 29

--- UNIX System Structure

March 29, 2008 OS: OS Structures 30

-- Layered Approach

The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface.

With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers

March 29, 2008 OS: OS Structures 31

--- Layered Operating System

March 29, 2008 OS: OS Structures 32

-- Microkernel System Structure

Moves as much from the kernel into “user” space

Communication takes place between user modules using message
passing

Benefits:
Easier to extend a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)
More secure

Detriments:
Performance overhead of user space to kernel space communication

March 29, 2008 OS: OS Structures 33

-- Modules

Most modern operating systems implement kernel
modules

Uses object-oriented approach
Each core component is separate
Each talks to the others over known interfaces
Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible

March 29, 2008 OS: OS Structures 34

--- Solaris Modular Approach

March 29, 2008 OS: OS Structures 35

- Virtual Machines …

A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the operating
system kernel as though they were all hardware

A virtual machine provides an interface identical to the
underlying bare hardware

The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory

March 29, 2008 OS: OS Structures 36

… - Virtual Machines …

The resources of the physical computer are shared to
create the virtual machines

CPU scheduling can create the appearance that users have
their own processor

Spooling and a file system can provide virtual card readers and
virtual line printers

A normal user time-sharing terminal serves as the virtual
machine operator’s console

March 29, 2008 OS: OS Structures 37

… - Virtual Machines …

March 29, 2008 OS: OS Structures 38

… - Virtual Machines

Benefits

The virtual-machine concept provides complete protection of
system resources since each virtual machine is isolated from all
other virtual machines. This isolation, however, permits no direct
sharing of resources.

A virtual-machine system is a perfect vehicle for operating-
systems research and development. System development is done
on the virtual machine, instead of on a physical machine and so
does not disrupt normal system operation.

The virtual machine concept is difficult to implement due to
the effort required to provide an exact duplicate to the
underlying machine

March 29, 2008 OS: OS Structures 39

- Operating System Generation

Operating systems are designed to run on any of a
class of machines; the system must be configured for
each specific computer site

SYSGEN program obtains information concerning the
specific configuration of the hardware system

March 29, 2008 OS: OS Structures 40

-- System Boot

Operating system must be made available to hardware
so hardware can start it

When power is on, execution starts at a fixed memory location
(ROM)

Small piece of code – bootstrap loader (bootstrap
program), locates the kernel, loads it into memory, and starts
it

Some use two-step process where simple bootstrap program
fetches a more complex program from disk, which in turn
loads the kernel.

March 29, 2008 OS: OS Structures 41

- Summary …

Operating System Services
User interface: CLI, GUI, Batch
Program execution
I/O operations
File-system manipulation
Communication
Error detection
Resource allocation
Accounting
Protection and security

System Calls (used for invoking OS kernel routines)
Implementation: Table
Parameter passing: register, block, stack
Programmers: use system calls by API

March 29, 2008 OS: OS Structures 42

… - Summary …

System Programs
Interface between user and system calls
Example: compilers, shell

Operating System Design and Implementation:
Various solutions

Affected by the computer-system
Goals: user and system

Separate the policy and mechanism
Operating System Structure

Simple
Layered
Microkernel
modular

March 29, 2008 OS: OS Structures 43

… - Summary

Virtual Machines
Treat hardware and the operating system kernel as
though they were all hardware

Operating System Generation
System must be configured for each specific computer site

System Boot
Bootstrap program resides in ROM
Are two types of Bootstrap program

Some they load the whole Kernel themselves
Others fetch a loader which loads the kernel

March 29, 2008 OS: OS Structures 44

End of Chapter 2

