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Table 4-1. Migration types.

Type Discussion
Stack The section the interpreter
always wants.
Depth Conversion Along - Stniculy valid only for velocity
Venrtical Raypaths that varies with depth,
without structural dip.
~Time Migration Needed when the stacked

section contains diffractions
or structural dip. Valid for
vertically varying velocity.
Acceptable for mild lateral
velocity variations.
_—~Depth Migration Needed when the stacked

section contains structural
dip and large lateral velocity

gradients.
Prestack Partial Poststack migration is
Migration (PSPM) acceptable when the stacked

section 1s equivalent to a
zero-offset section. This is
not the case for conflicting
dips with differemt stacking
velocities or large lateral
velocity gradients. PSPM
[Dip Moveout {DMO)]
provides a better stack that
can be migrated after stack.
However, PSPM only solves
the problem of conflicting
dips with different stacking

. ) velocities.
_~Full-Time Migration The output is a migrated
Before Stack section. No intermediate

unmigrated stacked section is
produced. This often is not
what the interpreter wants:
he must have an unmigrated
stacked section and its
migrated form. Nevertheless.
this is the rigorous solution 10
the problem of conflicting
dips. PSPM is a simplification
of this process,
Depth Migration Before Needed when there are
-~ Stack extremely strong lateral
: velocily gradients that cannot

be treated properly by

) ) stacking.
_~3-D Time Migration Needed when the stack
After Stack contains dipping evenls that

are out of the profile plane
(crossdips). After stack. this
1s the most common type of
3-D migration.

— 3-D Depth Migration Needed when the problem of
After Stack strong lateral velocity
variauon involves 3-D
subsurface structural
complexity.
—3-D Time Migration Needed when PSPM fails and
Before Stack when the stack contlains
crossdips,
- 3-D Depth Migration What evervone would like to
Before Stack have if computer time were

abundant and if the 3-D
subsurface velocity model
were known accurately.

FIG. 4-6. A 2-D CMP stack (a) truly represents a 3-D wave »
field cross section. Thus, it can contuin energy from outside
the 2-D profile plane. A 2-D migration (b) is inadequate when
this kind of energy is present on the 2-D CMP stacked
section. (¢) Clear imdging of the salt structure requires both
3-D data collection and 3-D migration (Chapter 6). (Data
courtesy Nederlandse Auardolie Mautschappyy B.V.)
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to the depth axis is done by using the relation z = va/2.
We will examine the horizontal and vertical displace-
ments as seen on the migrated time section. The amount
of horizontal and vertical displacement that takes place in
migrating dipping reflector C'D’ to its true subsurface
position CD can be quantified. From Figure 4-15, consid-
er a reflector segment AB. Assume that AB migrales 10
A'B’ and that point C on AB migrates to point C' on A'B'.
The horizontal and vertical (time) displacements d, and d,
_and the dip angle after migration 6, (all measured on the
_migrated_time_section) can be expressed in terms of
medium velocity v, traveltime 1, and apparent dip of the
~reflector as seen on the unmigrated time section §,. Chun
“and Jacewitz (1981} derived the following formulas:

. d,=(v’t tan 8,)/4 (4.1)
!
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FIG. 4-14. Migration principles: The reflection segment C'D’
in the time section (b), when migrated, is moved updip,
steepened, shortened, and mapped onto its true subsurface
location CD (a). (Adapted from Chun and Jacewitz, 1981.)
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d, = t{l = [1 — (v* tan? 0,)/4]'} ' (4.2)

tan B, =tan 8,/[1 — (v? tan? 0,)/4]"/%, (4.3)

\

_wheretan 8, = At/Ax, as measured on the unmigrated time
_section. __

To gam a better understanding of these expressions, we
consider a numerical example. For a realistic velocity
function that increases with depth, consider five reflect-
ing segments al various depths. For simplicity, assume
that quantity A#/Ax is the same for all (10 ms per 25-m
trace spacing). From the expressions in equations (4.1).
{(4.2), and (4.3), compute the horizontal and vertical
displacements 4, and d, and the dips (in ms/trace) after
migration. The results are summanzed in Table 4-2.

Table 4-2. Horizontal and vertical displacements of points on
dipping reflectors at various depths and changes in dip angle
as measured on a time section as a result of migration.

r(s) wvimis) d.(m) d,(s)

8, (ms/trace) 8, (ms/trace)

1 2500 625 0.134 10 1.5
2 3000 1800 0.400 10 12.5
3 3500 3675 0.858 10 14.0
4 4000 6400 1.600 10 16.7
5 4500 10125 2.820 10 23.0
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FIG. 4-15. Quantitative analysis of the migration process.
Point C on dipping reflector AB is moved to C' after
migration, The amount of horizontal displacement d,, verti-
cal displacement d,, and dip angle aFer migration 8, is
calculated from equations (4.1), 4.2), and (4.3). Here, Ax =
AD, At = BD.
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FIG. 6-1. A subsurface model consisting of a single dipping
plane interface in a homogeneous medium. Line A 1s 1n the
dip direction, line B is in the sirike direction, and line Cis in
an arbitrary direction. After migration, data recorded at the
intersection point X on these three lines migrate to positions
corresponding to different subsurface locations. Schematic
illustrations of the migrations are shown in Figures 6-2 and
6-3. (Adapted from Workman, 1984.)

Although principles of 3-D migration are discussed in
Section 6.5, we need to assess the interpretational differ-
ences between 2-D and 3-D migrations. Figure 6-4 shows
an in-line (left column) and a cross-line (nght column)
stacked section from a land 3-D survey and their 2-D and
3-D migrations. Note that 3-D migration has yielded a
better definition of the top (T) of the salt dome and better
delineation of the faults along the base (B) of the salt
dome. There is no doubt thal the interpretation based on
2-D imaging is significantly different from interpretation
based on 3-D imaging.

Figure 6-5 is another example of the significant improve-
ment available from the interpretation of a 3-D migrated
section. Note that the two sall domes and the syncline
between are delineated better after 3-D migration. Three-
dimensional migration often produces surprisingly differ-
ent seclions from 2-D migrated sections. The example in
Figure 6-6 shows a no-reflection zone on the 2-D migrat-
ed section, while the same zone contains a series of
contlinuous reflections on the 3-D migrated section that
are easily correlated with reflections outside that zone.

As noted earlier, 2-D migration can introduce misties
between 2-D lines in the presence of dipping events.
Two-dimensional migration cannot adequately image the
subsurface, while 3-D migration eliminates these misties
by completing the imaging process. This is demonstrated
in Figure 6-7 in which the correlation of an in line and a
cross line can be examined at their intersection (indicated
by the vertical bar). The slight mistie problem that is
evident on the 2-D migrated sections (especially apparent
between 1.3 and 2 s) is eliminated on the 3-D migrated
sections.

From the field data examples. we see that 3-D migration
provides complete imaging of the 3-D subsurface geolo-
gy. In contrast, 2-D migration can yield inadequate -
results. The difference between 2-D seismic and 3-D -~
seismic is the way in which migration is performed. _
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FIG. 6-2. (a) Migration along the dip line and (b) along the
strike line over the depth model in Figure 6-1. Point D afier
migration 15 moved updip 1o D’ along dip line A. Point D
does not move after migration along strike line B. This
causes the mistie indicated between the two migrated sec-
nons.
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FIG. 6-3. Plan view of the mugrations at the intersection
point along the three lines indicated in Figure 6-1. Point D
moves Lo D', its true subsurface position. along dip line A.
Point D does not move on strike line B. The same point
moves to D'"along line C, which is in an arbitrary direction.
Complete imaging is achieved by migrating the data agamn
along the direction perpendicular to C to move the energy
from D" 10 D'".

Dense coverage on Lop of the target zone, say a 25-m in-
line trace spacing and a 25-m cross-line trace spacing., will
not necessarily provide adequate subsurface imaging
unless migration is performed in a 3-D sense.

Figure 6-8 shows an increasingly modified and improved
interpretation made from seismic data that were obtained
from detailed 2-D surveys in an area between 1964 anc
1970. The reconnaissance survey in the first year olf
exploration (1964) consisted of only a few lines. A
preliminary time structure map based on this initia
survey inferred a structural closure with a northwesterly
trend. In the second year of explorauon (1965). more
lines were shot in the same directions as before and the
structural closure was verified somewhat. Lines were
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FIG. 4.1-9. The gap in the barrier acts as Huygens' sec-
ondary source, causing the circular wavefronts that approach
the beach line. (Adapted from Claerbout, 1985.)
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FIG. 4.1-10. Waves recorded along the beach generated by
Huygens’ secondary source (the gap in the barrier in Figure
4.1-9) have a hyperbolic traveltime trajectory.
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FIG. 4.1-11. A point that represents a Huygens' secondary
source (a) produces a diffraction hyperbola on the zero-offset
time section (b). The vertical axis in this section is two-way
time, while the vertical axis in the time section in Figure
4.1-10 is one-way time.

FIG. 4.1-12. Superposition of the zero-offset responses (b)
of a discrete number of Huygens' secondary sources as in

(a).

FIG. 4.1-13. Superposition of the zero-offset responses (b)
of a continuum of Huygens' secondary sources as in (a).
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Diffraction Summation

Huygens' secondary source signature is a semicircle in
the £ — z plane and a hyperbola in the z — ¢ plane.
This characterization of point sources in the subsurface
leads to two practical migration schemes. Figure 4.1-
14a shows a zero-offset section that consists of a single
arrival at a single trace. This event migrates to a semi-
circle (Figure 4.1-14b). From Figure 4.1-14, note that
the zero-offset section recorded aver a constant-velocity
earth model consisting of a semicircular reflecting inter-
face contains a single blip of energy at a single trace as
in Figure 4.1-14a. Since this recorded section consists of
an impulse, the migrated section in Figure 4.1-14b can
be called the migration impulse response. An alternate
scheme for migration results from the observation that
a zero-offset section consisting of a single diffraction hy-
perbola migrates to a single point (Figure 4.1-15b).

The first method of migration is based on the su-
perposition of semicircles, while the second method is
based on the summation of amplitudes along hyperbolic
paths. The first method was used hefore the age of dig-
ital computers. The second method, which is known as
the diffraction summation method, was the first com-
puter implementation of migration. )

The migration scheme based on the semicircle su-
perposition consists of mapping the amplitude at a sam-
ple in the input z — ¢ plane of the unmigrated time sec-
tion onto a semicircle in the output r — z plane. The
migrated section is formed as a result of the superposi-
tion of the many semicircles. .

The migration scheme based on diffraction sum-
mation consists of searching the input data in the z — ¢
plane for energy that would have resulted if a diffract-
ing source (Huygens' secondary source) were located at
a particular point in the output x— = plane. This search
is carried out by summing the amplitudes in the z — ¢
plane along the diffraction curve that corresponds to
Huygens' secondary source at each point in the = — 2
plane. The result of this summation then is mapped
onto the corresponding point in the r — =z plane, As
noted early in this section, within the context of time
migration, however, the summation result actually is
mapped onto the £ — 7 plane. where 7 is the event time
in the migrated position.

The curvature of the hyperbolic trajectory for am-
plitude summation is governed by the velocity function.
The equation for this trajectory can be derived from the
geometry of Figure 4.1-15. A formal derivation also is
provided in Section D.2. Assuming a horizontally lay-
ered velocity-depth model, the velocity function used
to compute the traveltime trajectory is the rms veloc-
ity at the apex of the hyperbola at time 7 (Section 3.1).
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FIG. 4.1-14. Principles of migration based on semicircle
superposition. (a) Zero-offset section (trace interval, 25 m:
constant, velocity, 2500 m/s), (b) migration.
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FIG. 4.1-15. Principles of migration based on diffraction
summation. (a) Zero-offset section (trace interval. 25 m; con-
stant velocity, 2500 m/s). (b) migration. The amplitude at
mput trace location B along the Aank of the traveltime hy-
perbola is mapped onto output trace location A at the apex
of the hivperbola by equation (4-4).
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FIG. 5.1-1. (a) The geometry of a nonzero-offset recording
of reflections from a dipping laver boundary; (b) a sketch
of the time section depicting the various traveltimes. NMQO
correction involves coordinate transformation from yn —t to
Yn — tn by mapping amplitude A at time ¢ to B at time
tn on the same trace. DMO correction involves coordinate
transformation from yn — ta to yg — 7o by mapping ampli-
tude B at time {, on the trace at midpoint location yn of
the moveout-corrected common-offset section to amplitude
C at time 1 on the trace at midpoint location yp of the
zero-offset section. Zero-offset migration involves coordinate
trausfo_rmatioﬁf from yp — 70 to ym — 7 by mapping ampli-
tude Cat time 75 on the trace at midpoint location yg of
the zero-offset section to amplitude D at time 7 on the trace
at midpoint location ym of the migrated section. Migration
before stack involves direct mapping of amplitude A at time
t on the trace at midpoint location yn of the common-offset
section to amplitude D at time T on the trace at midpoint
location ym of the migrated section. See text for the rela-
tionships between the coordinate variables.

(b) Dip-moveout correction that maps the amplitude
at time ¢, denoted by the sample B on the trace
at midpoint y, of the moveout-corrected cormmon-
offset section with offset 2k to time 75 denoted by
the sample C on the trace at midpoint yo of the
zero-offset section,

Zero-offset migration then maps the amplitude at time
79 denoted by the sample C on the trace at midpoint
yn of the zero-offset section to the amplitude at time 7
denoted by the sample D on the trace at midpoint ¥,
of the migrated section. Note that the combination of
NMO correction. DMO correction, and zero-offset mi-
gration achieves the same objective as direct mapping
of the amplitude at time ¢ denoted by the sample A on
the trace at midpoint y, of the common-offset section
with offset 2h to the amplitude at time 7 denoted by the
sample D on the trace at midpoint y,,, of the migrated
section. This direct mapping procedure is the basis of
algorithms for migration before stack (Section 5.3).
The important point to note is that the normal-
moveout correction in step (a) is performed using the
velocity of the medium above the dipping reflector.
The NMO equation (3-8) defines the traveltime ¢
from source location S to the reflection point R to the
receiver location . This equation, written in prestack
data coordinates. is
4h? cos? ¢

2 __ 42
=12+ —

- (5-1)

where 2h is the offset, v is the medium velocity above
the reflector, ¢ is the reflector dip, and ¢ is the two-way
zero-offset time at midpoint location y,.

Dip-moveout correction of step (b) is preceded by
zero-dip normal-moveout correction of step (a) using
the dip-independent velocity v:
4h?

2 _ 42
t-—t+v2

n
where t,, 1s the event time at midpoint y,, after the NMO
correction. Event time ¢,, after the NMO correction and
event time to are related as follows (Section E.2)

, 4h%sin%¢

th =15 - (5-3)

v

At first glance, equations (5-2) and (5-3) suggest a
two-step approach to moveout correction:

(a) Apply a dip-independent moveout correction using
equation (5-2) to map the amplitude at time ¢ de-
noted by the sample A on the trace at midpoint y,
of the common-offset section with offset 24 to time
t, denoted by the sample B on the same trace at
midpoint y, of the same common-offset section.

(b) Apply a dip-dependent moveout correction using
equation (5-3) to map the amplitude at time ¢,
denoted by the sample B on the trace at midpoint
Yn of the moveout-corrected common-offset section
with offset 2h to time ¢y denoted by the sample
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FIG. E-2. The prestack time migration ellipse. See Section E.5 for details.

Square both sides of equation (E-67) to get
w2 =2y/[(y+ ) + 2] [(v— 12 + ]
- o [(y+h}2+zg] s [(y—h)2+32],

Combine the second and third terms on the right-hand side and simplify the terms inside the
square root

iR
v = 2/ (47 — h2)2 + 222y + R2) + 24 + 2(y* + B2 + 22). (E - 69a)

Perform further algebraic manipulation to collect the terms iny and z

(E - 68)

-1£-d G
(0212 — 4R2)y? + 128222 = UT — R2 (E — 69b)

Finally, normalize by the terms on the right-hand side and rearrange the terms in the denomi-
nators ~ —

y2 22

(wt/2F | (ut/2)? — A2

Equation (E-70) represents an ellipse in the y — z plane for a constant ¢ with the following
parameters (Figure E-2):

=1. (E — 70)

(a) Semi-major axis in midpoint y direction: @ = vt /2.

(b) Semi-minor axis in depth z direction: b= /(vt/2)? — k2.

(¢) Distance from center to either focus: va? — b2 = h.

(d) Distance from one focus to a point on the ellipse to the other focus: vi.

The ellipse of equation (E-70) in the y—z plane describes the impulse response of a nonzero-offset
migration operator applied to prestack data.
When equation (E-70) is specialized to the zero-offset case, h = 0, we get

yQ 22

wt/22 (w2

1, (E—Tla)



