
March 23, 2008 ICS102: The course 1

Arrays 2/4

March 23, 2008 ICS102: The course 2

Outline

Arrays and References

Arrays and Objects

Arrays Parameters

Example

March 23, 2008 ICS102: The course 3

- Arrays and References

Like class types, a variable of an array type holds a
reference

Arrays are objects

A variable of an array type holds the address of where the
array object is stored in memory

Array types are (usually) considered to be class types

March 23, 2008 ICS102: The course 4

- Arrays are Objects …

An array can be viewed as a collection of indexed variables

An array can also be viewed as a single item whose value is a
collection of values of a base type

An array variable names the array as a single item

double[] a;

A new expression creates an array object and stores the object
in memory

new double[10]

An assignment statement places a reference to the memory
address of an array object in the array variable

a = new double[10];

March 23, 2008 ICS102: The course 5

… - Arrays Are Objects

The previous steps can be combined into one statement

double[] a = new double[10];

Note that the new expression that creates an array invokes a
constructor that uses a nonstandard syntax

Not also that as a result of the assignment statement above, a
contains a single value: a memory address or reference

Since an array is a reference type, the behavior of arrays with
respect to assignment (=), equality testing (==), and parameter
passing are the same as that described for classes

March 23, 2008 ICS102: The course 6

Pitfall: Arrays with a Class Base Type

The base type of an array can be a class type

Date[] holidayList = new Date[20];

The above example creates 20 indexed variables of type
Date

It does not create 20 objects of the class Date

Each of these indexed variables are automatically initialized to
null

Any attempt to reference any them at this point would result in
a "null pointer exception" error message

March 23, 2008 ICS102: The course 7

Pitfall: Arrays with a Class Base Type

Like any other object, each of the indexed variables requires
a separate invocation of a constructor using new (singly, or
perhaps using a for loop) to create an object to reference

holidayList[0] = new Date();
. . .

holidayList[19] = new Date();

OR

for (int i = 0; i < holidayList.length; i++)
holidayList[i] = new Date();

Each of the indexed variables can now be referenced since
each holds the memory address of a Date object

March 23, 2008 ICS102: The course 8

- Array Parameters …

Both array indexed variables and entire arrays can be
used as arguments to methods

An indexed variable can be an argument to a method in exactly
the same way that any variable of the array base type can be
an argument

March 23, 2008 ICS102: The course 9

… - Array Parameters …

double n = 0.0;

double[] a = new double[10];//all elements
//are initialized to 0.0

int i = 3;

Given myMethod which takes one argument of type double, then
all of the following are legal:

myMethod(n);//n evaluates to 0.0

myMethod(a[3]);//a[3] evaluates to 0.0

myMethod(a[i]);//i evaluates to 3,
//a[3] evaluates to 0.0

March 23, 2008 ICS102: The course 10

… - Array Parameters …

An argument to a method may be an entire array

Array arguments behave like objects of a class

Therefore, a method can change the values stored in the
indexed variables of an array argument

A method with an array parameter must specify the base
type of the array only

BaseType[]

It does not specify the length of the array

March 23, 2008 ICS102: The course 11

… - Array Parameters …

The following method, doubleElements, specifies an
array of double as its single argument:

public class SampleClass
{
public static void doubleElements(double[] a)
{
int i;
for (i = 0; i < a.length; i++)
a[i] = a[i]*2;

. . .
}

. . .
}

March 23, 2008 ICS102: The course 12

… - Array Parameters

Arrays of double may be defined as follows:

double[] a = new double[10];
double[] b = new double[30];

Given the arrays above, the method doubleElements
from class SampleClass can be invoked as follows:

SampleClass.doubleElements(a);
SampleClass.doubleElements(b);

Note that no square brackets are used when an entire array is
given as an argument

Note also that a method that specifies an array for a
parameter can take an array of any length as an argument

March 23, 2008 ICS102: The course 13

Pitfall: Use of = and == with Arrays

Because an array variable contains the memory address of
the array it names, the assignment operator (=) only copies
this memory address

It does not copy the values of each indexed variable

Using the assignment operator will make two array variables
be different names for the same array

b = a;

The memory address in a is now the same as the memory
address in b: They reference the same array

March 23, 2008 ICS102: The course 14

Pitfall: Use of = and == with Arrays

A for loop is usually used to make two different arrays
have the same values in each indexed position:

int i;
for (i = 0;

(i < a.length) && (i < b.length); i++)
b[i] = a[i];

Note that the above code will not make b an exact copy
of a, unless a and b have the same length

March 23, 2008 ICS102: The course 15

Pitfall: Use of = and == with Arrays

For the same reason, the equality operator (==) only tests
two arrays to see if they are stored in the same location in
the computer's memory

It does not test two arrays to see if they contain the same
values

(a == b)

The result of the above boolean expression will be true if a
and b share the same memory address (and, therefore,
reference the same array), and false otherwise

March 23, 2008 ICS102: The course 16

Pitfall: Use of = and == with Arrays

In the same way that an equals method can be defined
for a class, an equalsArray method can be defined for
a type of array

This is how two arrays must be tested to see if they contain
the same elements

The following method tests two integer arrays to see if they
contain the same integer values

March 23, 2008 ICS102: The course 17

Pitfall: Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] b) {
if (a.length != b.length) return false;
else {
int i = 0;
while (i < a.length) {
if (a[i] != b[i])
return false;

i++;
}

}
return true;

}

March 23, 2008 ICS102: The course 18

- Example …

March 23, 2008 ICS102: The course 19

… - Example

March 23, 2008 ICS102: The course 20

THE END

