Arrays 4/4
Outline

- Multidimensional Arrays
- Two-Dimensional Array as an Array of Arrays
- Using the length Instance Variable
- Multidimensional Array Parameters and Returned Values
- A Grade Book Class
- The Two-Dimensional Array grade
- Example
- Multidimensional Arrays …

- It is sometimes useful to have an array with more than one index

- Multidimensional arrays are declared and created in basically the same way as one-dimensional arrays
 - You simply use as many square brackets as there are indices
 - Each index must be enclosed in its own brackets

```java
double[][][] table = new double[100][10];
int[][][] figure = new int[10][20][30];
Person[][][] Person = new Person[10][100];
```
Multidimensional arrays may have any number of indices, but perhaps the most common number is two.

Two-dimensional array can be visualized as a two-dimensional display with the first index giving the row, and the second index giving the column.

```java
char[][] a = new char[5][12];
```

Note that, like a one-dimensional array, each element of a multidimensional array is just a variable of the base type (in this case, `char`).
Multidimensional Arrays

- In Java, a two-dimensional array, such as `a`, is actually an array of arrays.
 - The array `a` contains a reference to a one-dimensional array of size 5 with a base type of `char[]`.
 - Each indexed variable (`a[0]`, `a[1]`, etc.) contains a reference to a one-dimensional array of size 12, also with a base type of `char[]`.

- A three-dimensional array is an array of arrays of arrays, and so forth for higher dimensions.
Two-Dimensional Array as an Array of Arrays

Display 6.17 Two-Dimensional Array as an Array of Arrays

```java
char[][] a = new char[5][12];
```

Code that fills the array is not shown.

Blank entries contain the space (blank) character.

```
0 1 2 3 4 5 6 7 8 9 10 11
```

- **Once upon a time**
- **there were**
- **three little**
- **programmers**.
Two-Dimensional Array as an Array of Arrays

Display 6.17 Two-Dimensional Array as an Array of Arrays

```java
int row, column;
for (row = 0; row < 5; row++)
{
    for (column = 0; column < 12; column++)
        System.out.print(a[row][column]);
    System.out.println();
}
```

We will see that these can and should be replaced with expressions involving the `length` instance variable.

Produces the following output:

Once upon a time there were three little programmers.
- Using the length Instance Variable …

```java
char[][] page = new char[30][100];
```

- The instance variable `length` does not give the total number of indexed variables in a two-dimensional array
 - Because a two-dimensional array is actually an array of arrays, the instance variable `length` gives the number of first indices (or "rows") in the array
 - `page.length` is equal to 30
 - For the same reason, the number of second indices (or "columns") for a given "row" is given by referencing `length` for that "row" variable
 - `page[0].length` is equal to 100
The following program demonstrates how a nested for loop can be used to process a two-dimensional array.

Note how each length instance variable is used:

```java
int row, column;
for (row = 0; row < page.length; row++)
    for (column = 0; column < page[row].length; column++)
        page[row][column] = 'Z';
```
Methods may have multidimensional array parameters

- They are specified in a way similar to one-dimensional arrays
- They use the same number of sets of square brackets as they have dimensions

```java
public void myMethod(int[][] a)
{
    . . .
}
```

- The parameter `a` is a two-dimensional array
Methods may have a multidimensional array type as their return type

- They use the same kind of type specification as for a multidimensional array parameter

```java
public double[][] aMethod()
{
    . . .
}
```

- The method `aMethod` returns an array of `double`
- A Grade Book Class …

- As an example of using arrays in a program, a class **GradeBook** is used to process quiz scores

- Objects of this class have three instance variables
 - **grade**: a two-dimensional array that records the grade of each student on each quiz
 - **studentAverage**: an array used to record the average quiz score for each student
 - **quizAverage**: an array used to record the average score for each quiz
The score that student 1 received on quiz number 3 is recorded in `grade[0][2]`.

The average quiz grade for student 2 is recorded in `studentAverage[1]`.

The average score for quiz 3 is recorded in `quizAverage[2]`.

Note the relationship between the three arrays.
The Two-Dimensional Array grade

![Two-Dimensional Array Diagram](image)

Display 6.19 The Two-Dimensional Array grade

<table>
<thead>
<tr>
<th>student 1</th>
<th>student 2</th>
<th>student 3</th>
<th>student 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>quiz 1</td>
<td>quiz 2</td>
<td>quiz 3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

```
studentAverage
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>1.0</td>
<td>7.7</td>
<td>7.3</td>
</tr>
</tbody>
</table>

```
quizAverage
```

<table>
<thead>
<tr>
<th>quizAverage[0]</th>
<th>quizAverage[1]</th>
<th>quizAverage[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>5.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Example ...

```java
import java.util.Scanner;

public class GradeBook {

    private int numberOfStudents; // Same as studentAverage.length.
    private int numberOfQuizzes; // Same as quizAverage.length.

    private int[][] grade; // numberOfStudents rows and numberOfQuizzes columns.
    private double[] studentAverage;
    private double[] quizAverage;

    public GradeBook(int[][] a) {
        if (a.length == 0 || a[0].length == 0)
        {
            System.out.println("Empty grade records. Aborting.");
            System.exit(0);
        }
        numberOfStudents = a.length;
        numberOfQuizzes = a[0].length;
        fillGrade(a);
        fillStudentAverage();
        fillQuizAverage();
    }

    public GradeBook(GradeBook book) {
        numberOfStudents = book.numberOfStudents;
        numberOfQuizzes = book.numberOfQuizzes;
        fillGrade(book.grade);
        fillStudentAverage();
        fillQuizAverage();
    }

    public GradeBook() {
        Scanner keyboard = new Scanner(System.in);
        System.out.println("Enter number of students:");
        numberOfStudents = keyboard.nextInt();
        System.out.println("Enter number of quizzes:");
        numberOfQuizzes = keyboard.nextInt();
        grade = new int[numberOfStudents][numberOfQuizzes];
    }
}
```
for (int studentNumber = 1;
 studentNumber <= numberOfStudents; studentNumber++)
 for (int quizNumber = 1;
 quizNumber <= numberOfQuizzes; quizNumber++)
 {
 System.out.println("Enter score for student number "+ studentNumber);
 System.out.println("on quiz number "+ quizNumber);
 grade[studentNumber - 1][quizNumber - 1] =
 keyboard.nextInt();
 }
fillStudentAverage();
fillQuizAverage();
private void fillGrade(int[][] a)
{
 grade = new int[numberOfStudents][numberOfQuizzes];
 for (int studentNumber = 1;
 studentNumber <= numberOfStudents; studentNumber++)
 {
 for (int quizNumber = 1;
 quizNumber <= numberOfQuizzes; quizNumber++)
 {
 grade[studentNumber][quizNumber] =
 a[studentNumber][quizNumber];
 }
 }
}/* fills the array studentAverage using the data from the array grade. */
private void fillStudentAverage()
{
 studentAverage = new double[numberOfStudents];
 for (int studentNumber = 1;
 studentNumber <= numberOfStudents; studentNumber++)
 {
 double sum = 0;
 for (int quizNumber = 1;
 quizNumber <= numberOfQuizzes; quizNumber++)
 {
 sum = sum + grade[studentNumber - 1][quizNumber - 1];
 }
 studentAverage[studentNumber - 1] = sum/numberOfQuizzes;
 for (studentNumber is not studentAverage[studentNumber - 1])
 }
... - Example

```java
/**
 * Fills the array quizAverage using the data from the array grade.
 */
private void fillQuizAverage()
{
    quizAverage = new double[numberOfQuizzes];
    for (int quizNumber = 1; quizNumber <= numberOfQuizzes; quizNumber++)
    {
        // Process one quiz (for all students):
        double sum = 0;
        for (int studentNumber = 1;
             studentNumber <= numberOfStudents; studentNumber++)
            sum = sum + grade[studentNumber - 1][quizNumber - 1];
        // sum contains the sum of all student scores on quiz number quizNumber.
        quizAverage[quizNumber - 1] = sum / numberOfStudents;
        // Average for quiz quizNumber is the value of quizAverage[quizNumber - 1]
    }

    public void display()
    {
        for (int studentNumber = 1;
             studentNumber <= numberOfStudents; studentNumber++)
        {
            // Display for one studentNumber:
            System.out.print("Student " + studentNumber + " Quizzes: ");
            for (int quizNumber = 1;
                 quizNumber <= numberOfQuizzes; quizNumber++)
                System.out.print(grade[studentNumber - 1][quizNumber - 1] + " ");
            System.out.println(" Ave = " + studentAverage[studentNumber - 1]);
        }

        System.out.println("Quiz averages: ");
        for (int quizNumber = 1; quizNumber <= numberOfQuizzes; quizNumber++)
            System.out.print("Quiz " + quizNumber + " Ave = " + quizAverage[quizNumber - 1] + " ");
        System.out.println();
    }
}```
THE END