
March 24, 2008 ADBS: XML 1

XML and Internet Databases

Chapter 26

March 24, 2008 ADBS: XML 2

Lecture Outline

Introduction
The anatomy of XML document
Components of XML document
XML validation
Rules for well-formed XML document
XML DTD
More XML components
References
Reading list

March 24, 2008 ADBS: XML 3

- Introduction

What is XML

How can XML be used

What does XML look like

XML and HTML

XML is free and extensible

March 24, 2008 ADBS: XML 4

-- What is XML

XML stands for Extensible Markup Language.

XML developed by the World Wide Web Consortium (www.W3C.org)

Created in 1996. The first specification was published in 1998 by the W3C

It is specifically designed for delivering information over the internet.

XML like HTML is a markup language, but unlike HTML it doesn’t have predefined
elements.

You create your own elements and you assign them any name you like, hence the
term extensible.

HTML describes the presentation of the content, XML describes the content.

You can use XML to describe virtually any type of document: Koran, works of
Shakespeare, and others.

Go to http://www.ibiblio.org/boask to download

March 24, 2008 ADBS: XML 5

-- How can XML be Used?

XML is used to Exchange Data

With XML, data can be exchanged between incompatible systems

With XML, financial information can be exchanged over the
Internet

XML can be used to Share Data

XML can be used to Store Data

XML can make your Data more Useful

XML can be used to Create new Languages

March 24, 2008 ADBS: XML 6

-- What does XML look like

<Books>

<Book>
<Title> Java </Title>
<Author> Mustafa </Author>
<Year> 1995 </year>

</Book>
…
…
…
<Book>

<Title> Oracle </Title>
<Author> Emad </Author>
<Year> 1973 </Year>

</Book>
….
….

</ Books>

Title Author year

Mustafa 1995

1980

1975

1973

Ahmed

Ali

Emad

….

Java

Pascal

Basic

Oracle

….

Books

Relation

XML document

March 24, 2008 ADBS: XML 7

-- XML and HTML …

XML is not a replacement for HTML

XML was designed to carry data

XML and HTML were designed with different goals

XML was designed to describe data and to focus on what data is

HTML was designed to display data and to focus on how data
looks.

HTML is about displaying information, while XML is about
describing information

March 24, 2008 ADBS: XML 8

… -- XML and HTML

HTML is for humans

HTML describes web pages

You don’t want to see error messages about the web pages you visit

Browsers ignore and/or correct as many HTML errors as they can, so
HTML is often sloppy

XML is for computers

XML describes data

The rules are strict and errors are not allowed

In this way, XML is like a programming language

Current versions of most browsers can display XML

March 24, 2008 ADBS: XML 9

-- XML is free and extensible

XML tags are not predefined

You must "invent" your own tags

The tags used to mark up HTML documents and the structure
of HTML documents are predefined

The author of HTML documents can only use tags that are
defined in the HTML standard

XML allows the author to define his own tags and his
own document structure, hence the term extensible.

March 24, 2008 ADBS: XML 10

-The Anatomy of XML Document

<?xml version:”1.0”?>

<?xml-stylesheet type="text/xsl" href=“template.xsl"?>

<!-- File name: Bibliography.xml -->

<Bibliography>
<Book ISBN=“1-111-122”>

<Title> Java </Title>
<Author> Mustafa </Author>
<Year> 1995 </Year>

</Book>
.
.

<Book>
<Title> Oracle </Title>
<Author> Emad </Author>
<Year> 1973 </Year>

</Book>
</Bibliography>

Comments

Root or document
element

Elements nested
Within root element

Attribute

Processing
instruction

XML
Declaration

March 24, 2008 ADBS: XML 11

- Components of an XML Document

Elements
Each element has a beginning and ending tag
<TAG_NAME>...</TAG_NAME>
Elements can be empty (<TAG_NAME />)

Attributes
Describes an element; e.g. data type, data range, etc.
Can only appear on beginning tag

Example: <Book ISBN = “1-111-123”>

Processing instructions
Encoding specification (Unicode by default)
Namespace declaration
Schema declaration

March 24, 2008 ADBS: XML 12

-- XML declaration

The XML declaration looks like this:
<?xml version="1.0" encoding="UTF-8“ standalone="yes"?>

The XML declaration is not required by browsers, but is required by most XML
processors (so include it!)

If present, the XML declaration must be first--not even white space should
precede it

Note that the brackets are <? and ?>

version="1.0" is required (I am not sure it is the only version so far)

encoding can be "UTF-8" (ASCII) or "UTF-16" (Unicode), or something else, or
it can be omitted

standalone tells whether there is a separate DTD

March 24, 2008 ADBS: XML 13

-- Processing Instructions

PIs (Processing Instructions) may occur anywhere in the XML document
(but usually in the beginning)

A PI is a command to the program processing the XML document to
handle it in a certain way

XML documents are typically processed by more than one program

Programs that do not recognize a given PI should just ignore it

General format of a PI: <?target instructions?>

Example: <?xml-stylesheet type="text/css“ href="mySheet.css"?>

March 24, 2008 ADBS: XML 14

-- XML Elements

An XML element is everything from the element's start
tag to the element's end tag

XML Elements are extensible and they have
relationships

XML Elements have simple naming rules

Names can contain letters, numbers, and other characters

Names must not start with a number or punctuation character

Names must not start with the letters xml (or XML or Xml ..)

Names cannot contain spaces

March 24, 2008 ADBS: XML 15

-- XML Attributes

XML elements can have attributes

Data can be stored in child elements or in attributes

Should you avoid using attributes?

Here are some of the problems using attributes:

attributes cannot contain multiple values (child elements can)

attributes are not easily expandable (for future changes)

attributes cannot describe structures (child elements can)

attributes are more difficult to manipulate by program code

attribute values are not easy to test against a Document Type Definition
(DTD) - which is used to define the legal elements of an XML document

March 24, 2008 ADBS: XML 16

-- Distinction between subelement and attribute

In the context of documents, attributes are part of markup, while
subelement contents are part of the basic document contents

In the context of data representation, the difference is unclear and may
be confusing

Same information can be represented in two ways

<Book … Publisher = “McGraw Hill”> … <??Book>

<Book>
…
<Publisher> McGraw Hill </Publisher>
…

</Book>

Suggestion: use attributes for identifiers of elements, and use
subelements for contents

March 24, 2008 ADBS: XML 17

- XML Validation

Well-Formed XML document:

Is an XML document with the correct basic syntax

Valid XML document:

Must be well formed plus

Conforms to a predefined DTD or XML Schema.

March 24, 2008 ADBS: XML 18

- Rules For Well-Formed XML

Must begin with the XML declaration

Must have one unique root element

All start tags must match end-tags

XML tags are case sensitive

All elements must be closed

All elements must be properly nested

All attribute values must be quoted

XML entities must be used for special characters

March 24, 2008 ADBS: XML 19

- XML DTD

A DTD defines the legal elements of an XML document

defines the document structure with a list of legal elements
and attributes

XML Schema

XML Schema is an XML based alternative to DTD

Errors in XML documents will stop the XML program

XML Validators

March 24, 2008 ADBS: XML 20

-- CDATA

By default, all text inside an XML document is parsed

You can force text to be treated as unparsed character data by
enclosing it in <![CDATA[...]]>

Any characters, even & and <, can occur inside a CDATA

White space inside a CDATA is (usually) preserved

The only real restriction is that the character sequence]]> cannot
occur inside a CDATA

CDATA is useful when your text has a lot of illegal characters (for
example, if your XML document contains some HTML text)

March 24, 2008 ADBS: XML 21

-- XML and DTDs

A DTD (Document Type Definition) describes the structure of one
or more XML documents.

Specifically, a DTD describes:

Elements
Attributes, and
Entities

An XML document is well-structured if it follows certain simple
syntactic rules

An XML document is valid if it also specifies and conforms to a
DTD

March 24, 2008 ADBS: XML 22

-- Why DTDs?

With DTD, each of your XML files can carry a description of its own
format with it.

With a DTD, independent groups of people can agree to use a
common DTD for interchanging data.

Your application can use a standard DTD to verify that the data
you receive from the outside world is valid.

You can also use a DTD to verify your own data.

March 24, 2008 ADBS: XML 23

-- Parsers

An XML parser is an API that reads the content of an XML
document

Currently popular APIs are DOM (Document Object Model) and
SAX (Simple API for XML)

A validating parser is an XML parser that compares the XML
document to a DTD and reports any errors

March 24, 2008 ADBS: XML 24

-- An XML example

<novel>
<foreword>

<paragraph> This is a great novel </paragraph>
</foreword>
<chapter number="1">

<paragraph>It was a dark and stormy night.</paragraph>
<paragraph>Suddenly, a shot rang out!</paragraph>

</chapter>
</novel>

An XML document contains (and the DTD describes):

Elements, such as novel and paragraph, consisting of tags and content

Attributes, such as number="1", consisting of a name and a value

Entities (not used in this example)

March 24, 2008 ADBS: XML 25

-- A DTD example

<!DOCTYPE novel [
<!ELEMENT novel (foreword, chapter+)>
<!ELEMENT foreword (paragraph+)>
<!ELEMENT chapter (paragraph+)>
<!ELEMENT paragraph (#PCDATA)>
<!ATTRIBUTE chapter number CDATA #REQUIRED>

]>

A novel consists of a foreword and one or more chapters, in that order

Each chapter must have a number attribute

A foreword consists of one or more paragraphs

A chapter also consists of one or more paragraphs

A paragraph consists of parsed character data (text that cannot contain
any other elements)

March 24, 2008 ADBS: XML 26

- ELEMENT descriptions

Suffixes:

? optional foreword?

+ one or more chapter+

* zero or more appendix*

Separators:

, both, in order foreword?, chapter+

| or section|chapter

Grouping:

() grouping (section|chapter)+

March 24, 2008 ADBS: XML 27

-- Another example: XML

<?xml version="1.0"?>

<!DOCTYPE myXmlDoc SYSTEM "http://www.mysite.com/mydoc.dtd">
<weatherReport>

<date>05/29/2002</date>
<location>

<city>Philadelphia</city>
<state>PA</state>
<country>USA</country>

</location>
<temperature-range>

<high scale="F">84</high>
<low scale="F">51</low>

</temperature-range>
</weatherReport>

March 24, 2008 ADBS: XML 28

-- The DTD for this example

<!ELEMENT weatherReport (date, location, temperature-range)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT location (city, state, country)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT temperature-range ((low, high)|(high, low))>
<!ELEMENT low (#PCDATA)>
<!ELEMENT high (#PCDATA)>
<!ATTLIST low scale (C|F) #REQUIRED>
<!ATTLIST high scale (C|F) #REQUIRED>

March 24, 2008 ADBS: XML 29

-- XML Schema …

The purpose of an XML Schema is to define the legal building
blocks of an XML document, just like a DTD.

An XML Schema:

defines elements that can appear in a document

defines attributes that can appear in a document

defines which elements are child elements

defines the order of child elements

defines the number of child elements

defines whether an element is empty or can include text

defines data types for elements and attributes

defines default and fixed values for elements and attributes

March 24, 2008 ADBS: XML 30

… -- XML Schema …

Many think that very soon XML Schemas will be used in most Web
applications as a replacement for DTDs. Here are some reasons:

XML Schemas are extensible to future additions

XML Schemas are richer and more useful than DTDs

XML Schemas are written in XML

XML Schemas support data types

XML Schemas support namespaces

March 24, 2008 ADBS: XML 31

… -- XML Schema …

Look at this simple XML document called "note.xml":

<?xml version="1.0"?>
<note>

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body> Don't forget me this weekend!</body>

</note>

This is a simple DTD file called "note.dtd" that defines the
elements of the XML document above ("note.xml"):

<!ELEMENT note (to, from, heading, body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

March 24, 2008 ADBS: XML 32

-- Simple XML schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com" elementFormDefault="qualified">
<xs:element name="note">

<xs:complexType>
<xs:sequence>

<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

March 24, 2008 ADBS: XML 33

… -- XML schema

The <schema> is the root element of every XML schema
<?xml version="1.0"?>
<xs:schema>

...

...
</xs:schema>

The <schema> element may contain some attributes. A schema
declaration often looks something like this:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"
elementFormDefault="qualified">
<xs:schema> </xs:schema>

March 24, 2008 ADBS: XML 34

-- Xpath

XPath is a syntax used for selecting parts of an XML
document

The way XPath describes paths to elements is similar to
the way an operating system describes paths to files

XPath is almost a small programming language; it has
functions, tests, and expressions

XPath is a W3C standard

March 24, 2008 ADBS: XML 35

--- Terminology

<library>
<book>

<chapter>
</chapter>

<chapter>
<section>

<paragraph/>
<paragraph/>

</section>
</chapter>

</book>
</library>

library is the parent of book; book is
the parent of the two chapters

The two chapters are the children of
book, and the section is the child of
the second chapter

The two chapters of the book are
siblings (they have the same parent)

library, book, and the second chapter
are the ancestors of the section

The two chapters, the section, and
the two paragraphs are the
descendents of the book

March 24, 2008 ADBS: XML 36

--- Paths

Xpath

/library = the root element (if
named library)

/library/book/chapter/section =
every section element in a chapter
in every book in the library

section = every section element
that is a child of the current
element

. = the current element

.. = parent of the current element

/library/book/chapter/* = all the
elements in /library/book/chapter

Operating System

/ = the root directory

/users/dave/foo = the file named
foo in dave in users

foo = the file named foo in the
current directory

. = the current directory

.. = the parent directory

/users/dave/* = all the files in
/users/dave

March 24, 2008 ADBS: XML 37

--- Slashes

A path that begins with a / represents an absolute path, starting
from the top of the document

Example: /email/message/header/from

Note that even an absolute path can select more than one element

A slash by itself means “the whole document”

A path that does not begin with a / represents a path starting from
the current element

Example: header/from

A path that begins with // can start from anywhere in the
document

Example: //header/from selects every element from that is a child of
an element header

This can be expensive, since it involves searching the entire document

March 24, 2008 ADBS: XML 38

--- Brackets and last()

A number in brackets selects a particular matching child

Example: /library/book[1] selects the first book of the library

Example: //chapter/section[2] selects the second section of every
chapter in the XML document

Example: //book/chapter[1]/section[2]

Only matching elements are counted; for example, if a book has both
sections and exercises, the latter are ignored when counting sections

The function last() in brackets selects the last matching child

Example: /library/book/chapter[last()]

You can even do simple arithmetic

Example: /library/book/chapter[last()-1]

March 24, 2008 ADBS: XML 39

--- Stars

A star, or asterisk, is a “wild card”--it means “all the
elements at this level”

Example: /library/book/chapter/* selects every child of every
chapter of every book in the library

Example: //book/* selects every child of every book (chapters,
tableOfContents, index, etc.)

Example: /*/*/*/paragraph selects every paragraph that has
exactly three ancestors

Example: //* selects every element in the entire document

March 24, 2008 ADBS: XML 40

-- XQuery

XQuery is the language for querying XML data

XQuery for XML is like SQL for databases

XQuery is built on XPath expressions

XQuery is defined by the W3C

XQuery is supported by all the major database engines (IBM,
Oracle, Microsoft, etc.)

XQuery will become a W3C standard - and developers can be sure
that the code will work among different products

XQuery 1.0 and XPath 2.0 share the same data model and support
the same functions and operators.

March 24, 2008 ADBS: XML 41

--- XQuery Basic Syntax Rules

XQuery is case-sensitive

XQuery elements, attributes, and variables must be valid XML
names

An XQuery string value can be in single or double quotes

An XQuery variable is defined with a $ followed by a name, e.g.
$bookstore

XQuery comments are delimited by (: and :), e.g. (: XQuery
Comment :)

March 24, 2008 ADBS: XML 42

--- XQuery Example

Example:

The following predicate is used to select all the book elements
under the bookstore element that have a price element with a
value that is less than 30:

doc("books.xml")/bookstore/book[price<30]

Output

<book category="CHILDREN">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

March 24, 2008 ADBS: XML 43

--- XQuery FLWOR Expressions

The syntax of Flower expression looks like the combination of SQL
and path expression

The following path expression will select all the title elements
under the book elements that is under the bookstore element that
have a price element with a value that is higher than 30.

doc("books.xml")/bookstore/book[price>30]/title

The following FLWOR expression will select exactly the same as
the path expression above

for $x in doc("books.xml")/bookstore/book
where $x/price>30
return $x/title

Output

<title lang="en">XQuery Kick Start</title>
<title lang="en">Learning XML</title>

March 24, 2008 ADBS: XML 44

--- FLWOR briefly explained

for $x in doc("books.xml")/bookstore/book
where $x/price>30
order by $x/title
return $x/title

FLWOR is an acronym for "For, Let, Where, Order by, Return".

The for clause selects all book elements under the bookstore
element into a variable called $x.

The where clause selects only book elements with a price element
with a value greater than 30.

The order by sorts the results according to the specified element

The return clause specifies what should be returned. Here it returns
the title elements

March 24, 2008 ADBS: XML 45

- References

W3 Schools XML Tutorial

http://www.w3schools.com/xml/default.asp

W3C XML page

http://www.w3.org/XML/

XML Tutorials

http://www.programmingtutorials.com/xml.aspx

Online resource for markup language technologies

http://xml.coverpages.org/

Several Online Presentations

March 24, 2008 ADBS: XML 46

- Reading List

W3 Schools XML Tutorial

http://www.w3schools.com/xml/default.asp

March 24, 2008 ADBS: XML 47

END

