Chapter 3

Data Warehousing and OLAP Technology
- The Course

DS = Data source
DW = Data warehouse
DM = Data Mining
SD = Staging Database

OLAP

DM

Association
Classification
Clustering

DS → SD → DW → DM

DS

...
Chapter Outline

- What is a data warehouse?
- How to construct a Data Warehouse
 - What is the Data Model used in data warehouse?
 - Data warehouse architecture
 - Data warehouse implementation
What is Data Warehouse?

“A data warehouse is a:

- subject-oriented,
- integrated,
- time-variant, and
- nonvolatile

collection of data in support of management’s decision-making process.”—W. H. Inmon

Data warehousing:

- The process of constructing and using data warehouses
-- Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales

- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing

- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process
-- Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
- When data is moved to the warehouse, it is converted.
--- Data Warehouse - Integrated

Data Warehouse

Integration System

World Wide Web
Other Sources
Other Databases
Own Databases
The time horizon for the data warehouse is significantly longer than that of operational systems.

- Operational database: current value data
- Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)

Every key structure in the data warehouse:
- Contains an element of time, explicitly or implicitly
- But the key of operational data may or may not contain “time element”
-- Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment

- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data
--- Data Warehouse vs. Heterogeneous DBMS …

- Traditional heterogeneous DB integration: A query driven approach
 - Build wrappers/mediators on top of heterogeneous databases
 - When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
 - Complex information filtering, compete for resources

- Data warehouse: update-driven, high performance
 - Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis
Query-Driven Approach

Client \rightarrow Mediator

Mediator \rightarrow Wrapper

Wrapper \rightarrow Source

Client \rightarrow Mediator

Mediator \rightarrow Wrapper

Wrapper \rightarrow Source

Client \rightarrow Mediator

Mediator \rightarrow Wrapper

Wrapper \rightarrow Source
Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
 - Major task of traditional relational DBMS
 - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.

- OLAP (on-line analytical processing)
 - Major task of data warehouse system
 - Data analysis and decision making

- Distinct features (OLTP vs. OLAP):
 - User and system orientation: customer vs. market
 - Data contents: current, detailed vs. historical, consolidated
 - Database design: ER + application vs. star + subject
 - View: current, local vs. evolutionary, integrated
 - Access patterns: update vs. read-only but complex queries
-- OLTP vs. OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>clerk, IT professional</td>
<td>knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date, detailed, flat relational, isolated</td>
<td>historical, summarized, multidimensional integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write, index/hash on prim. key</td>
<td>lots of scans</td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple transaction</td>
<td>complex query</td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td># users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>
-- Why Separate Data Warehouse?

- High performance for both systems
 - DBMS—tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation

- Different functions and different data:
 - **missing data**: Decision support requires historical data which operational DBs do not typically maintain
 - **data consolidation**: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - **data quality**: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
Chapter Outline

- What is a data warehouse?
- How to construct a Data Warehouse
 - What is the Data Model used in data warehouse?
 - Data warehouse architecture
 - Data warehouse implementation
A data warehouse is based on a **multidimensional data model** which views data in the form of a data cube.

A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions:
- Dimension tables, such as item (item_name, brand, type), or time (day, week, month, quarter, year)
- Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables

In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.
Cube: A Lattice of Cuboids

- 0-D (apex) cuboid
- 1-D cuboids
- 2-D cuboids
- 3-D cuboids
- 4-D (base) cuboid
-- Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - **Star schema**: A fact table in the middle connected to a set of dimension tables
 - **Snowflake schema**: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - **Fact constellations**: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
--- Example of Star Schema

Time
- time_key
- day
- day_of_the_week
- month
- quarter
- year

Location
- location_key
- street
- city
- state_or_province
- country

Branch
- branch_key
- branch_name
- branch_type

Sales Fact Table
- time_key
- item_key
- branch_key
- location_key
- units_sold
- dollars_sold

Item
- item_key
- item_name
- brand
- type
- supplier_type

Measures
- measures
-- Example of Snowflake Schema

- **time**
 - time_key
 - day
 - day_of_the_week
 - month
 - quarter
 - year

- **location**
 - location_key
 - street
 - city_key
 - location

- **sales_fact_table**
 - time_key
 - item_key
 - branch_key
 - location_key
 - units_sold
 - dollars_sold

- **item**
 - item_key
 - item_name
 - brand
 - type
 - supplier_key

- **branch**
 - branch_key
 - branch_name
 - branch_type

- **supplier**
 - supplier_key
 - supplier_type

- **city**
 - city_key
 - city
 - state_or_province
 - country
-- Example of Fact Constellation

Time
- time_key
 - day
 - day_of_the_week
 - month
 - quarter
 - year

Branch
- branch_key
 - branch_name
 - branch_type

Location
- location_key
 - units_sold
 - riyals_sold

Measures
- item_key
 - item_name
 - brand
 - type
 - supplier_type

Sales Fact Table
- time_key
- item_key
- branch_key
- location_key
- units_sold
- riyals_sold

Shipping Fact Table
- time_key
- item_key
- shipper_key
- from_location
- to_location
- riyals_cost
- units_shipped

Shipper
- shipper_key
 - shipper_name
 - location_key
 - shipper_type

Location
- location_key
 - street
 - city
 - province_or_state
 - country
-- A Concept Hierarchy: Dimension (location)

all

region

country

city

all

Europe

Germany

Frankfurt

Vancouver

L. Chan

all

... North_America

Spain

... Canada

... Mexico

... Toronto

M. Wind

...
Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry Region Year
Category Country Quarter
Product City Month Week
Office Day

--- Multidimensional Data
--- A Sample Data Cube

Total annual sales of TV in U.S.A.

<table>
<thead>
<tr>
<th>Product</th>
<th>Country</th>
<th>1Qtr</th>
<th>2Qtr</th>
<th>3Qtr</th>
<th>4Qtr</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>U.S.A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCR</td>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sum

Country
- U.S.A
- Canada
- Mexico

Product
- TV
- PC
- VCR

Date
- 1Qtr
- 2Qtr
- 3Qtr
- 4Qtr
- sum

Product
- TV
- PC
- VCR

Country
- U.S.A
- Canada
- Mexico

Date
- 1Qtr
- 2Qtr
- 3Qtr
- 4Qtr
- sum
Cuboids Corresponding to the Cube

- Product
- Date
- Country
- Product, Date
- Product, Country
- Date, Country
- Product, Date, Country

- 0-D (apex) cuboid
- 1-D cuboids
- 2-D cuboids
- 3-D (base) cuboid
--- Browsing a Data Cube

- Visualization
- OLAP capabilities
- Interactive manipulation
-- Typical OLAP Operations

- **Roll up (drill-up):** summarize data
 - *by climbing up hierarchy or by dimension reduction*

- **Drill down (roll down):** reverse of roll-up
 - *from higher level summary to lower level summary or detailed data, or introducing new dimensions*

- **Slice and dice:** *project and select*

- **Pivot (rotate):**
 - *reorient the cube, visualization, 3D to series of 2D planes*
DW and OLAP Technology: An Overview

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
Data Warehouse: A Multi-Tiered Architecture

- **Data Sources**
 - Other sources
 - Operational DBs

- **Data Storage**
 - Extract
 - Transform
 - Load
 - Refresh
 - Monitor & Integrator

- **OLAP Engine**
 - OLAP Server
 - Serve
 - Analysis
 - Query
 - Reports
 - Data mining
 - Data Marts

- **Front-End Tools**
 - Metadata
 - Serve
 - Monitor
 - Integrate

Data Warehouse

- **Data Sources**
- **Data Storage**
- **OLAP Engine**
- **Front-End Tools**
-- DW Design Process

- Top-down, bottom-up approaches or a combination of both
 - Top-down: Starts with overall design and planning (mature)
 - Bottom-up: Starts with experiments and prototypes (rapid)

- Typical data warehouse design process
 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the grain (atomic level of data) of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record
-- Three DW Models

- **Enterprise warehouse**
 - collects all of the information about subjects spanning the entire organization

- **Data Mart**
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

- **Virtual warehouse**
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized
Define a high-level corporate data model

Distributed Data Marts

Data Mart

Data Mart

Model refinement

Model refinement

Multi-Tier Data Warehouse

Enterprise Data Warehouse
-- Data Warehouse Back-End Tools and Utilities

- Data extraction
 - get data from multiple, heterogeneous, and external sources

- Data cleaning
 - detect errors in the data and rectify them when possible

- Data transformation
 - convert data from legacy or host format to warehouse format

- Load
 - sort, summarize, consolidate, compute views, check integrity, and build indices and partitions

- Refresh
 - propagate the updates from the data sources to the warehouse
Metadata Repository …

- Meta data is the data defining warehouse objects. It stores:
 - Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data definition, data mart locations and contents
 - Operational meta-data
 - data lineage (history of migrated data and transformation path),
 - currency of data (active, archived, or purged),
 - monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - Measure and dimension definition algorithms
 - Data granularity, partitions, subject areas, aggregation, summarization, and predefined queries and reports
… -- Metadata Repository

- The mapping from operational environment to the data warehouse
 - Source databases and their contents,
 - Gateway descriptions, data partitions, data extraction, cleaning, transformation rules, and defaults, data refresh and purge rules
 - security

- Data related to system performance
 - Indices, profiles
 - Timing and scheduling of refresh

- Business data
 - business terms and definitions,
 - ownership of data
 - charging policies
-- OLAP Server Architectures

- **Relational OLAP (ROLAP)**
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - Greater scalability

- **Multidimensional OLAP (MOLAP)**
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data

- **Hybrid OLAP (HOLAP)** (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
Data Warehousing and OLAP Technology: An Overview

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
-- Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids

 - In an n-dimensional cube there are:

 \[T = \prod_{i=1}^{n} (L_i + 1) \]

 Cuboids where Li is the levels in dimension i

 - So the questions is how many cuboids can be materialized

 - Materialize every (cuboid) (full materialization)
 - some (partial materialization) or
 - none (no materialization)
-- Cube Operation

- Cube definition and computation in DMQL

  ```sql
  define cube sales[item, city, year]:
  sum(sales_in_dollars)
  compute cube sales
  ```

- Transform it into a SQL-like language (with a new operator `cube by`)

  ```sql
  SELECT item, city, year, SUM(amount)
  FROM SALES
  CUBE BY item, city, year
  ```

- Need compute the following Group-Bys

  ```sql
  (date, product, customer),
  (date, product), (date, customer),
  (product, customer), (date), (product),
  (customer)()
  ```
-- Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
<th>RecID</th>
<th>Asia</th>
<th>Europe</th>
<th>America</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RecID</th>
<th>Retail</th>
<th>Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Join index: \(JI(R\text{-id}, S\text{-id}) \) where \(R \ (R\text{-id}, \ldots) \bowtie S \ (S\text{-id}, \ldots) \)

Traditional indices map the values to a list of record ids
- It materializes relational join in \(JI \) file and speeds up relational join

In data warehouses, join index relates the values of the dimensions of a start schema to rows in the fact table.
- E.g. fact table: \(Sales \) and two dimensions \(city \) and \(product \)
 - A join index on \(city \) maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
- Join indices can span multiple dimensions
--- Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection

- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on \{brand, province_or_state\} with the condition “year = 2004”, and there are 4 materialized cuboids available:
 1) \{year, item_name, city\}
 2) \{year, brand, country\}
 3) \{year, brand, province_or_state\}
 4) \{item_name, province_or_state\} where year = 2004

 Which should be selected to process the query?

- Explore indexing structures and compressed vs. dense array structs in MOLAP
End