Relational Calculus
Objectives

- Introduction +
- Tuple Relational Calculus +
- Domain relational Calculus +
- QBE +
Relational calculus is a formal query language where we write one declarative expression to specify a retrieval request.

A calculus expression specifies *what* is to be retrieved rather than *how* to retrieve it. Therefore, relational calculus is considered to be a nonprocedural language.

There are two types of relational calculus:
- Tuple relational calculus
- Domain relational calculus.
- Tuple Relational Calculus

- Definition +
- Relational Calculus Expression +
- Relational Calculus Atoms +
- Relational Calculus Formulas +
- Existential and Universal Qualifiers +
- Transformation of Universal and Existential Qualifiers +
- Safe Expression +
- Examples +
Definition

- The **tuple relational calculus** is based on specifying a number of tuple variables. Each tuple variable usually ranges over a particular database relation.

- A tuple expression is written as \(\{ t | f(t) \} \)
 - Where \(t \) is a tuple variable
 - \(f(t) \) is a conditional expression involving \(t \).

- **Example**: Find all employees whose salary > 50,000.

 \(\{ t | employee(t) \text{ AND } t\text{.salary} > 50000 \} \)

 Note: The condition \(employee(t) \) specifies that the **range relation** of tuple variable \(t \) is \(employee \).
--Tuple Relational Calculus Expressions

- A general expression of a tuple relational calculus is of the form:
 \{t_i.A, t_j.B, ... \mid f(t_i, t_j, ...)}

 Where:
 - \(t_i, t_j, ... \) are tuple variables
 - \(A, B, ... \) is an attribute of the corresponding relation on which \(t_i, t_j, ... \) ranges.
 - \(f \) is a condition or a formula of the tuple relational calculus.

- In Relational calculus a safe expression is the one guaranteed to yield a finite number of tuples otherwise the expression is unsafe.
- Example: \(\{t \mid NOT(employee(t))\} \) is unsafe expression.
-- Tuple Relational Calculus Atoms

- An **atom** is a building block of a relational calculus expression.

- An atom can have in one of the following forms:
 - **R(ti)**: where R is a relation name. This atom specifies the range of tuple variable ti.
 - **ti.A op tj.B**: where op is one of the comparison operators.
 - **ti.A op c or c op ti.B**: where op is one of the comparison operators and c is a constant value.

- Each atom evaluates to either true or false for a specific value of tuples – called the **truth value** of an atom.
--- Examples ...

- Retrieve all employees.

\[
\{ e \mid \text{employee}(e) \}
\]

- Retrieve the names of all employees.

\[
\{ e.\text{fname}, e.\text{lname} \mid \text{employee}(e) \}
\]
Examples

- **Retrieve employees with salary greater than 5000.**

  ```
  \{ e \\
  \quad | employee(e) \quad \AND \quad e.salary > 5000 \\
  \}
  ```

- **Retrieve the names and salary of all employees who work in department 1 and whose salary > 5000.**

  ```
  \{ e.fname, e.lname \\
  \quad | employee(e) \\
  \quad \AND \quad dno = 1 \\
  \quad \AND \quad salary > 5000 \\
  \}
  ```
A formula (condition) is made up of one or more atoms connected via the logical operators: \textit{AND}, \textit{OR}, and \textit{NOT}.

A formula can be recursively defined as:
- Every atom is a formula
- If F and G are formulas, then so are the following:
 - $F \text{ AND } G$
 - $F \text{ OR } G$
 - $\text{ NOT } F$
 - $\text{ NOT } G$
-- Universal and Existential Quantifiers

- Two quantifiers symbols may appear in a formula:
 - The existential quantifier (∃)
 - The universal quantifier (∀)

- The truth values of formula with quantifiers is based on the concept of free and bound tuple variables in the formula.
--- Free and Bound Tuple variables

- An occurrence of a tuple variable t in a formula F that is an atom is free in F.

- An occurrence of a tuple variable t is free or bound in a formula made up of logical connectives - $(F \text{ AND } G)$, $(F \text{ OR } G)$, $(\text{NOT } F)$, and $(\text{NOT } G)$ – depending whether it is free or bound in F or G.

- In the formula of the form $F = (G \text{ and } H)$ or $F = (G \text{ OR } H)$, a tuple variable may be free in G and bound in H, or vise versa. In this case, one occurrence of the tuple variable is bound and the other is free in F.

- All free occurrences of a tuple variable t in F are bound in a formula $F= (\ t)(G)$ or $F = (\ t)(G)$. The tuple variable is bound to the quantifier specified in F.
--- Truth Value of a Formula With Quantifier

- If F is a formula then so is $(t)(F)$, where t is a tuple variable.
- The formula $(t)(F)$ is true if the formula F evaluates to true for some (at least one) tuple assigned to free occurrence of t in F, otherwise $(t)(F)$ is false.
- If F is a formula then so is $(t)(F)$, where t is a tuple variable.
- The formula $(t)(F)$ is true if the formula F evaluates to true for every tuple (in the universe) assigned to free occurrence of t in F, otherwise $(t)(F)$ is false.
Transforming the Universal and Existential Quantifiers

- $(\forall x)(F(x)) \equiv \neg (\exists x)(\neg F(x))$
- $(\forall x)(F(x)) \equiv \neg \neg (\exists x)(F(x))$
- $(\forall x)((F(x) \land G(x)) \equiv \neg (\exists x)(\neg F(x) \lor \neg G(x))$
- $(\forall x)((F(x) \lor G(x)) \equiv \neg (\exists x)(\neg F(x) \land \neg G(x))$
- $(\forall x)((F(x) \land G(x)) \equiv \neg (\exists x)(\neg F(x) \land \neg G(x))$
- $(\forall x)(F(x))$
- $(\forall x)(F(x))$
- $(\exists x)(F(x)) \Rightarrow (\forall x)(F(x))$
- $\neg (\forall x)(F(x)) \Rightarrow \neg (\exists x)(F(x))$

Note:
- The symbol \equiv means equivalent
- The symbol \Rightarrow means implies
--- Examples ...

- Retrieve the name and address of all employees who work for the research department.

```
{ t.fname, t.lname, t.address 
| employee(t) 
AND ( d ) 
  ( department(d) 
    AND d.dname = 'Research' 
    AND d.dnumber = t.dno 
  )
}
```
Find the names of employees who have no dependents.

\[
\{
 e.fname, e.lname \\
 | employee(e) \\
 AND NOT (
 d
 (
 dependent(d) \\
 AND e.ssn = d.essn
)
)

\}
\]
List the names of managers who have at least one dependent.

\[
\{ \\
| e.fname, e.lname \\
| employee(e) \\
| AND (d)(p) \\
| \text{department}(d) \text{ AND dependent}(p) \\
| AND e.ssn = d.mgrssn \\
| AND p.essn = e.ssn \\
| \text{AND } p.essn = e.ssn \\
\}
\]
The domain relational calculus uses variables that range over single values from domains of attributes.

In this section we will cover:
- Domain Relational Calculus Expression
- Domain Relational Calculus Atom
- Examples
Domain relational calculus expression can be written as:

\[\{x_1, x_2, ..., x_n \mid f(x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m}) \} \]

Where \(x_1, x_2, ..., x_n, x_{n+1}, ..., x_{n+m} \) are domain variables that range over domain of attributes. \(f \) is a condition or formula of domain relational calculus.
An atom is a building block of relational calculus expression.

An atom can be in one of the following forms:

- An atom of the form $R(x_1, x_2, ..., x_j)$, where R is a name of a relation of degree j and each x_i for $1 \leq i \leq j$ is a domain variable.

- An atom of the form $x_i \text{ op } x_j$, where op is one of the comparison operators (except \neq) and x_i and x_j are domain variables.

- An atom of the form $x_i \text{ op } c$ or $c \text{ op } x_j$, where op is one of the comparison operators (except \neq) and x_i and x_j are domain variables and c is a constant value.
-- Examples ...

- Retrieve the birth date and address of the employee

\[
\{ \text{uv} \\
| (q)(r)(s)(t)(w)(x)(y)(z) \\
(\text{employee(qrstuvwxyz)}) \\
\}
\]
Retrieve the birth date and address of the employee whose name is ‘Adel M. Ali’.

\[
\{ \\
\quad \text{uv} \\
\quad | \ (\ q) \ (\ r) \ (\ s) \ (\ t) \ (\ w) \ (\ x) \ (\ y) \ (\ z) \\
\quad (\\
\quad \quad \text{employee(qrstuvwxyz)} \\
\quad \quad \text{AND } q = \text{‘Adel’} \\
\quad \quad \text{AND } r = \text{‘M’} \\
\quad \quad \text{AND } s = \text{‘Ali’} \\
\quad) \\
\}
\]
Retrieves the name and address of all employees who work for the research department.

\[
\{ \\
\quad qsv \\
\quad \ | \ (z) (k) (m) \\
\quad \quad (\\
\quad \quad \quad \text{employee(qrstuvwxyz)} \text{ AND department(kmno)} \\
\quad \quad \quad \text{AND } k = \text{‘Research’} \\
\quad \quad \quad \text{AND } m = z \\
\quad \quad) \\
\quad \}
\]
Retrieve the name of employees who have no dependents.

\[
\{
\begin{aligned}
q &\quad s \\
\mid (t) \\
\{
\begin{aligned}
\text{employee}(qrstuvwxyz) \\
\text{AND NOT}(k) \\
\{
\begin{aligned}
\text{dependent}(kmnop) \\
\text{AND } t = k \\
\}
\} \\
\}
\}
\end{aligned}
\end{aligned}
\}
\]
Retrieve the name of employees who have no dependents.

\[
\{
 qs|
 \{
 t|
 (employee(qrstuvwxyz) AND (k)
 (NOT(dependent(kmnop)) OR NOT (t = k))
)
\}
\]
... ---- Examples

- List the names of managers who have at least one dependent.

\[
\{ \\
\text{sq} \\
\text{t} (j) (a) \\
(\\
\text{employee}(qrstuvwxyz) \\
\text{AND department}(hijk) \\
\text{AND dependents}(abcde) \\
\text{AND } t = j \\
\text{AND } a = t \\
) \\
\}
\]
Query-By-Example (QBE) language is a graphical query language with minimum syntax developed for database systems.

In QBE, a query is formulated by filling in templates of relations that display on a monitor screen.

Constants or example elements (a QBE term) can be filled in the columns of the template of that relation.
-- Example of QBE Queries

- Retrieve the birth date and address of Adel M. Ali

<table>
<thead>
<tr>
<th>Fname</th>
<th>Minit</th>
<th>Lname</th>
<th>Ssn</th>
<th>Bdate</th>
<th>Address</th>
<th>Sex</th>
<th>Salary</th>
<th>Superssn</th>
<th>Dno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adel</td>
<td>M</td>
<td>Ali</td>
<td>9</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employee

- Retrieve the birth date and address of Adel M. Ali

<table>
<thead>
<tr>
<th>Essn</th>
<th>Pno</th>
<th>hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>1</td>
<td>>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>20</td>
</tr>
</tbody>
</table>
--- Example of QBE Queries

- Retrieve the birth date and address of Adel M. Ali

<table>
<thead>
<tr>
<th>Fname</th>
<th>Minit</th>
<th>Lname</th>
<th>Ssn</th>
<th>Bdate</th>
<th>Address</th>
<th>Sex</th>
<th>Salary</th>
<th>Superssn</th>
<th>Dno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adel</td>
<td>M</td>
<td>Ali</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employee