ER to Relational Mapping
Objectives

- Introduction +
- Mapping Entity Types +
- Mapping Relationship Types +
- Mapping Multi-valued Attributes +
- Introduction

- In the previous lectures we looked at conceptual database design using the ER diagram.

- Here we are going to discuss in detail the process of mapping, or converting and ER design into a relational model. This is the logical design, or data model mapping, step as shown in the database design procedure.

- We will start by describing how we map an ER diagram into a relational schema.
- Mapping Entity Types

- Mapping of Regular Entity Types +
- Mapping of Weak Entity Types +
For each regular (strong) entity type E in the ER schema:

- Create a relation R that includes all the simple attributes of E.
- Include only the simple components of any composite attribute.
- Choose one of the key attributes of E as primary key for R.
- If the chosen key of E is composite, then the set of simple attributes that form it will together form the primary key of R.
In the company database example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJECT.

The foreign key and relationship attributes, if any, are not included yet, they will be added during the subsequent steps. This includes the attributes of SUPERSSN and DNO of EMPLOYEE; MGRSSN and MGRSTARTDATE of DEPARTMENT; and DNUM of PROJECT.

We choose SSN, DNUMBER and PNUMBER, as primary key for relations EMPLOYEE, DEPARTMENT, and PROJECT respectively.
--- Mapping Regular Entity EMPLOYEE

ER Schema

Relational Schema

| Fname | Minit | Lname | SSN | Bdate | Sex | Address | Salary |
--- Mapping Regular Entity DEPARTMENT

```
<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
</table>
```

ER Schema

Relational Schema

```
DEPARTMENT
<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
</tr>
</thead>
</table>
```
--- Mapping Regular Entity PROJECT

ER Schema

Relational Schema

PROJECT

| Pname | Pnumber | Plocation |
For each weak entity type \(W \) in the ER schema with owner entity type \(E \), create a relation \(R \) that includes all the simple attributes of \(W \) (or simple components of composite attributes) as attributes of \(R \).

In addition, include as foreign key attributes of \(R \) the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s); this takes care of the identifying relationship type of \(W \). The primary key of \(R \) is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type \(W \), if any.
In the COMPANY database example, we created the relation DEPENDENT, in this step to correspond to the weak entity type DEPENDENT. We include the primary key SSN of the EMPLOYEE relation – which correspond to the owner entity type as a foreign key attribute of DEPENDENT; we renamed it ESSN; although this is not necessary. The primary key of dependent relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of the weak entity DEPENDENT.
Mapping Weak Entity DEPENDENT

ER Schema

Relational Schema

DEPENDENT

| ESSN | DependentName | Sex | Bdate | Relationship |
- Mapping Relationship Types

- Mapping of 1:1 Relationship Types +
- Mapping of 1:N Relationship Types +
- Mapping of M:N Relationship Types +
- Mapping of N-ary Relationship Types +
For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R. Choose one of the relations, say S, and include as the foreign key in S the primary key of T. It is better to choose S as the entity type with total participation in R.
In the COMPANY database example we map the 1:1 relationship type MANAGES, by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total (Every department has a manager).

- We include the primary key of EMPLOYEE relation as a foreign key in the DEPARTMENT relation and we name it MRGSSN.

- We also include the simple attribute StartDate of the MANAGES relationship type in the DEPARTMENT relation and rename it as MGRSTARTDATE.
... -- Mapping of 1:1 Relationship Types

ER Schema

Relational Schema

Foreign Key
-- Mapping of 1:N Relationship Types ...

- For each regular binary 1:N relationship type R in the ER schema,
 - identify the relations S that represent the participating entity type at the N-side of R.
 - Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R; this is because each entity instance on the N-side is related to at most one entity instance one the 1-side of the relationship type.
 - Include any simple attributes (or simple components of composite attributes) of the 1:N relationship type as attributes of S.
In the COMPANY database example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION.

- For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as a foreign key in the EMPLOYEE relation and call it DNO.
- For CONTROLS we include the primary key DNUMBER of the DEPARTMENT relation as a foreign key in the project relation and call it DNUM.
- For SUPERVISION we include the primary key SSN of the EMPLOYEE relation as a foreign key in the EMPLOYEE relation itself and call it SUPERSSN.
Mapping of 1:N Relationship Types

ER Schema:

- EMPLOYEE
 - SSN
 - Sex
- WORKS_FOR
 - N
- DEPARTMENT
 - Name
 - Number
 - Locations

Relational Schema:

- EMPLOYEE
 - Fname
 - Minit
 - Lname
 - SSN
 - Bdate
 - Sex
 - Address
 - Salary
 - Dnum

Foreign Key
For each binary M:N relationship type R in the ER schema

- Create a new relation S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types R.
- The combination of these keys will represent the primary key for S.
- Also include any simple attributes of R (or simple components of composite attributes) as attribute of S.
In the COMPANY database example

- we map M:N relationship type WORKS_ON by creating a new relation WORKS_ON.
- We include the primary keys of the PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename them PNO and ESSN, respectively.
- We also include the attribute HOURS in WORKS_ON to represent Hours attribute of the relationship type.
- The primary key of the WORKS_ON relation is the combination {ESSN, DNO}
… -- Mapping of M:N Relationship Types

ER Schema

Relational Schema

WORKS_ON

ESSN | PNO | Hours

EMPLOYEE \(\rightarrow\) WORKS_ON \(\rightarrow\) PROJECT
-- Mapping of N-ary Relationship Types …

- For each n-ary relationship type R in the ER schema, where n > 2:
 - create a new relation S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types in R.
 - The combination of these keys will represent the primary key of S.
 - Also, include any simple attributes of R (or simple components of composite attributes) as attributes of S.
… -- Mapping of N-ary Relationship Types

- For example, the relationship type SUPPLY (shown in the following figure) can be mapped to the relation SUPPLY whose primary key is the combination of foreign keys \{SNAME, PARTNO, PROJ NAME\}
... -- Mapping of N-ary Relationship Types

ER Schema

Relational Schema

SUPPLIER

Sname

Quantity

PART

PartNo

Pname

SUPPLY

PROJECT

SUPPLY

Sname

PartNo

Pname

Quantity

Foreign Keys
- Mapping Multi-valued Attributes …

- For each multi-valued attribute Am create a new relation R.
- This relation R will include an attribute corresponding to A plus the primary key attribute K - as a foreign key in R - of the relation that represents the entity type or relationship type that has A as an attribute.
- The primary key of R is the combination of A and K.
- If the multi-valued attribute is composite, we include its simple components.
In the COMPANY database example:

- We create a relation DEPT_LOCATIONS.
- The attribute DLOCATION represents the multi-valued attribute Locations of DEPARTMENT.
- DNUMBER – as foreign key – represents the primary key of the DEPARTMENT relation.
- The primary key of DEPT_LOCATION is the combination \{DNUMBER, DLOCATION\}.
- A separate tuple will exist in DEPT_LOCATIONS for each location that a department has.
... - Mapping Multi-valued Attributes

Locations

DEPARTMENT

ER Schema

Relational Schema

DEPT_LOCATIONS

Dnumber

Location