

	A Generalized Simulated-Annealing
of Analysis	Optimization for Inversion of First-Arrival Times
ly	Sathish K. Pullammanappallil and John N. Louie Seismological Laboratory (174), Mackay School of Mines, University of Nevada, Reno
An	Published in Bulletin of the Seismological Society of America, Vol. 84, No. 5, pp. 1397-1409, October 1994
	Abstract
Methods	We employ a Monte Carlo-based optimization scheme called generalized simulated annealing to invert first-arrival times for velocities. We use "dense" common depth point (CDP) data having high multiplicity, as opposed to traditional refraction surveys with few thots. A fast finite-difference solution of the eikonal equation computes first arrival travel times through the velocity models. We test the performance of this optimization scheme on synthetic models and compare it with a linearized inversion. Our tests indicate that unlike the linear methods, the convergence of the simulated-annealing algorithm is independent of the initial model. In addition, this scheme produces a suite of "final" models having comparable least-square error. These allow us to choose a velocity model most in agreement with geological or other data. Exploiting this method's extensive sampling of the model space, we can determine the uncertainties associated with the velocities we obtain.
http://f	aculty.kfupm.edu.sa/ES/oncel/2dtomographypaper.pdf

щ	■ oncel_default_src - WordPad File Edit View Insert Format Help □ <t< th=""></t<>
INPUT FILE: SOURCE	□ □

RS	File Edit View	
N N	Insert Format Help	<mark>) ()</mark>
INPUT FILE: RECEIVERS	□≌∎ ⊜և#	(milisec)
R	11.75 🔺	
ш	15.125	Picked Data
=	18.375	<mark>ت ا</mark>
Ľ	23.375	ed ed
5	25.625	l <mark>Š</mark>
d l	29	<u>Ē</u>
4	31.75	
	33.375	

UNIT

- Please be careful about the unit of data provided by SeisPicker a data is in SECOND while INTERPEX provides a data in Milliseconds.
- Make sure what the unit of your data is? Otherwise your model will be wrong and program might not work properly.

Automatic Velocity Calculation

1.Run RIOTS with default Highest Setting (Autocal on). Give the run an extension say "1". In my case, I gave oncel_1.

2.Note down the nx, nz, hx, hz values. Run to completion, or click end/terminate to stop the process.

SENIOR PROJECT-GEOP402

Browse "Your Fil	les″	STEP3
👙 RIOTS Sett	ings	
	Autocal 🖡	2
The "Time Units" can be in	Units	Vieters 👻
"seconds" by SeisPicker or	Time Units	millisecs 👻
-	Sources file	
	Receivers file	
sure what is the unit of your	Picks file	fault_obs.txt Browse
data?	Resolution	
	nx	
Work under the option	nz	
"Autocal" and select "Highest"		1.875000e+000
5		1.875000e+000
or "HIGH". Do not forget to ma		
browse your files and define file two		
of your output. Then, Click	Max. Velocity	
"OK"	Min. Velocity	
	Source count	9

Continue			104 S	ТЕРЗ
Source Count should be 9 (sir you have 13 shot points).		hx hz izontal Distances ?	1.875000e+00 1.875000e+00	
Pick Count should be 288 (to number of picks in your obs file DO NOT select "Set Iteration". DO NOT set "Max Iteration" DO NOT select "Restart"	Set velocity bounds Max. Velocity Min. Velocity Source count Pick count Output directory	9	Browse	
I gave a simple name for out p "oncel_1". Then, following iterations continue as "1, 2". You can se labeling for your data depending interest.	s, I will elect a	Output extension Set iterations Max. Iteration Restart Input v.final file	0	Browse
The last three are for further refining after you run the model once. Don't worry about those now.	Dimer	Input v.final file Input velplot file OK		Browse Browse

Steps

- · First step is over by Automated Calculation of Velocity Model based on HIGHEST option. Then, optimization parameters "nx, nz, hx, hz" are provided.
- · Next step, creating different input files, we will release depth resolution parameter (nz) while keeping others are kept constant. Then, we will use those files for BATCH process. Then, we will review the errors and try to find best model.

Step 1: Click on RIOTS Settings window. Use the same nx, hx, hz values as in step 2, but increase nz by 1. Give it an extension, say "2". Click "OK". THis will create a file called "riotsinput_2" in the folder specified for the output files Step 3: Repeat step1 by increasing nz by 1.

nx=104 nz=63 hx=1.8750)00e+000) hz=9	.375000)e-001 m	
ep 1: Click on RIOTS ings window. Use the same	Playing	with	values	<mark>of nz (=63)</mark>	
hx, hz values as in step 2,	nz		OUTPUT EXT.		
ncrease nz by 1. Give it an nsion, say "2". Click "OK".	Down	Up	Down	Up	
s will create a file called	62	64	d1	u1	
sinput_2" in the folder	61	65	d2	u2	
cified for the output files	60	66	d3	u3	
tep 3: Repeat step1 by	59	67	d4	u4	
easing nz by 1.	58	68	d5	u5	

Step 3: Repeat step 1 and 2 until you have created 5 riotsinput files that have "nz" values greater than default nz, each time increasing by 1. DO the same, for 5 riotsinput values that have nz values less than default nz, each one 1 less than the previous.

NZ values

🔹 RIOTS Settings			🎪 RIOTS Settings			
Autocal			Autocal			
Units	Meters		Units	Meters		
Time Units	millisecs	۲	Time Units	millisecs	•	
Sources file	L_default_src.bt	Browse	Sources file	I_default_src.bd	Browse	
Receivers file	l_default_rec.bt	Browse	Receivers file	I_default_rec.bt	Browse	
Picks file	_default_obs.bd	Browse	Picks file	_default_obs.bt	Browse	
Resolution	Lowest	~	Resolution	Lowest	v	
nx	104		nx	104		
nz	64			65		
ha	1.875000E+000		hx	1.875000E+000		
hz	9.375000E-001		hz	9.375000E-001		
Horizontal Distances ?			Horizontal Distances ?			
Set velocity bounds			Set velocity bounds			
Max. Velocity			Mar. Velocity	R.		
Min. Velocity			Min. Velocity			
Source count	9		Source count	9		
Pick count	200		Pick count			
Output directory	C:/Optimi/Oncel	Browse.	Output directory	C:IOstimiOncel	Drowse_	
Output extension	u1		Output extension	uil .		
Sat Iterations			Set terations	C		
Max. Reration	0		Max. Reration	0		
Restart			Restart			
Input v.final file	.w.final	Browse_	Input v final file	.V.final	Browse_	
C Dimension File		Browse_	Dimension File		Browse	
input velplot file	welplot	Browse_	Input velplot file	Nelplot	Browse_	
OK	Cano	let	OK	Can	cel.	

nIOTS Settings		- • •	Strain RIOTS Settings		- 0 2
Autocal			Autocal		
Units	Meters	•	Units	Meters	
Time Units	millisecs	•	Time Units	millisecs	
Sources file	L_default_src.bt	Browse	Sources file	L_default_src.bt	Browse
Receivers file	L_default_rec.bt	Browse	Receivers file	I_default_rec.bt	Browse
Picks file	_default_obs.bt	Browse	Picks file	_default_obs.bt	Browse
Resolution	Lowest	¥.	Resolution	Lowest	4
nx	104			104	
nz	60		n2	59	
hx	1.875000E+000		hx	1.875000E+000	
hz	9.375000E-001		ha	9.375000E-001	
Horizontal Distances ?			Horizontal Distances ?		
Set yelocity bounds	.		Set velocity bounds		
Max. Velocity			Max. Velocity	-	
Min. Velocity			Min. Velocity	1	
Source count	9		Source count 9		
Pick count	288		Pick count		
Output directory	C:\Optim\Oncel,	Browse_		C.\OptimiOncel	Browse_
Output extension	d3		Output extension		
Settlerations	T .		Setitorations		
Max. Relation	0		Max, Iteration		
Restart			Restart		
Input v final file	'w final	Browse_	input v final file	Jefinal	Browse
Dimension File		Browse_	C Dimension File		Browse
input velptot file	welplot	Browse	Input velplot file	welplot	Browse
	Can		OK	Cano	iel lec

Picking and Errors

>PICKS can vary from user to user, thus picks have errors in them too.

>When dealing with inversion problems, one has to look at the models and decide what looks realistic based on expected geology, in addition to just the error.

>The reason why one has to run with different "nz" values is to get a suite of models that one can then compare in order to determine to best model.

SENIOR PROJECT-GEOP402

Results

- 1. Choose the ones that have the lowest error (say 3 lowest errors). and load the Velfiles and Hitfiles corresponding to these into SeisOpt2d.
- 2. Select the one that best corresponds to geology.
- 3. Repeat all of the above with "High" if model is complex and has too may low-vel /anomalous zones that don't appear real.

Review Click Settings and SET UP HITFILES and VELFILES to REVIEW. ✤ Files to View and View Mode Number of views Interactive Velocity Graph vutput_HIGHEST1\Velfile_d5 ---- View 0 ----Browse. Interactive Velocity Graph vutput_HIGHEST1\Velfile_d1 --- View 1 ----Browse.. --- View 2 ---Interactive Velocity Graph Jutput_HIGHEST1Welfile_d4 Browse. Cance 👙 Files to View and View Mode Number of views ---- View 0 ----Interactive Velocity Graph 💌 🔍 Browse. Interactive Velocity Graph voutput_HIGHEST1\Hitfile_d1 Interactive Velocity Graph voutput_HIGHEST1\Hitfile_d4 --- View 1 ----Browse.. --- View 2 ---Browse Ok Cancel

Suggestions

- Please note previous modeling is based on the case for running data at the "HIGHEST" setting.
- Also, one may want to run it at the "High" setting.
- Sometimes that works better than "Highest". So you should do the same with High settings and see if the errors are comparable.

Personal Communication, Dr.Satish, 2007

Difference in Settings

Difference between Highest and High is with "hz" parameter.

- ≻High Setting: hx=hz
- ≻ Highest Setting: hx≠hz, because Highest hz = (High hz)/2.

So, HIGH setting are sampling the depth direction more not horizontal. You will end with higher resolution in depth, but that is not necessarily always desirable. You may end with structures that are not real.

Setting Errors								
	nz	Name	Error	-	nz	Name	Error	
	38	u5	3.90E-06		58	d5	3.82E-06	
9	30	d3	4.37E-06	σ	62	d1	3.88E-06	
L	36	u3	4.50E-06	Ë.	59	d4	3.97E-06	
Setti	29	d4	4.54E-06	etti	65	u2	4.22E-06	
Se	32	d1	4.80E-06	Š	64	u1	4.24E-06	
h (33	Autocal	5.26E-06	ы.	68	u5	4.24E-06	
ig	37	u4	5.45E-06	Ğ	61	d2	4.60E-06	
Т	35	u2	5.52E-06	Ч Б	63	Autocal	4.77E-06	
	28	d5	5.87E-06	Highest	67	u4	4.88E-06	
	31	d2	6.60E-06		60	d3	4.98E-06	
	34		6.82E-06			u3	5.03E-06	
Γh	at wł	hat we	do here i	s running o	differ	ent nz v	/alues, th	е

sorting them based on error and selecting the best one among the best fit models? What setting provides a better estimates of velocity model?

nz	Name	Error					
58	d5	3.82E-06		nz	Name	Error	
	d1 u5	3.88E-06 3.90E-06		= 0			
	d4	3.97E-06		58	d5	3.82E-06	
	u2	4.22E-06			14		
	u1	4.24E-06		62	d1	3.88E-06	
	u5	4.24E-06					
	d3	4.37E-06		38	115	3.90E-06	
	u3	4.50E-06		50	uJ	0.00L-00	
	d4	4.54E-06					
	d2	4.60E-06					
63	Autocal			I mixed	errors up ar	nd sorted them	
32	d1	4.80E-06					
67	u4	4.88E-06		to list t	ne best thre	e models. We	
	d3	4.98E-06		already	ignored mod	tel 2 hefore	
66	u3	5.03E-06		,	0		
33	Autocal			ould say th	ne difference bet	ween High and Highest	
37	u4	5.45E-06	bes	st runs are	less than 10%. C	onsidering how complex	
35	u2	5.52E-06	the	model is	(with low-veloci	ty zones), I would be	
28	d5	5.87E-06				moother model. In other	
31	d2	6.60E-06					
34	31 u2 0.00E-00 words, the best High model you have (Personal 34 u1 6.82E-06 Communication, Dr.Satish, 2007)						

Source: Equation 1 of Dr.Satish's paper, 1994

Mapping of Velocity Data

You can use the data of velocity and hit counts to under different map program. For example, I used SURFER to map the map of velocity.

Do you think that it might be a good idea to integrate velocity data which is presented by two maps? What can you suggest?

Understanding Geology

- · Interpretation for the created maps of velocity can be conducted if we can understand the area of geology where the survey is done. One can select one of best models which velocity model fits the geology of the area.
- · Looking up local geology or lithology logs to see what is to be expected might enhance our understanding.

Remarks for Future Works

- 1) Model Integration: It can be checked model integration to increase sensitivity of Velocity following creating by a couple maps of average velocity.
- 2) Maps of Error: One can also create maps of standard errors, then it might be easier to distinguish a range from the best part of model to the worst part of model.

Summary

- >RUN it with default settings (Highest or High).
- **SENIOR PROJECT-GEOP402** ➤CREATE different input files with different NZ values, keeping NX, HX and HZ same.
 - SET UP and run BATCH process.
 - ► REVIEW all models (Velfile, Hitfile and riotsmsg file).
 - > CHOOSE best model based on error and geology

Acknowledgement

- I have prepared tutorial for making help for users of SeisOPT@2D.
- **SENIOR PROJECT-GEOP402** • I appreciate very much to Dr.Satish Pullammanappallil from Optim Company, who always provided me Optim continuous support for any problem.
 - Please let me know if you have any problems for any step through my email: oncel@kfupm.edu.sa