
March 23, 2008 Databases: DB Performance 1

DB Performance and Tuning

March 23, 2008 Databases: DB Performance 2

Objectives

Introduction +
DB Performance +
Tuning Indexes +
Tuning the DB Design +
Tuning the Queries +
Tuning Views +

March 23, 2008 Databases: DB Performance 3

- Introduction …

Every DB system is developed to fulfill the data
requirements of its users and application programs.

All the workload numbers used during the physical
design process are normally good estimates of the
expected actual numbers.

After a DB is deployed and is in operation, actual use
of the applications, transactions, queries, and view
reveals factors and problem areas that may not have
been accounted for during the initial physical DB
design.

March 23, 2008 Databases: DB Performance 4

… Introduction

The estimated values used in the physical design can
be revised by gathering actual statistics about usage
patterns.

Resource utilization as well as internal DBMS
processing can be monitored to reveal bottlenecks.

It is therefore necessary to monitor and revise the
physical DB design constantly.

March 23, 2008 Databases: DB Performance 5

- DB Performance

Two parameters normally used to measure the
performance of a DB system are:

Response time
Throughput

The performance of a DBMS on commonly asked
queries and typical update operations is the ultimate
measure of a DB design.
A DBA can improve the performance by identifying
bottlenecks and adjusting some DBMS parametrs

March 23, 2008 Databases: DB Performance 6

- DB Tuning …

DB tuning implies that the physical DB design be
reviewed and modified to accommodate the changes in
the requirements and to overcome the DB performance
bottleneck.
The goals of DB tuning can include:

To make application run faster
To lower the response time of queries
To improve the overall throughput of transactions

During DB tuning, the design decisions made in the
physical DB design are revisited and adjusted according
to the up-to-date data and performance requirements.

March 23, 2008 Databases: DB Performance 7

… - DB Tuning

Specific actions taken to tune a DB are very much
DBMS and operating system dependent. A DBA must
be aware of these actions.
Continued DB tuning is important to get the best
possible DB performance.
Three kinds of DB tuning are:
1. Tuning indexes +
2. Tuning the DB design +
3. Tuning the queries and views +
Other factors for DB performance improvement are:

Review of log files
Data archiving

March 23, 2008 Databases: DB Performance 8

-- Tuning Indexes …

Existing indexes has to be to be revised for the
following reasons.

Certain queries may take too long to run for lack of an index
Certain indexes may not get utilized at all
Certain indexes may be causing excessive overhead

The activities for tuning indexes can be
Re-examining our choices of indexes
Periodically reorganizing some indexes
Dropping an index and rebuilding it.

March 23, 2008 Databases: DB Performance 9

… -- Tuning indexes

Query optimizers generally rely on the statistics
maintained in the system catalog. It is the responsibility
of the DBA to make sure that the statistics are kept up-
to-date.
How to tune indexes:

Most DBMSs have a command or trace facility
Analyze the results of trace facility
Dropping and building new indexes

March 23, 2008 Databases: DB Performance 10

-- Tuning the DB Design

If a given physical DB design does not meet the expected
objectives we may revert to the logical design, make adjustments
to the logical schema, and remap it to a new set of physical tables
and indexes.
The entire DB design has to be driven by the processing
requirements as much as by data requirements.
The changes to the logical schema may be of the following nature:

Existing tables may be joined (denormalized)
Vertical partitioning +
Horizontal partitioning +
Attribute(s) from one table may be repeated in another.

March 23, 2008 Databases: DB Performance 11

--- Vertical Partitioning

In vertical partitioning, a relation of the form R(K, A, B,
C, D, …) – with K as a set of key attributes – that is in
BCNF can be stored into multiple tables that are also in
BCNF.
For example:

The table EMPLOYEE (SSN, Name, Phone, Grade, Salary) may
be split in to two tables:

1. EMP1 (SSN, Name, Phone)
2. EMP2 (SSN, Grade, Salary)

If the original table had a very large number of rows and
queries about phone numbers and salary information are
totally distinct, this separation of tables may work better.

March 23, 2008 Databases: DB Performance 12

--- Horizontal Partitioning

Horizontal partitioning takes horizontal slices of a table and
stores them as distinct tables.
For example:

Product sales data may be separated into ten tables based on ten
products lines. Each table has the same set of columns but contain
a distinct set of products (tuples)

March 23, 2008 Databases: DB Performance 13

--- Examples of H and V partitioning

Horizontal partitioning

Vertical partitioning

March 23, 2008 Databases: DB Performance 14

-- Tuning Queries …

There are mainly two indications that suggest that query tuning
may be needed:
1. A query issues too many disk accesses
2. The query plan shows that relevant indexes are not being used

A query plan is a sequence of function calls where each function
call implements an operator like SELECT, PROJECT, JOIN, sort,
scan, etc. It can be represnted as annotated tree.

As an example, plan for computing R * P using nested loops
approach may look like:

Natural-Join (nested-loop(sort(scan(R)), sort(scan(P)))

March 23, 2008 Databases: DB Performance 15

… -- Tuning Queries …

Some typical instances of situations prompting query
tuning include the following:

Many query optimizers do not use indexes in the presence of:
arithmetic operations, such as Salary/365 > 10.5
Comparing attributes of different sizes and precision
NULL Comparisons
Substring comparisons

Indexes are often not used for nested queries
Some sorting can be avoided
Views can have negative affect on performance hence replace
them by base tables in the query.

March 23, 2008 Databases: DB Performance 16

… -- Tuning Queries …

A query with multiple selection conditions that are connected via OR may not prompt the query
optimizer to use any index. Such a query may be split up and expressed as a UNION of queries,
each with a condition on an attribute that causes an index to be used.

For example:

SELECT Fname, Lname, Salary, Age
FROM Employee
WHERE Age > 45 OR Salary > 50000;

May be executed using sequential scan giving poor performance. Splitting it up as:

SELECT Fname, Lname, Salary, Age
FROM Employee
WHERE Age > 45
UNION
SELECT Fname, Lname, Salary, Age
FROM Employee
WHERE Salary < 50000

May utilize index on Age as well as on Salary

March 23, 2008 Databases: DB Performance 17

… -- Tuning Queries

Where conditions may be rewritten to utilize the indexes on multiple.
For example:

SELECT Region#, Prod_type, Month, Sales
FROM Sales_Statistics
WHERE Region# = 3
AND ((Product_type BETWEEN 1 AND 3) OR

(Product_type BETWEEN 8 AND 10))

May use index only on Region#. Instead, using:

SELECT Region#, Prod_type, Month, Sales
FROM Sales_Statistics
WHERE (Region# = 3 AND (Product_type BETWEEN 1 AND 3)) OR

(Region# = 3 AND (Product_type BETWEEN 8 AND 10))

May use a composite index on(Region#, Product_type)

March 23, 2008 Databases: DB Performance 18

-- Tuning View

Because the views are the named queries therefore the
rules for tuning queries are also applicable to views.

The first step in tuning a view is to understand the plan
used by the DBMS to materialize the view.

One we understand the plan selected by the system,
we can consider how to improve it.

