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Differential Pulse Code Modulation (DPCM) 
 
According to the Nyquist sampling criterion, a signal must be sampled at a sampling rate 
that is at least twice the highest frequency in the signal to be able to reconstruct it without 
aliasing. The samples of a signal that is sampled at that rate or close to generally have 
little correlation between each other (knowing a sample does not give much information 
about the next sample). However, when a signal is highly oversampled (sampled at several 
times the Nyquist rate, the signal does not change a lot between from one sample to 
another. Consider, for example, a sine function that is sampled at the Nyquist rate. 
Consecutive samples of this signal may alternate over the whole range of amplitudes from 
–1 and 1. However, when this signal is sampled at a rate that is 100 times the Nyquist rate 
(sampling period is 1/100 of the sampling period in the previous case), consecutive 
samples will change a little from each other. This fact can be used to improve the 
performance of quantizers significantly by quantizing a signal that is the difference 
between consecutive samples instead of quantizing the original signal. This will result in 
either requiring a quantizer with much less number of bits (less information to transmit) or 
a quantizer with the same number of bits but much smaller quantization intervals (less 
quantization noise and much higher SNR). 
 
Consider a signal  x(t) that is sampled to obtain the samples  x(kTs), where  Ts  is the 
sampling period and  k  is an integer representing the sample number. For simplicity, the 
samples can be written in the form  x[k],  where the sample period Ts is implied. Assume 
that the signal x(t) is sampled at a very high sampling rate. We can define  d[k]  to be the 
difference between the present sample of a signal and the previous sample, or 
 
 [ ] [ ] [ 1].d k x k x k= − −  
 
Now this signal  d[k]  can be quantized instead of  x[k] to give the quantized signal  dq[k]. 
As mentioned above, for signals x(t)  that are sampled at a rate much higher than the 
Nyquist rate, the range of values of  d[k]  will be less than the range of values of x[k]. 
 
After the transmission of the quatized signal  dq[k], theoretically we can reconstruct the 
original signal by doing an operation that is the inverse of the above operation. So, we can 
obtain an approximation of  x[k] using  
     
 ˆ ˆ[ ] [ ] [ 1].qx k d k x k= + −  
 
So, if dq[k] is close to d[k], it appears from the above equation that obtained ˆ[ ]x k  will be 
close to d[k]. However, this is generally not the case as will be shown later. The 
transmitter of the above system can be represented by the following block diagram. 
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The receiver that will attempt to reconstruct the original signal after transmitting it through 
the channel can be represented by the following block diagram. 

ˆ[ 1]x k −

ˆ[ ]x k

 
Because we are quantizing a difference signal and transmitting that difference over the 
channel, the reconstructed signal may suffer from one or two possible problems. 
 
 1. Accumulation of quantization noise: the above system suffer from the 
possible accumulation of the quantization noise. Unlike the quantization of a signal where 
quantization error in each sample of that signal is completely independent from the 
quantization error in other samples, the quantization error in this system may accumulate 
to the point that it will result in a reconstructed signal that is very different from the 
original signal. This is illustrated using the following table. Consider the samples of the 
input signal  x[k] given in the table. The reconstructed signal is given by ˆ[ ]x k  shown in 
table. Assume the quantizer used to quantize d[k] is an 8–level quantizer with quantization 
intervals  [–4,–3), [–3,–2), [–2,–1), … , [3,4)   and the output quantization levels are the 
center points in each interval (–3.5, –2.5, –1.5, … , 3.5).     
 

k –1 0 1 2 3 4 5 6 7 8 9 
x[k] 0 0.3 1.5 0.7 1.0 2.3 3.7 2.8 3.5 2.8 0 

x[k–1] 0 0 0.3 1.5 0.7 1.0 2.3 3.7 2.8 3.5 3.1 
d[k] 0 0.3 1.2 –0.8 0.3 1.3 1.4 –0.9 0.7 –0.7 –2.8

Quantization 
Up/Down   

U (or 
D) U U U U U U U D U U 

dq[k] 0.5 0.5 1.5 –0.5 0.5 1.5 1.5 –0.5 0.5 –0.5 –2.5
ˆ[ 1]x k −  0 0.5 1.0 2.5 2.0 2.5 4.0 5.5 5.0 5.5 5.0 

ˆ[ ]x k  0.5 1.0 2.5 2.0 2.5 4.0 5.5 5.0 5.5 5.0 2.5 
ˆ[ ] [ ]x k x k−  0.5 0.7 1.0 1.3 1.5 1.7 1.8 2.2 2.0 2.2 2.5 

Err. Direction 
Up/Down U U U U U U U U D U U 

     
So, it is clear from this table that if the quantization error for a series of samples is going 
in one direction, the error adds up to produce a output signal that deviates from the 
original signal. Note that the error between the original and reconstructed samples always 
increased except when the quantization error switched direction at k = 7 (the shaded box). 
 
 2. Effect of transmission errors: in a regular PCM system, the effect of an 
error that happens in the transmitted signal is only limited to the sample in which the error 
occurs. In DPCM, an error that occurs in the transmitted signal will cause all the 
reconstructed samples at the receiver after that error occurs to have errors. Therefore, even 
if quantization error did not accumulate, an error caused by the channel will cause all 
successive samples to be wrong. Try this as an exercise by constructing g a table similar to 
the one above. Intentionally introduce an error in the reconstructed signal at a point and 
see what happens to the remainder of the reconstructed signal.  
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Differential Pulse Code Modulation (DPCM) (Continued) 
 
The advantage of DPCM is the reduced amount of information that must be transmitted if 
we maintain the same SNR or an improved SNR if we maintain the same amount of 
information. To get an idea on the improvement in performance that we can get from 
using DPCM as compared to the performance of regular PCM, DPCM can increase the 
SNR for some signals by as much as 20 dB. This corresponds to an improvement in the 
signal power compared to the noise power by 100 times, or a reduction in the amount of 
information by more than 3 bits/sample.  However, the system considered in the previous 
lecture for DPCM is not practical because of the two problems mentioned at the end of the 
last lecture. 
 
These problems can be solved as follows: 
 
 1. Eliminating the problem of accumulation of quantization noise: This 
problem can be solved by avoiding the quantization of the difference signal  d[k] between 
x[k] and its previous sample x[k–1], or 
 
 [ ] [ ] [ 1],d k x k x k= − −  
 
and quantizing instead a difference signal (we will call it g[k]) that is the difference 
between  x[k] and the previous sample of its quantized form xq[k–1]. Therefore, g[k] is 
given by 
 
 [ ] [ ] [ 1].qg k x k x k= − −  
 
Apparently, this will require applying the quantizer on the signal x[k] to obtain  xq[k–1], 
which we are trying to avoid since the amplitude of  x[k] is generally larger than the 
amplitude of a difference signal like d[k] or even g[k]. In fact, if both x[k] and g[k] are 
available, we can reconstruct the quantized form of x[k] using the following system. 
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In the above system, we can easily prove that the resulting signal xq[k] is the quantized 
form of  x[k]. 
 
First we see that 
  
 [ ] [ ] [ 1].qg k x k x k= − −   
   
Now, the output of the quantizer is the quantized form of g[k] which can be represented by 
adding a quantization noise q[k] to the input of the quantizer. Therefore, 
 
 [ ] [ ] [ ]qg k g k q k= + . 
 
Substituting for  g[k]  in  gq[k] gives 
 
 [ ] [ ] [ 1] [ ]q qg k x k x k q k= − − +  
 
From the block diagram, 
 

 

[ ] [ ] [ 1]

[ ] [ 1] [ ] [ 1]

[ ] [ ]

q q q

q q

x k g k x k

x k x k q k x k

x k q k

= + −

= − − + + −

= +

 

 
So, in fact, the function xq[k] is the quantized form of x[k] as seen by the last line of the 
above equation. A word of caution here, the above derivation does not mean that if we 
quantized  x[k] directly by the quantizer we will get  xq[k]. It just says that xq[k] is a 
quantized form of x[k]. If we passed x[k] through the same quantizer in the block diagram 
above, we will get another function xq2[k] with samples that are generally different from 
xq[k].  
 
At the receiver side of the DPCM system, we can use the gray block in the transmitter 
labeled “Predictor” since its input is the DPCM output  gq[k]  and its output is the desired 
signal xq[k]. Therefore the block diagram would be as follows. 
 

ˆ [ ]qx k

ˆ [ 1]qx k −

 
 
Now, assume the quantizer used to quantize g[k] is again an 8–level quantizer with 
quantization intervals  [–4,–3), [–3,–2), [–2,–1), … , [3,4)   and the output quantization 
levels are the center points in each interval (–3.5, –2.5, –1.5, … , 3.5).     
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NOTE: THE FOLLOWING TABLE IS FOR ILLUSTRATION. DO NOT SPEND TOO MUCH 
TIME TRYING TO FIGURE OUT HOW IT IS COMPUTED (MATLAB HELPED ME). 
 

k –1 0 1 2 3 4 5 6 7 8 9 
x[k] 0 0.3 1.5 0.7 1.0 2.3 3.7 2.8 3.4 2.8 0 

g[k] (= x[k] – xq[k–1])  0 –0.2 1.5 –0.8 0 0.8 1.7 –0.7 0.4 –0.7 –3.0
gq[k] 0.5 –0.5 1.5 –0.5 0.5 0.5 1.5 –0.5 0.5 –0.5 –2.5

Quantization 
Up/Down   

U (or 
D) D – U U (or 

D) D D U U U U 

xq[k] (= gq[k] + xq[k–1]) 0.5 0 1.5 1.0 1.5 2.0 3.5 3.0 3.5 3.0 0.5 
xq[k–1] 0 0.5 0 1.5 1.0 1.5 2.0 3.5 3.0 3.5 3.0 
gq[k] 0.5 –0.5 1.5 –0.5 0.5 0.5 1.5 –0.5 0.5 –0.5 –2.5

ˆ[ 1]x k −  0 0.5 0 1.5 1.0 1.5 2.0 3.5 3.0 3.5 3.0 
ˆ[ ]x k  0.5 0 1.5 1.0 1.5 2.0 3.5 3.0 3.5 3.0 0.5 

ˆ[ ] [ ]x k x k−  0.5 –0.3 0 0.3 0.5 –0.3 –0.2 0.2 0.1 0.2 0.5 
Err. Direction 

Up/Down U D – U U D D U – U U 

 
This table illustrates that the above DPCM does not cause accumulation of error. Looking 
at the reconstructed signal and the original input signal, we see that the magnitude of the 
difference is always less than or equal to half the quantization interval (i.e. ≤ 0.5). Even 
when the quantization error for a sequence of samples had the same direction as it is the 
case for the last four columns of the table, the difference between the input and output of 
the system was always within half the quantization interval.  
 
 2. Reducing the effect of transmission errors: as mentioned before, 
transmission errors result in errors in all the reconstructed samples of the input signal that 
come after the transmission error. The best method to combat this problem is to divide the 
data into sets of samples and resent the transmitter and receiver after the transmission of 
each set of samples. This way, a transmission error that occurs will affect only the samples 
of that part of the data. Once the system is reset, the effect of that error will stop.  


