Object Database Standards, Languages,

!'_ and Design

Chapter 21

March 24, 2008 ADBS: OODB 1

Announcement

= HW 3:
= 10%
= Due 2" of June.

= Quiz 3
= 3%
= On Saturday May 11
= Chapter 21

March 24, 2008 ADBS: OODB

Chapter Objectives

= Discuss the importance of standards (e.g., portability, interoperability)

= Introduce Object Data Management Group (ODMG):

= Present Object Database Conceptual Design

March 24, 2008 ADBS: OODB

+ Chapter Outline

= Advantages of Standards

= Overview of the Object Model ODMG
= The Object Definition Language DDL
= The Object Query Language OQL

= Object Database Conceptual Model

March 24, 2008 ADBS: OODB

- The Object Model of ODMG ...

= One of the main reasons for the success of RDBMS is
the SQL standard.

= Standards are essential for:
= Portability (ability to be executed in different systems) and
= Interoperability (ability to access multiple systems)

= As a result a consortium of ODBMS vendors formed a
standard known as ODMG (Object Data Management
Group)

March 24, 2008 ADBS: OODB

The Object Model of ODMG

= The ODMG standard is made up of several parts
= Object module

= Object definition Language (ODL)

Object Query Language (OQL)

Bindings to O-O programming languages (OOPLS)

March 24, 2008 ADBS: OODB

ODMG Object Model

= ODMG object model:
= Is the data model upon which the ODL and the OQL are based

= Provides the data types, type constructors, and other concepts
that can be utilized in the ODL to specify object database

schemas

= Provide a standard terminology

March 24, 2008 ADBS: OODB

ODMG Basic Building Blocks

= The basic building blocks of the object model are
= Objects
= Literlas

o An object has four characteristics
1. ldentifier: unique system-wide identifier

2. Name: unique within a particular database and/or program;
It is optional

3. Lifetime: persistent vs transient

4. Structure: specifies how object is constructed by the type
constructor and whether it is a collection or an atomic object

March 24, 2008 ADBS: OODB

ODMG Literals

7 A literal has a current value but not an identifier

o Three types of literals

1. Atomic literal: predefined; basic data type values (e.g.,
short, float, boolean, char)

2. structured: values that are constructed by tuple constructors.
(e.g., Date, Time, Interval, Timestamp, etc)

3. collection: a collection (e.qg., set, list, array, bag, dictionary)
of values or objects

March 24, 2008 ADBS: OODB

ODMG Interface and Class Definition

o ODMG supports two concepts for specifying object types:
o Interface

o Class

e There are similarities and differences between interfaces and
classes

= Both have behaviors (operations) and state (attributes and
relationships)

March 24, 2008 ADBS: OODB 10

ODMG Interface

= An interface is a specification of the abstract behavior of an
object type

= State properties of an interface (i.e., its attributes and
relationships) cannot be inherited from

= Objects cannot be instantiated from an interface

= There are many built-in object interfaces (e.g., Object, Date,
Time, Collection, Array, List);

March 24, 2008 ADBS: OODB

11

* ODMG Interface Definition

= Example

interface Object {

boolean same_as(in object other_object):
Object copy():
Void delete();

= Note: Iinterface is ODMG’s keyword for class/type

March 24, 2008 ADBS: OODB

12

* Built-in Interfaces for Date Objects

= Example

interface Date:Object {
enum weekday{sun,mon,tue wed, thu,fri,sat};
enum Month{jan,feb mar,... dec}.
unsigned short year();
unsigned short month();
unsigned short day():

boolean is_equal(in Date other_date);

March 24, 2008 ADBS: OODB

13

Built-in Interfaces for Collection Objects

= A collection object inherits the basic col lection interface,
for example:

= cardinality()

= is_empty()

= insert_element()
= remove_element()
= contains_element()

= create_iterator()

March 24, 2008 ADBS: OODB

Collection Types

= Collection objects are further specialized into types like a set, list,
bag, array, and dictionary

= Each collection type may provide additional interfaces, for
example, a set provides:

= create_union()

= create_difference()
= is_subst_of()

= is_superset_of()

= is_proper_subset_of()

March 24, 2008 ADBS: OODB

Object Inheritance Hierarchy

NS il Rilicss=ees o SR

teramr

object

o | kection

tirmne

date

intereal

Sat

|t

bag

artay

dictiorary

March 24, 2008

Built-in interfaces of the object module

ADBS: OODB

16

ODMG Class

= A class is a specification of abstract behavior and state of an
object type

s A class is Instantiable

= Supports “extends” inheritance to allow both state and behavior
inheritance among classes. Unlike interface in which only
behavior is inherited.

= Multiple inheritance via “extends” is not allowed

March 24, 2008 ADBS: OODB

17

Atomic Objects

= Atomic objects are user-defined objects and are defined via
keyword class

= An example:

class Employee (extent all_emplyees key ssn) {
attribute string name;
attribute string ssn;
attribute short age:
relationship Dept works_for;
void reassign(in string new_name);

March 24, 2008 ADBS: OODB

18

Class Extents

= An ODMG object can have an extent defined via a class
declaration

= Each extent is given a name and will contain all persistent
objects of that class

= For Employee class, for example, the extent is called
all_employees

= This is similar to creating an object of type Set<Employee> and
making it persistent

March 24, 2008 ADBS: OODB 19

Class Key

March 24, 2008

A class key consists of one or more unique attributes

For the Employee class, the key is ssn. Thus each employee
IS expected to have a unigue ssn

Keys can be composite, e.g.,
(key dnumber, dname)

ADBS: OODB

20

Object Factory

= An object factory is used to generate individual objects via its
operations

= An example:

interface ObjectFactory
Object new ():

3

= new() returns new objects with an object_id

= One can create their own factory interface by inheriting the above
Interface

March 24, 2008 ADBS: OODB

21

Object Definition Language (ODL)

= ODL supports semantics constructs of ODMG
= ODL is independent of any programming language

= ODL is used to create object specification (classes and
Interfaces)

= ODL is not used for database manipulation, OQL is.

March 24, 2008 ADBS: OODB

22

Graphical notation for representing ODL schemas

. [Interface
object
<

specification
| Class Student
relationships ‘ 11
= —s 1:N
D — M:N
inheritance Interface(is-a) Class
Inheritance Inheritance
using “:” using extends

March 24, 2008 ADBS: OODB 23

A graphical ODB schema for UNIVERSITY database

Has faculty

Has_majors : offers
Person » Department ¢
Offered_by|
y Major_in Course
- A
g Completed_sections Has_sections
Facult Student [«—
4
T y_ Registered_in students |
! eavises \ Section <+
advisor Of course
»— Gradstudent
In_committee_of committee
»— CurrSection

registered_students

March 24, 2008 ADBS: OODB

ODL Examples (1): A Very Simple Class

class Degree {
attribute string college;
attribute string degree;
attribute string year;

};

(all examples are based on the university schema presented in Chapter 4 and
graphically shown on page 680):

March 24, 2008 ADBS: OODB

25

ODL Examples (2): A Class With Key and Extent

= A class definition with “extent”, “key”, and more elaborate
attributes; still relatively straightforward

class Person (extent persons key ssn) {
attribute struct Pname {string fname ..} name;
attribute string ssn;
attribute date birthdate;

short age():

March 24, 2008 ADBS: OODB

26

ODL Examples (3): A Class With Relationships

Note extends (inheritance) relationship

Also note “inverse” relationship

Class Faculty extends Person (extent faculty) {
attribute string rank;
attribute float salary:
attribute string phone;

relationship Dept works_in inverse Dept::has_faculty:
relationship set<GradStu> advises inverse GradStu::advisor;
void give_raise (in float raise);

void promote (in string new_rank);

March 24, 2008 ADBS: OODB

27

Graphical schema for geometric objects

GeometryODbject

ezl

- 7
Triangle Triangle Circle

interface GeometryObject

{

attribute enum Shape{Rectangle, Triangle, Circle,...}shape;

{ attribute struct Point {short x, short y} reference_point;

float perimeter();

float area();
void translate(in short x_translation; in short y_translation);
void rotate(in float angle_of_rotation):

¥

only operations are inherited, not properties as a result noninstantiable

March 24, 2008 ADBS: OODB 28

Inheritance via “:” — An Example

interface GeometryObject {
attribute struct point {..} reference_point;
float perimeter ();

}:.

class Triangle@GeometryObjec‘r (extent triangles) {

attribute short side_1;
attribute short side_2;

March 24, 2008 ADBS: OODB

29

Object Query Language

= OQL is DMG’s query language
= OQL works closely with programming languages such as C++

= Embedded OQL statements return objects that are compatible
with the type system of the host language

= OQL'’s syntax is similar to SQL with additional features for
objects

March 24, 2008 ADBS: OODB

30

Object Query Language (OQL)

_ How to refer to a persistent object?
= basic OQL syntax Entry point (named persistent object; or
= select ... from ... where ... name of the extent of a class)

= Retrieve the names of all departments in the college of
‘Engineering’

extent name
QO0: SELECT d.dname /

FROM din departments
WHERE/d.coIIege = ‘Engim;\ d in departments

departments d

iterator variable
departments as d

March 24, 2008 ADBS: OODB 31

Data Type of Query Results

= The data type of a query result can be any type defined in
the ODMG model

= A query does not have to follow the select..from..where..
format

= A persistent name on its own can serve as a query whose
result is a reference to the persistent object

= Example

departments; whose output is set<Departments>

March 24, 2008 ADBS: OODB 32

Path Expressions

= A path expressionis used to specify a path to attributes and
objects in an entry point

= A path expression starts at a persistent object name (or its
iterator variable)

= The name will be followed by zero or more dot connected
relationship or attribute names, e.g.,

departments.chair;

March 24, 2008 ADBS: OODB

33

Views as Named Objects

= The define keyword in OQL is used to specify an identifier
for a named query

= The name should be unique; if not, the results will replace
an existing named query

= Once a query definition is created, it will persist until deleted
or redefined

= A view definition can include parameters

March 24, 2008 ADBS: OODB

34

An Example of OQL View

= A view to include students in a department who have a
minor:

define has_minor(dept_name) as
select s

from s in students

where s.minor_in.dname=dept_name

= has_minor can now be used in queries

March 24, 2008 ADBS: OODB

35

Single Elements from Collections

= An OQL query returns a collection

= OQL’s element operator can be used to return a single

element from a singleton collection that contains one
element:

element (select d
from d in departments
where d.dname = 'Software Engineering’);

= If dis empty or has more than one elements, an exception
IS raised

March 24, 2008 ADBS: OODB

36

Collection Operators

= OQL supports a number of aggregate operators that can be
applied to query results

= The aggregate operators include min, max, count, sum,
and avg and operate over a collection

= count returns an integer; others return the same type as
the collection type

March 24, 2008 ADBS: OODB

37

An Example of an OQL: Aggregate Operator

= To compute the average GPA of all seniors majoring in
Business:

avg (select s.gpa
from s in students
where s.class = 'senior”
and s.majors_in.dname ='Business’);

March 24, 2008 ADBS: OODB

38

Membership and Quantification

= OQL provides membership and quantification operators:

= (e 1In c) istrue if e is in the collection ¢

= (for all e In c: D) istrue if all e elements of
collection c satisfy b

= (exists e in c: b)is true if at least one e in
collection c¢ satisfies b

March 24, 2008 ADBS: OODB

39

An Example of Membership

= To retrieve the names of all students who completed 1CS102:

select s.name.fname s.name.lname
from s in students
where 'ICS102' in
(select c.name
from c in s.completed_sections.section.of_course);

March 24, 2008 ADBS: OODB

40

Ordered Collections

= Collections that are lists or arrays allow retrieving their
first, last, and 1th elements

= OQL provides additional operators for extracting a sub-
collection and concatenating two lists

= OQL also provides operators for ordering the results

March 24, 2008 ADBS: OODB

41

An Example of Ordered Operation

= To retrieve the last name of the faculty member who earns
the highest salary:

first (select struct

(faculty: f.name.lastname,salary f.salary)
from f in faculty

ordered by f.salary desc):

March 24, 2008 ADBS: OODB

42

Grouping Operator

= OQL also supports a grouping operator called group by

= To retrieve average GPA of majors in each department
having >100 majors:

select deptname, avg_gpa:

avg (select p.s.gpa from p in partition)
from s in students

group by deptname: s.majors_in.dname
having count (partition) > 100

March 24, 2008 ADBS: OODB

Object Database Conceptual Design

= Object Database (ODB) vs Relational Database (RDB)
= Relationships are handled differently
= Inheritance is handled differently

= Operations in OBD are expressed early on since they are a part
of the class specificaiton

March 24, 2008 ADBS: OODB

44

Relationships: ODB vs RDB (1)

= Relationships in ODB:

= relationships are handled by reference attributes that include
OIDs of related objects

= Single and collection of references are allowed

= references for binary relationships can be expressed in single
direction or both directions via 1nverse operator

March 24, 2008 ADBS: OODB

45

Relationships: ODB vs RDB (2)

= Relationships in RDB:

= Relationships among tuples are specified by attributes with
matching values (via foreign keys)

= Foreign keys are single-valued

= M:Nrelationships must be presented via a separate relation
(table)

March 24, 2008 ADBS: OODB

46

Inheritance Relationship in ODB vs RDB

= Inheritance structures are built in ODB (and achieved via “:”
and extends operators)

= RDB has no built-in support for inheritance relationships;
there are several options for mapping inheritance
relationships in an RDB (see Chapter 7)

March 24, 2008 ADBS: OODB

47

Early Specification of Operations

= Another major difference between ODB and RDB is the
specification of operations

= ODB: operations specified during design (as part of class
specification)

= RDB: may be delayed until implementation

March 24, 2008 ADBS: OODB

48

Mapping EER Schemas to ODB Schemas

= Mapping EER schemas into ODB schemas is relatively simple
especially since ODB schemas provide support for
Inheritance relationships

= Once mapping has been completed, operations must be
added to ODB schemas since EER schemas do not include an

specification of operations

March 24, 2008 ADBS: OODB 49

Mapping EER to ODB Schemas

= Step 1:

= Create an ODL class for each EER entity type or subclass

= Multi-valued attributes are declared by sets, bags or lists
constructors

= Composite attributes are mapped into tuple constructors

March 24, 2008 ADBS: OODB

50

Mapping EER to ODB Schemas

= Step 2:

= Add relationship properties or reference attributes for each
binary relationship into the ODL classes participating in the
relationship

= Relationship cardinality: single-valued for 1:1 and N:1
directions; set-valued for 1:N and M:N directions

= Relationship attributes: create via tuple constructors

March 24, 2008 ADBS: OODB

51

Mapping EER to ODB Schemas

= Step 3:

= Add appropriate operations for each class

= Operations are not available from the EER schemas;
original requirements must be reviewed

=« Corresponding constructor and destructor operations must
also be added

March 24, 2008 ADBS: OODB

52

Mapping EER to ODB Schemas

= Step 4:

= Specify inheritance relationships via extends clause

= An ODL class that corresponds to a sub-class in the EER
schema inherits the types and methods of its super-class
In the ODL schemas

« Other attributes of a sub-class are added by following
Steps 1-3

March 24, 2008 ADBS: OODB

53

Mapping EER to ODB Schemas

= Step 5:

= Map weak entity types in the same way as regular entities

« Weak entities that do not participate in any relationships
may alternatively be presented as composite multi-valued
attribute of the owner entity type

March 24, 2008 ADBS: OODB

54

Mapping EER to ODB Schemas

= Step 6:

= Map categories (union types) to ODL
= The process is not straightforward

« May follow the same mapping used for EER-to-relational
mapping:

Declare a class to represent the category

Define 1:1 relationships between the category and each
of its super-classes

March 24, 2008 ADBS: OODB

55

Mapping EER to ODB Schemas

= Step 7:

= Map n-ary relationships whose degree is greater than 2

« Each relationship is mapped into a separate class with
appropriate reference to each participating class

March 24, 2008 ADBS: OODB

56

March 24, 2008

END

ADBS: OODB

S7

