Normalization
Objectives

- Introduction
- Objectives of Normalization
- Normal Forms
- The Process of Normalization
- Un Normalized Form (UNF)
- Converting UNF to Normalized Form
- Summary
- Introduction

- A process to validate and improve logical design so that it satisfies certain constraints that avoid unnecessary duplication of the data.

- Normalization is a formal technique for analyzing a relation based on its primary key and the FDs between the attributes of that relation.

- The normalization process was first proposed by Codd 1972.

- The normalization process takes a relation schema through a series of tests to certify whether it satisfies a certain normal form.
Objectives of Normalization

- Solve problems associated with redundant data.
- Identify various types of update anomalies such as insertion, deletion, and modification anomalies.
- Recognize the appropriateness or quality of the design of relations.
- Use FDs to group attributes into relations that are in a known normal form.
Normal Forms

The four most commonly used normal forms are:

- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)

To convert un-normalized table to a normalized one, you first convert it to 1NF, then to 2NF, then to 3NF and then to BCNF. In other words:

\[
\text{UNF} \rightarrow 1\text{NF} \rightarrow 2\text{NF} \rightarrow 3\text{NF} \rightarrow \text{BCNF}
\]
-- Relationship Between Normal Forms

1NF

2NF

3NF

BCNF

4NF

5NF

Higher normal forms
- The Process of Normalization

- Formal technique for analyzing a relation based on its primary key and the functional dependencies between the attributes of that relation.

- Often executed as a series of steps. Each step corresponds to a specific normal form, which has known properties.

- As normalization proceeds, the relations become progressively more restricted (stronger) in format and also less vulnerable to update anomalies.

- As normalization proceeds, the relations become progressively more restricted (stronger) in format and also less vulnerable to update anomalies.
- Unnormalized Form (UNF)

A table would be in unnormalized form if it contains some multi-valued attributes or repeating groups.

To create an unnormalized table, transform the data from the information source (e.g. form) into table format with columns and rows.

Example:

<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
<th>DMGRSSN</th>
<th>Dlocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>5</td>
<td>222</td>
<td>Dammam, Khobar, Dhahran</td>
</tr>
<tr>
<td>Administration</td>
<td>4</td>
<td>333</td>
<td>Jubail</td>
</tr>
<tr>
<td>Headquarters</td>
<td>1</td>
<td>444</td>
<td>Khobar</td>
</tr>
</tbody>
</table>

DEPARTMENT
- Converting From UNF to Normalized Form

- 1NF +
- UNF to 1NF +
- Example: UNF to 1NF +
- 2NF +
- 1NF to 2NF +
- Example: 1NF to 2NF +
- 3NF +
- 2NF to 3NF +
- Example: 2NF to 3NF +
- BCNF +
- 3NF to BCNF +
- Example: 3NF to BCNF +
-- First Normal Form (1NF)

- A relation in which the intersection of each row and column contains one and only one value.
-- UNF to 1NF

- Nominate an attribute or group of attributes to act as the key for the unnormalized table.

- Identify the repeating group(s) in the unnormalized table which repeats for the key attribute(s).

- Remove the repeating group by
 - Entering appropriate data into the empty columns of rows containing the repeating data ('flattening' the table).
 - Or by
 - Placing the repeating data along with a copy of the original key attribute(s) into a separate relation.
-- Example: UNF to 1NF

<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
<th>DMGRSSN</th>
<th>Dlocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>5</td>
<td>222</td>
<td>Dammam, Khobar, Dhahran</td>
</tr>
<tr>
<td>Administration</td>
<td>4</td>
<td>333</td>
<td>Jubail</td>
</tr>
</tbody>
</table>

UNF

<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
<th>DMGRSSN</th>
<th>Dlocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>5</td>
<td>222</td>
<td>Dammam</td>
</tr>
<tr>
<td>Research</td>
<td>5</td>
<td>222</td>
<td>Khobar</td>
</tr>
<tr>
<td>Research</td>
<td>5</td>
<td>222</td>
<td>Dhahran</td>
</tr>
<tr>
<td>Administration</td>
<td>4</td>
<td>333</td>
<td>Jubail</td>
</tr>
</tbody>
</table>
Second Normal Form (2NF)

- Based on the concept of full functional dependency.

- Full functional dependency indicates that if
 - A and B are attributes of a relation,
 - B is fully dependent on A if B is functionally dependent on A but not on any proper subset of A.

- **Example**: In the last table $\{SSN, Pnumber\} \Rightarrow Hours$ is a full dependency. (neither $SSN \Rightarrow Hours$ nor $Pnumber \Rightarrow hours$ hold.

- A relation that is in 1NF and every non-primary-key attribute is fully functionally dependent on the primary key.
-- 1NF to 2NF

- If a primary key is a single attribute then the relation is already in 2NF.

- In the case of composite key, the following steps are applied to convert to 2NF:
 - Identify the primary key for the 1NF
 - Identify the functional dependencies in the relation
 - If partial dependency exists on the primary key remove them by placing them in a new relation along with a copy of their determinant.
--- Example: 1NF to 2NF

1NF

SSN | Pnumber | Hours | Ename | Pname | Plocation

FD1

Get Rid of FD1

FD2

2NF

SSN | Ename

Get Rid of FD2

SSN | Pnumber | Hours

SSN | Pnumber | Hours | Pname | Plocation

Pnumber | Pname | Plocation
Third Normal Form (3NF)

3NF is based on the concept of transitive dependency.

Transitive Dependency is a condition where

- A, B and C are attributes of a relation such that if A → B and B → C,
- then C is transitively dependent on A through B. (Provided that A is not functionally dependent on B or C).
-- 2NF to 3NF

- Identify the primary key in the 2NF relation.

- Identify functional dependencies in the relation.

- If transitive dependencies exist on the primary key, remove them by placing them in a new relation along with a copy of their dominant.
-- Example: 2NF to 3NF

EMPLOYEE

DEPARTMENT

3NF
-- Boyce-Codd Normal Form (BCNF)

- Based on functional dependencies that takes into account all candidate keys in a relation.

- For a relation with only one candidate key, 3NF and BCNF are equivalent.

- A relation is in BCNF, if and only if every determinant is a candidate key.

- Violation of BCNF may occur in a relation that:
 - contains two (or more) composite keys
 - which overlap and share at least one attribute in common.
-- 3NF to BCNF

- Identify all candidate keys in the relation.
- Identify all functional dependencies in the relation.
- If functional dependencies exist in the relation where their determinants are not candidate keys for the relation, remove the functional dependencies by placing them in a new relation along with a copy of their determinant.
-- Example: 3NF to BCNF

| A | B | C | D | E |

BCNF Normalization

| D | B |

| A | C | D | E |
- Summary

1. **UNF**
 - Remove repeating groups

2. **1NF**
 - Remove partial dependencies

3. **2NF**
 - Remove transitive dependencies

4. **3NF**
 - Remove remaining dependencies

5. **BCNF**
- Summary …

Steps in Normalization

- Table with multivalued attributes
 - First normal form
 - Second normal form
 - Third normal form
 - Boyce-Codd normal form
 - Fourth normal form
 - Fifth normal form

- Remove multivalued attributes
- Remove partial dependencies
- Remove transitive dependencies
- Remove remaining anomalies resulting from functional dependencies
- Remove multivalued dependencies
- Remove remaining anomalies
... - Summary

- **Definition**
 - A functional dependency $X \rightarrow A$ is called **trivial** if, $A \subseteq X$.

 - A relation is in **1NF** if, and only if, every attribute is single-valued for each tuple.

 - A relation is in **2NF** if, and only if, it is in 1NF and all the non-key attributes are fully functionally dependent on the key.

 - A relation is in **3NF** if, when ever a non-trivial functional dependency $X \rightarrow A$ exists, then either X is a superkey or A is a member of some candidate key.

 - A relation is in **BCNF** if, whenever a non-trivial functional dependency $X \rightarrow A$ exists, then X is a superkey.