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Abstract

In 1997 1500 km of high resolution 2D reflection seismic data were acquired in

the Sea of Marmara region, western Turkey. An archive of the 40 profiles of pro-

cessed seismic data, in SEGY format, together with the DGPS (Differential Global

Positioning System) locations and acquisition parameters for each profile are available

for download from IRIS.

Introduction

The Marmara-97 multichannel seismic reflection profile data were collected be-

tween 29 August and 21 September 1997. This dataset has been used previously to

generate a map of the faults in the Sea of Marmara [Parke, 1999,2002; Okay, 2000;

Imren, 2000], but has not been presented in its entirety. Locations of the lines were

planned based on a study of previous work [Barka, 1988; Wong, 1995; Smith, 1995]

and of the known faults onshore, to the east, west and south of the Sea of Marmara

[Saroglu, 1992] [Fig. 1]. The style of deformation onshore indicates a general east-

west trend to the faults, which is borne out in the marine survey.

We recorded fewer profiles in the central part of the northern Sea of Marmara, due

to the logistic constraints of major shipping lanes in this area, and to time constraints

for the survey. The east-west tie lines were for the most part over the southern shelf,

leading to difficulties in correlating the stratigraphy in the deep basins, although pen-

etration was not sufficiently deep to be able to image the basement reflectors in these

areas anyway.
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Figure 1: Map of the Sea of Marmara region, showing the locations of the seismic reflection

profiles acquired in 1997 (solid lines), and the Turkish Petroleum profiles available prior to

acquisition (dashed lines). Topography is from the USGS GTOPO30 dataset. Bathymetry has

been digitised from Turkish Admiralty maps.
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Figure 2: Schematic diagram of ship geometry during Marmara Sea cruise. All distances are

measured in meters relative to the GPS antenna on the ship. The configuration shown is for a

maximum streamer length of 1,500 m.

Data Acquisition

The normal-incidence multichannel seismic data acquired during the Marmara-97

cruise were recorded using a 120 channel streamer with a 12.5 m group interval; a

total length of 1500 m [Fig. 2]. During acquisition, some sections of the streamer

proved unreliable, so the number of active channels varied from 66 to 120, with a

corresponding variation of fold in the data.

Each airgun in the 10-gun array had a selectable capacity of either 90
�����

or 210
�����

. A larger shot spacing would therefore allow more time for the compressor to

resupply the array, and hence allow a larger array volume. An optimal volume of 1380
�����

was used (4 airguns at 210
�����

and 6 at 90
�����

) which was triggered every 50 m,

shooting on distance, from differential GPS (DGPS), or at fixed time intervals of 22

seconds, when DGPS was unavailable ( 	 1% of acquisition).

The streamer was equipped with 10 ‘birds’ to assist depth control when towing.

The bird wings had a pitch variation of 
 17 � from the horizontal and were used

to attain a nominal streamer depth of 10 m. This depth varied considerably due to
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variations in speed of the ship, largely because of other traffic. The changes in speed

caused the streamer to kink and bow in the water, and this is manifested by some noisier

parts of the data. The birds also had electronic compasses, which gave an indication

of their heading. The acquisition system logged the location of the ship, water depth,

bird depth and heading for each shot.

From examination of the magnetic data from the birds, the streamer was at times

being towed at an angle of 20 � to the sail line. This leads to an off-line location of

� 600 m at the far end of the streamer, and the tail-buoy. This does not appear to be

significant in deeper water, but means that far-offset arrivals at the start and end of the

lines, when the streamer may not be straight, are very different from near-offset. This

problem is most apparent in shallow water. It was overcome by applying a time-offset

dependent mute to the shot gathers. This removed refracted arrivals at far-offsets in

shallower water, and spurious arrivals at the start and end of the lines when the ship

was turning in a tight arc.

Processing

The processing scheme [Fig. 3] began with the SEG-Y data being read in from

field tapes, during which the data were resampled to 4 ms, and record length 5 s.

Every 30th shot (roughly 10 minutes of acquisition) was examined visually for dead or

noisy channels, which were then muted.

The data were then bandpass filtered with an Ormsby minimum phase bypass gate

filter [Yilmaz, 1987] at 3-5-80-120 Hz and sorted into their CDP bins, with a t-squared

amplitude recovery gain [Fig. 3].

For brute processing of the reflection data, the following strategy was devised: the

near-offset channel (96) was displayed, and the sea-floor two-way time (TWT) was

picked. An interval velocity model was generated, with velocities of 1500 m/s, 1800
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Figure 3: Flow diagram showing the generic processing steps applied to the seismic data

during reprocessing.

m/s, 2500 m/s and 4000 m/s at 0 ms, 500 ms, 1500 ms and 2500 ms below the sea-

floor respectively. These numbers were based on velocity analyses of the first few

lines acquired, and were generally a good basis for the velocity structure of the basin

fill sediments elsewhere in the area. This model was converted to RMS velocities, and

applied as a normal moveout correction to the data, with a 30% stretch mute. The data
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were mean trace summed, normalised by
� �

.

During reprocessing of specific sections of the reflection profile data, an RMS ve-

locity function was determined by normal moveout (NMO) velocity analysis using

constant velocity NMO corrected CDP gathers and semblance analysis plots [Yilmaz,

1987]. The volume of data acquired was too great to permit a high resolution analysis

everywhere, so a generic strategy was devised in which velocities were picked ap-

proximately every 2000 CDPs, or where there was a visible change in lithology in the

brute stacked profile. Where sections were processed to highlight a particular feature,

a specific velocity model was picked for that area.

The data were next muted with a linear ramp from maximum at 4500 ms down

to zero amplitude at 5000 ms. Stolt f-k migration [Stolt, 1978] was performed with a

uniform water velocity of 1500 m/s. A cosmetic sea-floor mute was applied to both the

stack and the migration before printing for interpretation.

Reflection Profile Data

For the purposes of this distribution, the CDP bin spacing has been doubled from

6.25 m to 12.5 m, in order to reduce the size of the dataset. This doubling was achieved

by binning consecutive pairs of traces in the stacked data. Consequently only the odd

CDP numbers are present in the stacked and migrated profiles presented here. The

high frequency of the source wavelet means that the data are useful for observing small

features associated with shelf processes [e.g. Fig. 4]. The dataset coverage of the Sea

of Marmara also means that regional basin spanning lines are available [Fig. 5]
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Figure 4: Sample migrated reflection profile from the central Sea of Marmara, showing un-

conformities in the shelf sediments.
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Figure 5: Sample migrated reflection profile from the eastern Sea of Marmara, showing dip-

ping limestone basement from CDP 1000-3600, with unconformable deposits above. An in-

filled incisional canyon is highlighted at CDP 7600.
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The data archive also includes the acquisition parameters for each profile, as well

as the differential GPS shot locations, and locations of the CDP bins for each line. The

complete dataset is available for download from IRIS. Users who wish to request the

dataset should go to:

http://www.iris.washington.edu/data/req methods.htm

From there, one should select the ’Assembled Set web form’ tool. The Assembled

Set title for this dataset is ’Marmara Sea Reflection Profile’ (nickname MARM). The

dataset number is 03-001.
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İmren, C., Le Pichon, X., Rangin, C., Demirbağ, E., Ecevitoğlu, B. & Görür, N.,
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