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Chapter 3 

Deconvolution 

 

• The objective of deconvolution is to increase the vertical resolution of the seismic 

data by: 

o Compressing the source wavelet (to a zero-phase spike, if possible) 

o Removing multiples 

 

The seismic convolutional model 

• The seismic convolutional model is used to explain how the seismic trace is 

formed. 

• The seismic convolutional model approximates the earth by a linear system. 

• A linear system is one whose output o(t) is given by the convolution of its input 

i(t) with its impulse response r(t): o(t) = i(t) * r(t). 

• The impulse response of a system is the system’s output when the input is an 

impulse (delta) function. It is a series of impulses whose distribution and 

magnitude depend on the system’s properties. 

• In the seismic convolutional model: 

o The system’s output is o(t) = s(t), where s(t) is the recorded seismic trace. 

o The system’s input i(t) = w(t), where w(t) is the wavelet generated by the 

seismic source. 

o The system’s impulse response r(t) = e(t), where e(t) is a series of impulses 

corresponding, in time and amplitude, to the reflection coefficients at layer 

boundaries.  e(t) is also known as the reflectivity (series). 
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• According to this model, the seismic trace s(t) is given by: 

s(t) = w(t) * e(t).                                             (3.1) 

• A random noise component n(t), if present, is additive; hence, the noisy seismic 

trace becomes: 

sn(t) = w(t) * e(t) + n(t).                                        (3.2) 

• The forward seismic convolutional model is used to compute synthetic 

seismograms s(t) given the source wavelet w(t) and earth’s reflectivity e(t) 

(equations 3.1 and 3.2).  See example in Figure 3.1. 

• The deconvolution (inverse seismic convolutional model) is used to: 

o Compute the earth’s reflectivity e(t) given the seismic trace s(t) and the source 

wavelet w(t).  This is the most common objective of deconvolution. 

➢ If the source wavelet is known, the deconvolution becomes 

deterministic. 

➢ If the source wavelet is not known, the deconvolution becomes 

statistical. 

o Compute the source wavelet w(t) given the seismic trace s(t) and the earth’s 

reflectivity e(t).  This is used if a seismic trace is recorded near a borehole. 

• The seismic convolutional model is widely accepted because it agrees well with 

the observed seismic traces. 

• The seismic convolutional model commonly assumes the following: 

(1) The earth is made up of horizontal layers of constant velocity. 

(2) The source generates only a P-wave, which is reflected on layer boundaries at 

normal incidence. 

(3) The source wavelet is stationary.  That is, it does not change its shape as it 

travels in the subsurface. 

file:///D:/Latif/Coursework/Undergraduate/GEOP320/2015/Notes/Ch3/Chapter3-Figures.pdf
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(4) The noise component n(t) is zero. 

(5) The Earth’s reflectivity e(t) is a white random series of impulses. 

(6) The source wavelet w(t) is a minimum-phase wavelet. 

• Often, one or more of these assumptions might not be satisfied; in which case, 

advanced techniques of deconvolution have to be implemented. 

 

Inverse filtering (spiking deconvolution) 

• The aim of this process is to compress the source wavelet w(t) into a zero-phase 

spike of zero width (i.e., (t)).  This means that we are eliminating the effect of the 

source wavelet and leaving only the effect of the Earth’s reflectivity in the 

seismogram. 

• We can achieve this by convolving the seismic trace by the inverse filter, f(t), of 

the source wavelet defined as: 

w(t) * f(t) = (t).                                                   (3.3) 

• Taking the FT of equation (3.3): 

W(f) F(f) = 1,                                                   (3.4) 

where W(f), F(f), and 1 are the FTs of w(t), f(t), and (t), respectively. 

• From equation (3.4): 

F(f) = 1/W(f) = [1/|Aw(f)|] exp[-i w(f)],  

|Af(f)| = 1/|Aw(f)|, and  

   f(f) = -w(f),  

where |Aw(f)| and w(f) are the amplitude and phase spectra of w(t) and |Af(f)| and 

f(f) are the amplitude and phase spectra of f(t). 
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• Therefore, the amplitude spectrum of the inverse filter is the reciprocal of that of 

the source wavelet whereas its phase spectrum is the negative of that of the 

wavelet. 

• Taking the IFT of the F(f), we get the desired inverse filter f(t). 

• The spiking deconvolution is accomplished then by convolving the inverse filter 

f(t) with the seismic trace s(t): 

f(t) * s(t) = f(t) * [w(t) * e(t)] = [f(t) * w(t)] * e(t) = (t) * e(t) = e(t),          (3.5a) 

which is the earth’s response that we want to extract from the seismic trace. 

• We can also use the z-transform (ZT) in equation (3.4), which results in           

F(z) = 1 / W(z). 

• F(z) is an infinite polynomial of z that is convergent only if w(t) is a minimum-

phase wavelet. 

• For practical reasons, the infinite polynomial F(z) has to be truncated to n terms 

(i.e., Fn(z)). 

• Truncation generates less error if: 

o We include more terms of Fn(z). 

o w(t) is a minimum-phase wavelet 

• The truncated filter fn(t) is calculated by taking the inverse z-transform of Fn(z). 

• Because of truncation, convolution of the truncated filter fn(t) with the wavelet 

will not give the desired output d(t) = (t) = (1,0,0,…). 

• Instead, an actual output y(t) will be given as: 

y(t) = fn(t) * w(t)    (3.5b) 

• Apparently, y(t) ≠ d(t) and there will be a truncation error E defined as: 

E = i(di – yi)
2,    (3.5c) 

     where di and yi are the ith samples of the desired and actual outputs, respectively. 
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• Example (1):  Given a seismic trace s(t) = (1/3, -17/30, 1/5) and a source wavelet 

w(t) = (1, -1/2), use inverse filtering to calculate the deconvolved trace sd2(t) and 

compare it to the earth response e(t) = (1/3, -2/5, 0, 0).  Note: sd2(t) indicates the 

deconvolved trace we get by using an inverse filter f2(t). 

Step (1):  Take the z-transform of w(t):  

W(z) = 1 – (1/2)z. 

Step (2):  Use polynomial division to find F(z): 

F(z) = 1 / W(z) = 1 / [1 – (1/2)z] = 1 + (1/2)z + (1/4)z2 + (1/8)z3 + … . 

For a 2-sample wavelet (w0,w1), you can use the geometric power series as: 

1 / [w0(1 – a.z)] = (1/w0) (1 + a.z + a2.z2 + a3.z3 + …), where a = w1/w0, 

which converges only when |a|<1 (i.e., W(t) is minimum phase.). 

Step (3):  For f2(t), we truncate at the second term (n = 2), giving: 

F2(z) = 1 + (1/2)z. 

Step (4):  Find the truncated inverse filter by taking the inverse z-transform of F2(z), 

which results in: 

f2(t) = (1, ½). 

Step (5):  Deconvolve s(t) by convolving it with f2(t) to get:  

sd2(t) = f2(t) * s(t) = (1, ½) * (1/3, -17/30, 1/5) = (1/3, -2/5, -1/12, 1/10). 

Step (6): The error between sd2(t) and e(t) can be calculated as:  

L = i(sd2i – ei)
2 = (1/3-1/3)2 + (-2/5+2/5)2 + (-1/12-0)2 + (1/10-0)2 = 0.01694. 

Step (7):  The actual output is: 

y(t) = f2(t) * w(t) = (1, ½) * (1, -1/2) = (1, 0, -¼). 

Step (8):  Knowing that d(t) = (t) = (1, 0, 0), we calculate E as: 

E = (1-1)2 + (0-0)2 + (0+1/4)2 = 1/16 = 0.0625. 

• Figure 3.2 shows the effect of wavelet phase on deconvolution. 

https://en.wikipedia.org/wiki/Geometric_series
file:///D:/Latif/Coursework/Undergraduate/GEOP320/2015/Notes/Ch3/Chapter3-Figures.pdf


 6 

Exercise (1):   

a. Calculate sd3(t) for the above example and compare the resulting errors to those 

you got using sd2(t). 

b. Carry out the steps of the above example using the FT instead of the ZT. 

c. If we have random noise in the seismic trace, where will you include it in the 

above example? 

 

Optimum Wiener filters 

• Wiener optimum filtering involves designing a filter f(t) so that the error E 

between the desired output d(t) and the actual output y(t) is minimum: 

 
i

ii ydE 2)( ,                                        (3.6) 

      where di and yi are the ith samples of the desired and actual outputs, respectively. 

• Remember that the actual output y(t) was given as: 

)()()( txtfty  ,                                         (3.7) 

where x(t) is the input. 

• Substituting equation (3.7) into (3.6): 

 
i

ii txtfdE 2))}(*)({( .                                (3.8) 

       where {f(t)*x(t)}i = yi is the ith sample of y(t). 

• The goal is to compute the filter coefficients (f0, f1, ..., fn-1) so that the error E is 

minimum; where the filter length, n, must be predefined. 

• This is a typical least-squares problem, and the minimum error is attained by 

setting the partial derivative of E with respect to fj to zero: 

E/fj = 0,         j = 0, 1, 2, ..., (n-1).            (3.9) 

• Applying equation (3.9) on (3.8) and simplifying, the result can be expressed as: 
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• In matrix format, equation (3.10a) can be written as: 
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• In equations (3.10a) and (3.10b), gj is the jth term of the crosscorrelation between 

d(t) and x(t): 

jj txtdg )}()({  ,  j = 0, 1, 2, ..., (n-1).   

(3.11a) 

(Note that g(t) = d(t)  x(t)  x(t)  d(t) and that we only need lags 0, 1, …(n-1)). 

• In equations (3.10a) and (3.10b), rj-i is the jth term of the autocorrelation of x(t): 

jj txtxr )}()({  ,      j = 0, 1, 2, ..., (n-1).         (3.12) 

(Note that r(t) = x(t)  x(t) = r(-t) and we only need lags 0, 1, …(n-1)). 

• If g(t) and r(t) are known, equation (3.10) can be solved uniquely to find the filter 

f(t). 

• Equations (3.10a) and (3.10b) are known as the normal equations. 

• The autocorrelation (rj) matrix of equation (3.10b) is a Toeplitz matrix that can be 

inverted efficiently using the Levinson recursion procedure. 

• See Figure 3.3 for the derivation of the normal equations. 

 

Inverse filtering using the normal equations 
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• As an application of the normal equations, we will use them to design the inverse 

filter of the source wavelet such that the desired output is a zero-lag spike. 

• x(t) = w(t) = (w0, w1, ..., wn-1). 

• f(t) = (f0, f1, ..., fn-1).     

• d(t) = (t) = (1, 0, ..., 0), of length 2n-1. 

• r0 = w0
2 + w1

2 + ... + wn-1
2 

r1 = w0 w1 + w1 w2 + ... + wn-2 wn-1 

... ... ... ... 

rn-1 = w0 wn-1 

• g0 = w0 

g1 = 0 

... ... ... ... 

gn-1 = 0. 

• Therefore, the normal equations become: 
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• Example (2): Use the normal equations to find the inverse filter of w(t) = (1,-1/2). 

o d(t) = (t) = (1,0,0). 

o rw(t) = (5/4,-1/2). 

o g(t) = (1,0). 

o Therefore the normal equations become: 
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o Solution yields the filter: f(t) = (20/21, 8/21). 

o y(t) = f(t) * w(t) = (20/21,-2/21,-4/21). 

o E = (1-20/21)2 + (0+2/21)2 + (0+4/21)2 = 21/441 = 1/21 = 0.048. 

o Comparison of this error to the error we got using inverse filtering (E = 

0.0625), we see that optimum Weiner filtering performs better than inverse 

filtering. 

• Exercise (2): deconvolve s(t) = (1/3, -17/30, 1/5) using f(t) = (20/21, 8/21) and 

compare the error in e(t) for the cases of inverse filtering versus optimum Weiner 

filtering. 

 

The trace-wavelet relation 

• We just saw that we need to know the amplitude spectrum or autocorrelation of 

the source wavelet in order to perform spiking deconvolution or optimum 

filtering. 

• However, for most impulsive sources, the source wavelet is not known and 

deconvolution or filtering cannot be performed directly. 

• We need to either estimate the source wavelet or find relations between the 

amplitude spectra or autocorrelations of the seismic trace and source wavelet.  

Here we investigate the latter case. 

• Amplitude spectra: 

o The earth response e(t) can safely be approximated as a white random series of 

impulses (Robinson and Treitel, 2000; Yilmaz, 2001). 

o If this is the case, the amplitude spectrum of e(t) will be constant.  That is: 

|Ae(f)|   E0.                                                   (3.14) 
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o Using equation (3.1) to find the trace amplitude spectrum and substituting 

equation (3.14) yields: 

|As(f)| = |Aw(f)| |Ae(f)| = E0 |Aw(f)|.                                     (3.15) 

o Equation (3.15) means that the amplitude spectrum of the seismic trace is a 

scaled version of the amplitude spectrum of the source wavelet. 

o More internet resources about colored random series. 

• Autocorrelations: 

o Because of the random nature of e(t), its autocorrelation re(t) is generally zero 

anywhere except at t = 0, where it is equal to the energy in e(t) given by: 

 2

1

2

0

2

0 eeer
i

ie .                                     (3.16a) 

o Therefore, re(t) can be approximated as: 

re(t) = re0 (t).     (3.16b) 

o Using this fact about re(t), we can derive the relation between the trace and 

wavelet autocorrelations (rs(t) and rw(t)) using equations (2.14) and (3.16b) as 

follows: 

            rs(t) = s(t)  s(t)  

= s(t) * s(-t)      (eq. 2.14) 

= [w(t) * e(t)] * [w(-t) * e(-t)]    (eq. 3.1)  

= [w(t) * w(-t)] * [e(t) * e(-t)]  

= [w(t)  w(t)] * [e(t)  e(t)]   (eq. 2.14) 

= rw(t) * re(t)  

= re0 (t) * rw(t)      (eq. 3.16b) 

= re0 rw(t).           (3.17) 

https://en.wikipedia.org/wiki/Colors_of_noise
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o Equation (3.17) means that the autocorrelation of the seismic trace is a scaled 

version of the autocorrelation of the source wavelet. 

• The benefit of these relations is that we can use |As(f)| or rs(t) whenever |Aw(f)| or 

rw(t) are needed in deconvolution or filtering. 

• Provided the randomness and whiteness assumptions about e(t) are satisfied, all 

we miss by using |As(f)| or rs(t) instead of |Aw(f)| or rw(t) is a scaling factor. 

 

Predictive deconvolution 

• The goal of predictive deconvolution is to generalize the normal equations to any 

type of deconvolution (spiking or multiple suppression). 

• For the autocorrelation coefficients, rj, of the source wavelet on the left-hand side 

of the normal equations (3.10), we can use the corresponding autocorrelation 

coefficients of the trace (i.e., the trace-wavelet relation). 

• But we still need the source wavelet in constructing the right-hand side of the 

normal equations (i.e., gj in equation (3.10)); otherwise, we cannot use the normal 

equations. 

• One way to work around this problem is to replace the crosscorrelations gj on the 

right-hand side by the autocorrelations of the source wavelet rj. 

• We can achieve this replacement if we require the desired output d(t) to be a time-

advanced (left-shifted) version x(t+) of the input x(t), where  is a parameter 

that we select. 

• So basically we will be solving the normal equations for the filter p(t) that will 

transform the input signal to the same signal but only advanced  samples. 

• This is the same as trying to predict the (n-1+) time sample of the input signal.  

Therefore, we call p(t) the prediction filter and  the prediction lag. 
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• For example, if x(t) = (x0, x1, x2, x3, x4) and  = 1, then: d(t) = x(t+1) = (x1, x2, x3, 

x4, x5). 

• Since d(t) = x(t+), then g(t) = d(t)  x(t) = x(t+)  x(t) = r(t+).  Therefore, g0 

= r,    g1 = r+1, …, gn-1 = r+n-1. 

• Inserting these values for g(t) into the normal equations (3.10b), we get: 
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• When p(t) is convolved with the input x(t), it will give us an actual output y(t) that 

is the best least-squares fit to the desired output d(t) = x(t+). 

• In the case of seismic trace deconvolution, x(t) is the seismic trace s(t), which 

includes a predictable part (e.g., multiples) and a non-predictable (random) part 

which consists of the primaries: s(t) = m(t) + e(t). 

• Therefore, y(t) will only contain an estimate m̂(t + α) of the shifted predictable 

part m(t+) of the desired output d(t) = s(t+) = m(t+) + e(t+), where e(t+) 

represents the random part of s(t+) generated by shifting the earth response e(t). 

• Therefore, e(t+) can be found as: 

e(t+) = d(t) – y(t) = s(t+) – p(t)*s(t).           (3.19) 

• Equation (3.19) can be manipulated to yield the earth response e(t): 

e(t) = s(t)*[(t) – p(t-)] = s(t)*a(t),   (3.20a) 

where a(t) = (t) – p(t-).     (3.20b) 

• Equation (3.20) states that the earth response e(t) can be retrieved by convolving 

the filter a(t) with the seismic trace s(t). 
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• The filter a(t) is called the prediction error filter and is given by: 

-1) zeros 

a(t) = (1, 0, 0, ..., 0, -p0, -p1, ..., -pn-1).           (3.21) 

      n filter coefficients 

• For  = 1, a(t) = (1, -p0, ..., -pn-1) and the normal equations can be manipulated to 

have the same structure as equation (3.13) except for a scaling factor (k): 
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• Hence, the prediction error filter a(t) = (1, -p0, ..., -pn-1) is the inverse filter of the 

source wavelet of our input seismic trace s(t) except for a scaling factor. 

• Here are the steps for using predictive deconvolution to perform spiking 

deconvolution to a seismic trace: 

1. Select n and  = 1. 

2. Autocorrelate the trace. 

3. Construct the predictive normal equations (3.18) using the trace 

autocorrelations. 

4. Solve equation (3.18) to find the prediction filter p(t) = (p0, ..., pn-1). 

5. Construct the prediction error filter a(t) = (1, -p0, ..., -pn-1). 

6. Convolve a(t) with the trace s(t) to get the earth response e(t). 

• Prediction error filters with prediction lags of  > 1 are used for multiple 

suppression. 
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• Because of the general nature of the predictive deconvolution, we normally use it 

for most of our deconvolution needs. 

• Example (3):  Given the seismic trace s(t) = (1/3, -17/30, 1/5). Use predictive 

deconvolution to find the prediction error filter a(t) needed to spike s(t) into sd2(t) 

and compare sd2(t) with the earth response e(t) = (1/3, -2/5). 

1. Set n = 2 and =1 (for spiking deconvolution). 

2. rs(t) = (17/36, -68/225, 1/15). 

3. The normal equations become: 





























15/1

225/68

36/17225/68

225/6817/36

1

0

p

p
. 

4. Solution yields the filter: p(t) = (-0.93, -0.45). 

5. a(t) = (1,0.93,0.45). 

6. sd2(t) = a(t) * s(t) = (0.33,-0.26,-0.18,-0.07,0.09). 

7. E = i(ei – sd2i)
2 = 0.065, which is larger than that we got using previous 

methods due to the fact that e(t) might not be a white random series. 

• Exercise (3): Starting with the known wavelet w(t) = (1, -1/2), use predictive 

deconvolution to find the prediction error filter a(t) needed to deconvolve s(t) into 

sd2(t) and compare sd2(t) with e(t).  How does the error between sd2(t) and e(t) 

compare in this case to the case when the wavelet is unknown? 

 

Predictive deconvolution in practice 

Parameter selection criteria 

• To perform predictive deconvolution in practice, we need to set the following 

parameters: 
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➢ Autocorrelation window (w): this sets up the part of seismic trace from which 

we will select the elements of the autocorrelation matrix in the normal 

equations. 

➢ Operator length (n): this sets up the length of the prediction filter p(t). 

➢ Prediction lag (): this sets up the type of deconvolution: spiking or multiple 

suppression. 

➢ Prewhitening (): this sets up the amount of white random noise we want to 

include into our autocorrelation matrix to stabilize the solution of the normal 

equations. 

Autocorrelation window (w) 

• The choice of deconvolution parameters depends largely on the characteristics of 

the autocorrelation of the seismic trace. 

• Therefore, it is important to choose a suitable autocorrelation window (gate) that 

will be used to calculate the deconvolution parameters. 

• The autocorrelation window should include the part of the record that contains 

useful reflection signal and should exclude coherent (e. g., ground roll) or 

incoherent noise (e. g., later parts of the record). 

• The length of the autocorrelation window should be as large as possible and must 

be greater than eight times the largest operator length that will be used for that 

dataset. 

Operator length (n) 

• The operator (filter) length should be equal to the wavelet length. 

• The first transient zone of the trace autocorrelation is the part that mostly 

represents the autocorrelation of the source wavelet. 
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• The first transient zone is the first part of the autocorrelation that contains high 

amplitudes. 

• The operator length should be as large as possible but not less than the length of 

the first transient zone of the trace autocorrelation. 

• The optimum operator length should not leave considerable amount of energy in 

the trace autocorrelation. 

Prediction lag () 

• For spiking deconvolution,  = 1 should be selected. 

• If prediction lag is increased, the output from predictive deconvolution becomes 

less spiky. 

• The application of spiking deconvolution to some field data might boost high-

frequency noise in the data.  In this case, we can use  slightly greater than 1. 

• For suppressing multiples, the selection of  depends on the type of multiple: 

➢ Long-path multiples:  should be selected equal to the beginning of first 

multiple on the trace autocorrelation (Figure 3.4A). 

➢ Short-path multiples:  should be selected equal to the first or second zero 

crossing on the trace autocorrelation (Figure 3.4B). 

• In case of multiples, we deconvolve the trace in the following sequence: 

1. Multiple suppression deconvolution. 

2. Spiking deconvolution. 

Prewhitening () 

• A numerical instability might be encountered when inverting the trace 

autocorrelation matrix in the normal equations if the determinant of the 

autocorrelation matrix is zero. 
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• To ensure numerical stability, we introduce an artificial level of white random 

noise into the trace autocorrelation before deconvolution.  This process is called 

prewhitening. 

• Prewhitening is achieved by adding a white random noise, with a very small 

variance (), to the trace amplitudes at every time sample. 

• This is equivalent to adding a very small positive constant to the zero-lag 

autocorrelation (r0) of the trace (Prove!). 

• The magnitude of prewhitening is measured as a percentage of the zero-lag 

autocorrelation value r0. 

• In practice, typically 0.1% to 0.3% (i.e., 0.001r0 to 0.003r0) prewhitening is 

standard in processing. 

• See Figure 3.5 for a summary of selecting deconvolution parameters. 

 

Practical aspects of real seismic data 

Effect of random noise on deconvolution 

• Field data practically contain a noise component.  If this component is small, then 

we can ignore its effect. 

• Alternatively, we can delay the deconvolution until we stack the data, so that the 

S/N ratio is improved. 

• However, if the noise is considerable, then we must test to see if deconvolution 

can enhance the resolution of the data without destroying its interpretive content. 

• Exercise (4): Generate Gaussian random noise with a zero mean and 0.1 standard 

deviation and add it to s(t) in Exercise (3) and carry out the predictive 

deconvolution.  How does the error between sd2(t) and e(t) compare in this case to 
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the case in Exercise (3)?  What happens if you increase the noise standard 

deviation? 

Nonstationarity and deconvolution 

• Because the Earth filters high frequencies, the shape of the source wavelet 

changes as it travels in the earth. 

• If the wavelet changes its shape considerably with depth, a time-variant 

deconvolution (TVD) should be used. 

• Time variant deconvolution consists of segmenting the seismic record into 3 - 4 

parts and each part is used to construct its own deconvolution parameters. 

• To see if TVD is required, we look at the amplitude spectrum of few adjacent 

traces using a sliding time window along the traces.  If the peak frequency 

becomes considerably lower with increasing TWTT time, we need TVD. 

• See Figure 3.6.  

Multiple suppression by predictive deconvolution 

• As an example, we will see how predictive deconvolution is used to suppress the 

water multiple (Figure 3.7). 

• The time series representing the water-multiple is: 

m(t) = (1, 0, ..., 0, -R, 0, ..., 0, R2, 0, ..., 0, -R3, ...),        (3.23) 

which is an infinite series, but with decreasing magnitude because R < 1 and the 

separation between the nonzero elements is c-1 zeros. 

• For simplicity, we will use the Z-transform approach to estimate the  parameter 

for this m(t) series.  

• The Z-transform of m(t) is: 

M(z) = 1 – R.zc+ (R.zc)2 – (R.zc)3 + … = 





0

).(
i

iczR  = 1/(1+R.zc),  (3.24) 
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      where the convergence is due to the minimum-phase of the m(t) series. 

• The inverse filter of m(t) is f(t) such that: 

f(t) * m(t) = (t).    (3.25) 

• The Z-transform of equation (3.25) is: 

F(z) M(z) = 1.     (3.26) 

• Therefore, F(z) = 1/M(z) = (1+R.zc). 

• Taking the inverse Z-transform of F(z), we get f(t) = (1, 0, ..., 0, R), where the 

separation between 1 and R is c-1 zeros. 

• This means that the  parameter for this m(t) series is equal to c samples = c.t 

(sec). 

• Therefore, the predictive deconvolution parameters in this case are: 

1. For multiple suppression: The optimum parameters are: w = trace length,  

= 0.1% = 0.001, n = Tz1 and  = c, where Tz1 is the length of the first 

transient zone of the trace autocorrelation. 

2. For spiking deconvolution: The optimum parameters are:  w = trace length, 

 = 0.1% = 0.001, n = Tz1 and  = . 

• Exercise (5): Use the normal equations to estimate the inverse filter of m(t).  What 

is the  parameter you estimate in this case?  Find the error between the desired 

and actual outputs up to the first 4 terms and compare to that found from the Z-

transform. 


