!'_ Indexing Structures for Files

March 24, 2008 ADBS: Index

Chapter Outline

s Indexes as Access Paths

= Single Level Indexes

= Primary Indexes
= Clustering Indexes
= Secondary Indexes

= Properties of Index Types
= Multilevel Indexes
= Dynamic Multilevel Indexes Using B-Trees and B+-Trees

= Indexes on Multiple Keys

March 24, 2008 ADBS: Index

- Indexes as Access Paths ...

= A single-level index is an auxiliary file that makes it more
efficient to search for a record in the data file.

= The index is usually specified on one field of the file
(although it could be specified on several fields)

= One form of an index Is a file of entries <field value,
pointer to record>, which is ordered by field value

= The index is called an access path on the field.

March 24, 2008 ADBS: Index

... - Indexes as Access Paths ...

= The index file usually occupies considerably less disk blocks
than the data file because its entries are much smaller

= A binary search on the index yields a pointer to the file record
= Indexes can also be characterized as dense or sparse.

= A dense index has an index entry for every search key value
(and hence every record) in the data file.

= A sparse (or nondense) index, on the other hand, has index
entries for only some of the search values

March 24, 2008 ADBS: Index

... - Indexes as Access Paths

Example: Given the following data file:
EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
Suppose that:

record size R=150 bytes

block size B=512 bytes

r=30000 records

Then, we get:
blocking factor Bfr= B div R= 512 div 150= 3 records/block
number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

For an index on the SSN field, assume the field size V =9 bytes,
assume the record pointer size P,=7 bytes. Then:

index entry size Ri=(V o+ Pr)=(9+7)=16 bytes

index blocking factor Bfr;= B div R;= 512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr;)= (30000/32)= 938 blocks
binary search needs log2bI= l0og2938= 10 block accesses

This is compared to an average linear search cost of:
(b/2)= 30000/2= 15000 block accesses

If the file records are ordered, the binary search cost would be:
log,b= 10g,30000= 15 block accesses

March 24, 2008 ADBS: Index

- Primary Index

s Defined on an ordered data file
= The data file is ordered on a key field

= Includes one index entry for each block in the data file; the index
entry has the key field value for the first record in the block, which is
called the block anchor

s A similar scheme can use the /ast record in a block.

= A primary index is a nondense (sparse) index, since it includes an
entry for each disk block of the data file and the keys of its anchor
record rather than for every search value.

March 24, 2008 ADBS: Index

FIGURE 14.1

Primary index on the ordering key field of the file shown

Figure 13.7.

INDEX FILE
(<K(i), P(i)> entries)

BLOCK
ANCHOR
PRIMARY
KEY BLOCK
VALUE POINTER

Aaron, Ed

N\

Adams, John

Alexander, Ed

Allen, Troy

Anderson, Zach

Amold, Mack

2lolefe/a

oo

Wong, James

Wright, Pam

March 24, 2008

DATA FILE
(PRIMARY
KEY FIELD)
NAME SSN BIRTHDATE JOB SALARY SEX
Aaron, Ed

Abbott, Diane

Acosta, Marc

Adams, John

Adams, Robin

oo

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy
/ Anders, Keith

\ Anderson, Rob
Anderson, Zach

Angeli, Joe

e

Archer, Sue

Armold, Mack

Armold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

e

Woods, Manny

Wright, Pam

Whyatt, Charles

Zimmer, Byron

ADBS: Index

- Clustering Index

s Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary index, which
requires that the ordering field of the data file have a distinct value for
each record.

= Includes one index entry for each distinct value of the field; the index
entry points to the first data block that contains records with that field

value.

= It is another example of nonadense index where Insertion and Deletion
IS relatively straightforward with a clustering index.

March 24, 2008 ADBS: Index

FIGURE 14.2
A clustering index on the DEPTNUMBER ordering nonkey field of an
EMPLOYEE file.

DATA FILE

(CLUSTERING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

1

1

1

2

2

INDEX FILE 3

(<K(i), P(i)> entries) s

CLUSTERING BLOCK 3
FIELD VALUE POINTER

1 4 S

2 v 3

3 o 4

4 o~ 2

5 [5

6 b 5

8 haN 5

5

6

6

6

6

6

8

8

8

March 24, 2008 ADBS: Index

FIGURE 14.3
Clustering index with a separate block cluster for each group of records
that share the same value for the clustering field.

DATA FILE

(CLUSTERING
FIELD)
DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY
1
1
1
block pointer .—/l_ null pointer
2 | | | | |
=z | I | | |
BIocK pointer =——1—)\ null pointer
3
3
3
3
INDEX FILE block pointer -
(<=K(D), P()>entries))
3 [| |
CLUSTERING BLOCK
FIELD VALUE POINTER
1 o
> & block pointer .——/—l null pointer
3 -] a I | I] I
: - a1 I 1 1
5 -
[S] -
8 = block pointer .—A null pointer
5
5
5
5
block pointer - /1 null pointer
[S]
[S]
[S]
[S]
block pointer =
& | | | |
block pointer =——1—) nullpointer
8
8
8
block pointer ._A null pointer

March 24, 2008 ADBS: Index

- Secondary Index

= A secondary index provides a secondary means of accessing a file for
which some primary access already exists.

= The secondary index may be on a field which is a candidate key and has
a unique value in every record, or a nonkey with duplicate values.

= The index is an ordered file with two fields.

= The first field is of the same data type as some nonordering field of
the data file that is an /ndexing field.

= The second field is either a block pointer or a record pointer. There
can be many secondary indexes (and hence, indexing fields) for the
same file.

= Includes one entry for each record in the data file; hence, it is a dense
Index

March 24, 2008 ADBS: Index

11

FIGURE 14.4
A dense secondary index (with block pointers) on a nonordering key field of a

March 24, 2008

ADBS: Index

file.
DATA FILE
INDEXING
FIELD
(SECONDARY
KEY FIELD)
9
INDEX FILE 5
(<K{(i), P(i)> entries) 13
INDEX 8
FIELD BLOCK
VALUE POINTER 6
1 N 15
2 - 3
3 - 17
4 t
S o] 21
6 -] 11
7 16
8 o] 2
9 o o~ 24
10 - T 10
11 - 20
12 [N 1
13 o]
14 - — 4
15 o 23
16 o] 18
14
17
18 o 12
19 . T— 7
20 o] 1o
21 o 22
22 s
23 o]
24 Ty

12

FIGURE 14.5

A secondary index (with recored pointers) on a nonkey field implemented using one level of
indirection so that index entries are of fixed length and have unique field values.

DATA FILE

(INDEXING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY
3

BLOCKS OF
RECORD
POINTERS

D=

INDEX FILE
(<Ki(i), P(i)> entries)

|| WIN

FIELD BLOCK
VALUE POINTER

1

AN

1 -
2 < Y
3
4 - .
5 o]
6 b 7= :
8 b P *2
4 5
/
I o
P 5
/% 1
VA4 6
RN 3
6
3
8
3

March 24, 2008 ADBS: Index

- Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX)
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense

Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
“For options 2 and 3.

March 24, 2008 ADBS: Index

14

- Multi-Level Indexes ...

= Because a single-level index is an ordered file, we can create a primary
index fo the index itself ; in this case, the original index file is called
the first-level index and the index to the index is called the second-
level index.

= We can repeat the process, creating a third, fourth, ..., top level until
all entries of the fop /eve/ fit in one disk block

= A multi-level index can be created for any type of first-level index
(primary, secondary, clustering) as long as the first-level index consists
of more than one disk block

s Such a multi-level index is a form of search tree ; however, insertion

and deletion of new index entries Is a severe problem because every
level of the index is an oradered file.

March 24, 2008 ADBS: Index 15

FIGURE 14.6
A two-level primary index resembling ISAM (Indexed Sequential Access
Method) organization.

TWO-LEVEL INDEX DATA FILE
PRIMARY
KEY
FIELD
FIRST (BASE) 2
LEVEL 5
2 - | / 8
8 o 12
3 .
245: .___*- 15
\ 21
24
29
SECOND (TOP) / 35
LEVEL 36
35 o |
—————————

2 7 39 -] >
35 pa— a4 | 41
55 . 51 ‘\\)— a4
85 < \ -

51

52

55

/ 58

55 .// / 63
63 - 66
71 D e —— 71
80 -] 78
\ 80

82

85 - — 85
89

March 24, 2008 ADBS: Index

FIGURE 14.8
A node in a search tree with pointers to subtrees below it.

//.P1 K, Ki_1 I K, lkq—1 P,
X X X
X<K, Ki-<X<K, Kgo1<X

q

March 24, 2008 ADBS: Index 17

FIGURE 14.9
A search tree of order p = 3.

.
1

Tree node pointer

Null tree pointer

/

/

March 24, 2008

ADBS: Index

-8

12

18

- Dynamic Multilevel Indexes Using B-Trees and B+-Trees ...

= Because of the insertion and deletion problem, most multi-level
Indexes use B-tree or B+-tree data structures, which leave space in
each tree node (disk block) to allow for new index entries

= These data structures are variations of search trees that allow efficient
insertion and deletion of new search values.

= In B-Tree and B+-Tree data structures, each node corresponds to a
disk block

= Each node is kept between half-full and completely full

March 24, 2008 ADBS: Index 19

.. - Dynamic Multilevel Indexes Using B-Trees and B+-Trees ...

= An insertion into a node that is not full is quite efficient; if a node is full
the insertion causes a split into two nodes

= Splitting may propagate to other tree levels
= A deletion is quite efficient if a node does not become less than half full

s |If a deletion causes a node to hecome less than half full, it must be
merged with neighboring nodes

March 24, 2008 ADBS: Index 20

-- Difference between B-tree and B+-tree

= In a B-tree, pointers to data records exist at all levels of the
tree

= In a B+-tree, all pointers to data records exists at the leaf-
level nodes

= A B+-tree can have less levels (or higher capacity of search
values) than the corresponding B-tree

March 24, 2008 ADBS: Index 21

FIGURE 14.10
B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A

B-tree of order p = 3. The values were inserted in the order 8, 5, 1, 7, 3,
12, 9, 6.

(@)
;P1 K, .Pr1 ,Pz Ki_ fri—‘l ,P1 K, .Pr1 oo | Kot frq—1 IE.\
tree
tree Y pointer i tree
ointer data data data data .
> pointer pointer pointer pointer pointer
tree
X pointer X
X<K, Ki_i<X<K, Ko< X
©) e| Tree node pointer
e| 5|0 T 8o }\ 0| Data pointer
\ Null tree pointer
1o 3|0 6|0 710 9 |o]| [[12]0

March 24, 2008 ADBS: Index 22

FIGURE 14.11

The nodes of a B+-tree. (a) Internal node of a B+-tree with q —1 search values. (b) Leaf node of
a B+-tree with q — 1 search values and q — 1 data pointers.

(@)
FJ1 I'<1 Ki—1 I:"i Ki Kq—1 I:’q
» ’ A
Aee l tree tree
pointer pointer pointer
X /\ X
X<K K,_, <X<K Kq1 <X
b pointer to next
(b) Ky F:’ Ka I:r AN A .. | Ka-1|Pra-1 P et e+— leafnode
in tree
Y Y \
data data data data
pointer pointer pointer pointer

March 24, 2008 ADBS: Index

23

FIGURE 14.12
An example of insertion in a B+-tree with q = 3 and p,; = 2.

INSERTION SECHUJEMCE: 8,5, 1.7, 3, 12,9.6

E NSt 1= CwerTiow e lenesll
El Tree node poinber
Data poinher
D A\
j Ll tree poinbes @ 7
W 5]
Insen 3: overflow (Spit) v
e EREIEAE 7 Idle 1d
Insert 12: owverfiow (spit, propagates,
I e bl

)) ¥ /J
[k2 Tdle—={(s1d = | EAC]
o 5]]

¥

W s

nsert 9

¥
[EACIENC = e C C I

eI

3 . 8 -
- Insert 6: owerflow
[spit, propagates)

\

¥ iy ¥

EREENE {7 &= ld—{[= Td[*=[d

T

SN d7kle=H

v v Y
[T —{(=1d o —{(eTd[7 1d (s 1d [=—{=T=lz1d] |

March 24, 2008 ADBS: Index

FIGURE 14.13
An example of deletion from a B+-tree.

DELETION SEQUENCE: 5, 12,9

L Gl pe =k jebb k=lzE]

Delete 5

Bl

i
CE FEF M-CH B~-ERrER~=]

RO S IO EACR e T g E I

Delete 9: underfiow (mearge with
:n EH left, still underflow, collapse levels)

[W-EE F~[rEEE)

March 24, 2008 ADBS: Index

March 24, 2008

END

ADBS: Index

26

