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- Indexes as Access Paths ...

= A single-level index is an auxiliary file that makes it more
efficient to search for a record in the data file.

= The index is usually specified on one field of the file
(although it could be specified on several fields)

= One form of an index Is a file of entries <field value,
pointer to record>, which is ordered by field value

= The index is called an access path on the field.
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... - Indexes as Access Paths ...

= The index file usually occupies considerably less disk blocks
than the data file because its entries are much smaller

= A binary search on the index yields a pointer to the file record
= Indexes can also be characterized as dense or sparse.

= A dense index has an index entry for every search key value
(and hence every record) in the data file.

= A sparse (or nondense) index, on the other hand, has index
entries for only some of the search values
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... - Indexes as Access Paths

Example: Given the following data file:
EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
Suppose that:

record size R=150 bytes

block size B=512 bytes

r=30000 records

Then, we get:
blocking factor Bfr= B div R= 512 div 150= 3 records/block
number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

For an index on the SSN field, assume the field size V =9 bytes,
assume the record pointer size P,=7 bytes. Then:

index entry size Ri=(V o+ Pr)=(9+7)=16 bytes

index blocking factor Bfr;= B div R;= 512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr;)= (30000/32)= 938 blocks
binary search needs log2bI= l0og2938= 10 block accesses

This is compared to an average linear search cost of:
(b/2)= 30000/2= 15000 block accesses

If the file records are ordered, the binary search cost would be:
log,b= 10g,30000= 15 block accesses
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- Primary Index

s Defined on an ordered data file
= The data file is ordered on a key field

= Includes one index entry for each block in the data file; the index
entry has the key field value for the first record in the block, which is
called the block anchor

s A similar scheme can use the /ast record in a block.

= A primary index is a nondense (sparse) index, since it includes an
entry for each disk block of the data file and the keys of its anchor
record rather than for every search value.
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FIGURE 14.1

Primary index on the ordering key field of the file shown

Figure 13.7.
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- Clustering Index

s Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary index, which
requires that the ordering field of the data file have a distinct value for
each record.

= Includes one index entry for each distinct value of the field; the index
entry points to the first data block that contains records with that field

value.

= It is another example of nonadense index where Insertion and Deletion
IS relatively straightforward with a clustering index.
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FIGURE 14.2
A clustering index on the DEPTNUMBER ordering nonkey field of an
EMPLOYEE file.
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FIGURE 14.3
Clustering index with a separate block cluster for each group of records
that share the same value for the clustering field.

DATA FILE

(CLUSTERING
FIELD)
DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY
1
1
1
block pointer .—/l_ null pointer
2 | | | | |
=z | I | | |
BIocK pointer =——1— )\ null pointer
3
3
3
3
INDEX FILE block pointer -
(<=K(D), P()>entries) )
3 [ | |
CLUSTERING BLOCK
FIELD VALUE POINTER
1 o
> & block pointer .——/—l null pointer
3 - ] a I | I ] I
: - a1 I 1 1
5 -
[S] -
8 = block pointer .—A null pointer
5
5
5
5
block pointer - /1 null pointer
[S]
[S]
[S]
[S]
block pointer =
& | | | |
block pointer =——1— ) nullpointer
8
8
8
block pointer ._A null pointer

March 24, 2008 ADBS: Index



- Secondary Index

= A secondary index provides a secondary means of accessing a file for
which some primary access already exists.

= The secondary index may be on a field which is a candidate key and has
a unique value in every record, or a nonkey with duplicate values.

= The index is an ordered file with two fields.

= The first field is of the same data type as some nonordering field of
the data file that is an /ndexing field.

= The second field is either a block pointer or a record pointer. There
can be many secondary indexes (and hence, indexing fields) for the
same file.

= Includes one entry for each record in the data file; hence, it is a dense
Index
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FIGURE 14.4
A dense secondary index (with block pointers) on a nonordering key field of a
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FIGURE 14.5

A secondary index (with recored pointers) on a nonkey field implemented using one level of
indirection so that index entries are of fixed length and have unique field values.
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- Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX )
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense

Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
“For options 2 and 3.
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- Multi-Level Indexes ...

= Because a single-level index is an ordered file, we can create a primary
index fo the index itself ; in this case, the original index file is called
the first-level index and the index to the index is called the second-
level index.

= We can repeat the process, creating a third, fourth, ..., top level until
all entries of the fop /eve/ fit in one disk block

= A multi-level index can be created for any type of first-level index
(primary, secondary, clustering) as long as the first-level index consists
of more than one disk block

s  Such a multi-level index is a form of search tree ; however, insertion

and deletion of new index entries Is a severe problem because every
level of the index is an oradered file.

March 24, 2008 ADBS: Index 15



FIGURE 14.6
A two-level primary index resembling ISAM (Indexed Sequential Access
Method) organization.
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FIGURE 14.8
A node in a search tree with pointers to subtrees below it.
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FIGURE 14.9
A search tree of order p = 3.
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- Dynamic Multilevel Indexes Using B-Trees and B+-Trees ...

= Because of the insertion and deletion problem, most multi-level
Indexes use B-tree or B+-tree data structures, which leave space in
each tree node (disk block) to allow for new index entries

= These data structures are variations of search trees that allow efficient
insertion and deletion of new search values.

= In B-Tree and B+-Tree data structures, each node corresponds to a
disk block

= Each node is kept between half-full and completely full
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.. - Dynamic Multilevel Indexes Using B-Trees and B+-Trees ...

= An insertion into a node that is not full is quite efficient; if a node is full
the insertion causes a split into two nodes

= Splitting may propagate to other tree levels
= A deletion is quite efficient if a node does not become less than half full

s |If a deletion causes a node to hecome less than half full, it must be
merged with neighboring nodes
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-- Difference between B-tree and B+-tree

= In a B-tree, pointers to data records exist at all levels of the
tree

= In a B+-tree, all pointers to data records exists at the leaf-
level nodes

= A B+-tree can have less levels (or higher capacity of search
values) than the corresponding B-tree
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FIGURE 14.10
B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A

B-tree of order p = 3. The values were inserted in the order 8, 5, 1, 7, 3,
12, 9, 6.
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FIGURE 14.11

The nodes of a B+-tree. (a) Internal node of a B+-tree with q —1 search values. (b) Leaf node of
a B+-tree with q — 1 search values and q — 1 data pointers.
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FIGURE 14.12
An example of insertion in a B+-tree with q = 3 and p,; = 2.
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FIGURE 14.13
An example of deletion from a B+-tree.
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