Refraction Microtremor Technique Based on tow ideas: -Standard refraction equipment: e.g. microtremor. thy used for: *4.5 to 14 Hz (or higher) vertical geophones. -Slowness-frequency transformation of the recorded microtremor: Separate Rayleigh waves from other seismic arrivals.

Comparative Study of the Refraction Microtremor (ReMi) Method: Using Seismic noise and standard P-wave refraction equipment for deriving 1-D S-wave profiles

Satish Pullammanappallil and Bill Honjas

Advantages of using SeisOpt ReMi: -Data acquisition and analysis takes few hours.

-No physical restrictions.

-No specialized recording equipment required

-No artificial seismic source.

-Can be used offshore as effectively as on-shore.

Why SeisOpt® ReMi™

Disadvantages of commonly used method: Drilling and logging S-wave velocities: expensive and take along time. *Permitting required Physical restrictions*

Surface methods: expensive and take along time. Specialized recording equipment required Artificial seismic source required

Lower limit of the apparent phase velocities can be recognized as the true phase velocities **Step 2**: Fourier transformation: p-T to p-f domain

 $F A(p,f = mdf) = \sum A(p,T = kdt)ei2\pi m df kdt$

Step 3: Velocity Spectral Analysis : Power spectrum

$$\begin{split} SA(|p|,f) &= [SA(p,f)]p >= 0 + [SA(-p,f)]p < 0:\\ Stotal(|p|,f) &= \Sigma \ SAn(p,f)] \end{split}$$

• <i>Co</i>	трс	iris	on	of S	Seis	Opt 1	ReM	li wi	ith S	SCP	T
30 0	00 5	00	700	900	1100	1300	1500	1700	1900	2100	230
-10	4	-				-			_		
-20					-						_
-30			-		-	=		-	∍⊢	-	_
-40 -50 -60	Depth, f	C			14		ismic Co rca 1997	ne Penetr	ation Tes	t (SCPT)	
2003 Opt -70	tim LLC										
-80			-	_		_	L	_	_	_	-
-90			-	-		_	_	-	-	-	+
-100											

• ReMi Vs profiles can be used for:

-Earthquake site response.

-Liquefaction analysis.

-Mapping the subsurface and estimating the strength of subsurface material.

-Complementing seismic refraction analysis in areas characterized by near-surface velocity reversals.

-Finding buried cultural features, such as dumps and fill material in submerged structures.

-Determining soil classification for offshore projects.

Conclusion: SeisOpt® ReMi™

-Compares well with previously used 1-D shear wave measurement techniques: Economic, accurate and reliable.

-Determine shear strength of subsurface material

-Save money in performing seismic site characterization studies