
March 24, 2008 ADBS: OODB 1

Object Database Standards, Languages,
and Design

Chapter 21

March 24, 2008 ADBS: OODB 2

Announcement

HW 3:
10%
Due 2nd of June.

Quiz 3
3%
On Saturday May 11
Chapter 21

March 24, 2008 ADBS: OODB 3

Chapter Objectives

Discuss the importance of standards (e.g., portability, interoperability)

Introduce Object Data Management Group (ODMG):

Present Object Database Conceptual Design

March 24, 2008 ADBS: OODB 4

Chapter Outline

Advantages of Standards

Overview of the Object Model ODMG

The Object Definition Language DDL

The Object Query Language OQL

Object Database Conceptual Model

March 24, 2008 ADBS: OODB 5

- The Object Model of ODMG …

One of the main reasons for the success of RDBMS is
the SQL standard.

Standards are essential for:
Portability (ability to be executed in different systems) and
Interoperability (ability to access multiple systems)

As a result a consortium of ODBMS vendors formed a
standard known as ODMG (Object Data Management
Group)

March 24, 2008 ADBS: OODB 6

… The Object Model of ODMG

The ODMG standard is made up of several parts

Object module

Object definition Language (ODL)

Object Query Language (OQL)

Bindings to O-O programming languages (OOPLs)

March 24, 2008 ADBS: OODB 7

ODMG Object Model

ODMG object model:

Is the data model upon which the ODL and the OQL are based

Provides the data types, type constructors, and other concepts
that can be utilized in the ODL to specify object database
schemas

Provide a standard terminology

March 24, 2008 ADBS: OODB 8

ODMG Basic Building Blocks

The basic building blocks of the object model are

Objects

Literlas

An object has four characteristics

1. Identifier: unique system-wide identifier

2. Name: unique within a particular database and/or program;
it is optional

3. Lifetime: persistent vs transient

4. Structure: specifies how object is constructed by the type
constructor and whether it is a collection or an atomic object

March 24, 2008 ADBS: OODB 9

ODMG Literals

A literal has a current value but not an identifier

Three types of literals

1. Atomic literal: predefined; basic data type values (e.g.,
short, float, boolean, char)

2. structured: values that are constructed by tuple constructors.
(e.g., Date, Time, Interval, Timestamp, etc)

3. collection: a collection (e.g., set, list, array, bag, dictionary)
of values or objects

March 24, 2008 ADBS: OODB 10

ODMG Interface and Class Definition

ODMG supports two concepts for specifying object types:
Interface
Class

There are similarities and differences between interfaces and
classes

Both have behaviors (operations) and state (attributes and
relationships)

March 24, 2008 ADBS: OODB 11

ODMG Interface

An interface is a specification of the abstract behavior of an
object type

State properties of an interface (i.e., its attributes and
relationships) cannot be inherited from

Objects cannot be instantiated from an interface

There are many built-in object interfaces (e.g., Object, Date,
Time, Collection, Array, List);

March 24, 2008 ADBS: OODB 12

ODMG Interface Definition

Example

interface Object {
…
boolean same_as(in object other_object);
Object copy();
Void delete();

};

Note: interface is ODMG’s keyword for class/type

March 24, 2008 ADBS: OODB 13

Built-in Interfaces for Date Objects

Example

interface Date:Object {
enum weekday{sun,mon,tue,wed,thu,fri,sat};
enum Month{jan,feb,mar,…,dec};
unsigned short year();
unsigned short month();
unsigned short day();
…
boolean is_equal(in Date other_date);

};

March 24, 2008 ADBS: OODB 14

Built-in Interfaces for Collection Objects

A collection object inherits the basic collection interface,
for example:

cardinality()

is_empty()

insert_element()

remove_element()

contains_element()

create_iterator()

March 24, 2008 ADBS: OODB 15

Collection Types

Collection objects are further specialized into types like a set, list,
bag, array, and dictionary

Each collection type may provide additional interfaces, for
example, a set provides:

create_union()

create_difference()

is_subst_of()

is_superset_of()

is_proper_subset_of()

March 24, 2008 ADBS: OODB 16

Object Inheritance Hierarchy

Built-in interfaces of the object module

March 24, 2008 ADBS: OODB 17

ODMG Class

A class is a specification of abstract behavior and state of an
object type

A class is Instantiable

Supports “extends” inheritance to allow both state and behavior
inheritance among classes. Unlike interface in which only
behavior is inherited.

Multiple inheritance via “extends” is not allowed

March 24, 2008 ADBS: OODB 18

Atomic Objects

Atomic objects are user-defined objects and are defined via
keyword class

An example:

class Employee (extent all_emplyees key ssn) {
attribute string name;
attribute string ssn;
attribute short age;
relationship Dept works_for;
void reassign(in string new_name);

}

March 24, 2008 ADBS: OODB 19

Class Extents

An ODMG object can have an extent defined via a class
declaration

Each extent is given a name and will contain all persistent
objects of that class

For Employee class, for example, the extent is called
all_employees

This is similar to creating an object of type Set<Employee> and
making it persistent

March 24, 2008 ADBS: OODB 20

Class Key

A class key consists of one or more unique attributes

For the Employee class, the key is ssn. Thus each employee
is expected to have a unique ssn

Keys can be composite, e.g.,
(key dnumber, dname)

March 24, 2008 ADBS: OODB 21

Object Factory

An object factory is used to generate individual objects via its
operations

An example:

interface ObjectFactory {
Object new ();

};

new() returns new objects with an object_id

One can create their own factory interface by inheriting the above
interface

March 24, 2008 ADBS: OODB 22

Object Definition Language (ODL)

ODL supports semantics constructs of ODMG

ODL is independent of any programming language

ODL is used to create object specification (classes and
interfaces)

ODL is not used for database manipulation, OQL is.

March 24, 2008 ADBS: OODB 23

Graphical notation for representing ODL schemas

Person-IF

Student

Interface

Class

relationships

inheritance

object
specification

1:1

1:N

M:N

Class
inheritance
using extends

Interface(is-a)
inheritance
using “:”

March 24, 2008 ADBS: OODB 24

A graphical ODB schema for UNIVERSITY database

Person Department

Course

Section

CurrSection

Student

Gradstudent

Faculty

committee

advisor

advises

Work_in

Has_majors
Has_faculty

offers

Offered_by

Has_sections

students

Major_in

Completed_sections

Registered_in

Of_course

In_committee_of

registered_students

March 24, 2008 ADBS: OODB 25

ODL Examples (1): A Very Simple Class

class Degree {
attribute string college;
attribute string degree;
attribute string year;

};

(all examples are based on the university schema presented in Chapter 4 and
graphically shown on page 680):

March 24, 2008 ADBS: OODB 26

ODL Examples (2): A Class With Key and Extent

A class definition with “extent”, “key”, and more elaborate
attributes; still relatively straightforward

class Person (extent persons key ssn) {
attribute struct Pname {string fname …} name;
attribute string ssn;
attribute date birthdate;
…
short age();

}

March 24, 2008 ADBS: OODB 27

ODL Examples (3): A Class With Relationships

Note extends (inheritance) relationship

Also note “inverse” relationship

Class Faculty extends Person (extent faculty) {
attribute string rank;
attribute float salary;
attribute string phone;
…
relationship Dept works_in inverse Dept::has_faculty;
relationship set<GradStu> advises inverse GradStu::advisor;
void give_raise (in float raise);
void promote (in string new_rank);

};

March 24, 2008 ADBS: OODB 28

Graphical schema for geometric objects

GeometryObject

Triangle CircleTriangle ...

interface GeometryObject
{

attribute enum Shape{Rectangle,Triangle, Circle,…}shape;
attribute struct Point {short x, short y} reference_point;
float perimeter();
float area();
void translate(in short x_translation; in short y_translation);
void rotate(in float angle_of_rotation);

};

only operations are inherited, not properties as a result only operations are inherited, not properties as a result noninstantiablenoninstantiable

March 24, 2008 ADBS: OODB 29

Inheritance via “:” – An Example

interface GeometryObject {
attribute struct point {…} reference_point;
float perimeter ();
…

};

class Triangle : GeometryObject (extent triangles) {
attribute short side_1;
attribute short side_2;
…

};

March 24, 2008 ADBS: OODB 30

Object Query Language

OQL is DMG’s query language

OQL works closely with programming languages such as C++

Embedded OQL statements return objects that are compatible
with the type system of the host language

OQL’s syntax is similar to SQL with additional features for
objects

March 24, 2008 ADBS: OODB 31

Object Query Language (OQL)

basic OQL syntax
select … from … where …
Retrieve the names of all departments in the college of
‘Engineering’

Q0: SELECT d.dname
FROM d in departments
WHERE d.college = ‘Engineering’;

How to refer to a persistent object?
Entry point (named persistent object; or

name of the extent of a class)

iterator variable

extent name

d in departments
departments d
departments as d

March 24, 2008 ADBS: OODB 32

Data Type of Query Results

The data type of a query result can be any type defined in
the ODMG model

A query does not have to follow the select…from…where…
format

A persistent name on its own can serve as a query whose
result is a reference to the persistent object

Example

departments; whose output is set<Departments>

March 24, 2008 ADBS: OODB 33

Path Expressions

A path expression is used to specify a path to attributes and
objects in an entry point

A path expression starts at a persistent object name (or its
iterator variable)

The name will be followed by zero or more dot connected
relationship or attribute names, e.g.,

departments.chair;

March 24, 2008 ADBS: OODB 34

Views as Named Objects

The define keyword in OQL is used to specify an identifier
for a named query

The name should be unique; if not, the results will replace
an existing named query

Once a query definition is created, it will persist until deleted
or redefined

A view definition can include parameters

March 24, 2008 ADBS: OODB 35

An Example of OQL View

A view to include students in a department who have a
minor:

define has_minor(dept_name) as
select s
from s in students
where s.minor_in.dname=dept_name

has_minor can now be used in queries

March 24, 2008 ADBS: OODB 36

Single Elements from Collections

An OQL query returns a collection

OQL’s element operator can be used to return a single
element from a singleton collection that contains one
element:

element (select d
from d in departments
where d.dname = ‘Software Engineering’);

If d is empty or has more than one elements, an exception
is raised

March 24, 2008 ADBS: OODB 37

Collection Operators

OQL supports a number of aggregate operators that can be
applied to query results

The aggregate operators include min, max, count, sum,
and avg and operate over a collection

count returns an integer; others return the same type as
the collection type

March 24, 2008 ADBS: OODB 38

An Example of an OQL: Aggregate Operator

To compute the average GPA of all seniors majoring in
Business:

avg (select s.gpa
from s in students
where s.class = ‘senior’
and s.majors_in.dname =‘Business’);

March 24, 2008 ADBS: OODB 39

Membership and Quantification

OQL provides membership and quantification operators:

(e in c) is true if e is in the collection c

(for all e in c: b) is true if all e elements of
collection c satisfy b

(exists e in c: b) is true if at least one e in
collection c satisfies b

March 24, 2008 ADBS: OODB 40

An Example of Membership

To retrieve the names of all students who completed ICS102:

select s.name.fname s.name.lname
from s in students
where ‘ICS102’ in

(select c.name
from c in s.completed_sections.section.of_course);

March 24, 2008 ADBS: OODB 41

Ordered Collections

Collections that are lists or arrays allow retrieving their
first, last, and ith elements

OQL provides additional operators for extracting a sub-
collection and concatenating two lists

OQL also provides operators for ordering the results

March 24, 2008 ADBS: OODB 42

An Example of Ordered Operation

To retrieve the last name of the faculty member who earns
the highest salary:

first (select struct
(faculty: f.name.lastname,salary f.salary)
from f in faculty
ordered by f.salary desc);

March 24, 2008 ADBS: OODB 43

Grouping Operator

OQL also supports a grouping operator called group by

To retrieve average GPA of majors in each department
having >100 majors:

select deptname, avg_gpa:
avg (select p.s.gpa from p in partition)
from s in students
group by deptname: s.majors_in.dname
having count (partition) > 100

March 24, 2008 ADBS: OODB 44

Object Database Conceptual Design

Object Database (ODB) vs Relational Database (RDB)

Relationships are handled differently

Inheritance is handled differently

Operations in OBD are expressed early on since they are a part
of the class specificaiton

March 24, 2008 ADBS: OODB 45

Relationships: ODB vs RDB (1)

Relationships in ODB:

relationships are handled by reference attributes that include
OIDs of related objects

single and collection of references are allowed

references for binary relationships can be expressed in single
direction or both directions via inverse operator

March 24, 2008 ADBS: OODB 46

Relationships: ODB vs RDB (2)

Relationships in RDB:

Relationships among tuples are specified by attributes with
matching values (via foreign keys)

Foreign keys are single-valued

M:N relationships must be presented via a separate relation
(table)

March 24, 2008 ADBS: OODB 47

Inheritance Relationship in ODB vs RDB

Inheritance structures are built in ODB (and achieved via “:”
and extends operators)

RDB has no built-in support for inheritance relationships;
there are several options for mapping inheritance
relationships in an RDB (see Chapter 7)

March 24, 2008 ADBS: OODB 48

Early Specification of Operations

Another major difference between ODB and RDB is the
specification of operations

ODB: operations specified during design (as part of class
specification)

RDB: may be delayed until implementation

March 24, 2008 ADBS: OODB 49

Mapping EER Schemas to ODB Schemas

Mapping EER schemas into ODB schemas is relatively simple
especially since ODB schemas provide support for
inheritance relationships

Once mapping has been completed, operations must be
added to ODB schemas since EER schemas do not include an
specification of operations

March 24, 2008 ADBS: OODB 50

Mapping EER to ODB Schemas

Step 1:

Create an ODL class for each EER entity type or subclass

Multi-valued attributes are declared by sets, bags or lists
constructors

Composite attributes are mapped into tuple constructors

March 24, 2008 ADBS: OODB 51

Mapping EER to ODB Schemas

Step 2:

Add relationship properties or reference attributes for each
binary relationship into the ODL classes participating in the
relationship

Relationship cardinality: single-valued for 1:1 and N:1
directions; set-valued for 1:N and M:N directions

Relationship attributes: create via tuple constructors

March 24, 2008 ADBS: OODB 52

Mapping EER to ODB Schemas

Step 3:

Add appropriate operations for each class

Operations are not available from the EER schemas;
original requirements must be reviewed

Corresponding constructor and destructor operations must
also be added

March 24, 2008 ADBS: OODB 53

Mapping EER to ODB Schemas

Step 4:

Specify inheritance relationships via extends clause

An ODL class that corresponds to a sub-class in the EER
schema inherits the types and methods of its super-class
in the ODL schemas

Other attributes of a sub-class are added by following
Steps 1-3

March 24, 2008 ADBS: OODB 54

Mapping EER to ODB Schemas

Step 5:

Map weak entity types in the same way as regular entities

Weak entities that do not participate in any relationships
may alternatively be presented as composite multi-valued
attribute of the owner entity type

March 24, 2008 ADBS: OODB 55

Mapping EER to ODB Schemas

Step 6:

Map categories (union types) to ODL

The process is not straightforward

May follow the same mapping used for EER-to-relational
mapping:

Declare a class to represent the category

Define 1:1 relationships between the category and each
of its super-classes

March 24, 2008 ADBS: OODB 56

Mapping EER to ODB Schemas

Step 7:

Map n-ary relationships whose degree is greater than 2

Each relationship is mapped into a separate class with
appropriate reference to each participating class

March 24, 2008 ADBS: OODB 57

END

